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Abstract: Learning analytics is a rapidly evolving research discipline that uses the
insights generated from data analysis to support learners as well as optimize both
the learning process and environment. This paper studied students’ engagement
level of the Learning Management System (LMS) via a learning analytics tool,
student’s approach in managing their studies and possible learning analytic meth-
ods to analyze student data. Moreover, extensive systematic literature review
(SLR) was employed for the selection, sorting and exclusion of articles from
diverse renowned sources. The findings show that most of the engagement in
LMS are driven by educators. Additionally, we have discussed the factors in
LMS, causes of low engagement and ways of increasing engagement factors
via the Learning Analytics approach. Nevertheless, apart from recognizing the
Learning Analytics approach as being a successful method and technique for ana-
lyzing the LMS data, this research further highlighted the possibility of merging
the learning analytics technique with the LMS engagement in every institution as
being a direction for future research.

Keywords: Learning analytics; student engagement; learning management
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1 Introduction

In recent years, Learning Analytics has emerged as a promising area of research for tracing the digital
footprints of learners as well as extracting useful knowledge of a student’s learning progress. Since the
availability of the increased amount of data alongside the fact that potential benefits of learning analytics
can be far-reaching to all stakeholders in the education field, such as students, teachers, leaders, and
policymakers, many higher learning institutions have started using the new analytics models and the data
stored in its Learning Management System (LMS) as a way of reaching their respective short- and long-
term goals and objectives. However, the data produced from the LMS cannot only be transformed
effectively into meaningful information but can be used to reflect on the learners’ interaction within a
system. Moreover, this can improve the understanding of the user’s behaviour and characteristics that
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contributes to low LMS usage. The data mining and analysis applied in higher education is still in the early
stages [1]. LMS has been introduced as a technology to provide a better option for institutions to endorse
more student participation and engagement [2]. The LMS trace and log data or virtual learning
environments (VLEs) that had evolved from traditional learning methods are now regarded as crucial
learning analytics data sources [3]. Although a study conducted by Nguyen et al. [4], revealed that most
of the LMS interactions occurred between students, instructors and the institution’s resources. Moreover,
Jovanovic et al. [5] discovered a low LMS interaction and engagement level among these learners.

Similarly, Zanjani et al. [6] and Emelyanova et al. [7] stated the use of LMS as a means of providing a
flexible platform as well as a secure learning environment for students having different lifestyles. It is a tool
that can help students and lecturers, improve learning and management processes. The LMS however, made
it somewhat difficult for the educator to gauge the student’s behaviour and their study patterns as compared to
the traditional face-to-face learning [8]. Despite the above shortcoming, the user’s participation in LMS can
still be used to gauge the student’s real learning behaviour since it may offer a different and more personal
learning experience than those of conventional classroom learning. The examination on log information of
student will radiate instinct into figuring out how to guarantee better decisions and be responsible to different
partners. Assessment from the learning information will improve the learning condition to be more
organized, as it diverges from customary to a web-based learning background. Consequently, learning
investigation can recognize the relationship between log information and understudy conduct [9].
Learning Analytics foresee understudy presentation, dropout rate, last stamps and grades, maintenance of
the understudies in LMS, as well as coming up with an early cautioning framework for the understudies,
all through their examination in college [10]. Also, the execution of Learning Analytics to the college
understudy helps with the college organization, assists the employees to eyewitness the development of
the students and perceive how they advance in their study. Understudy commitment in LMS is an area
that is yet under the disclosure of its status. In this investigation, the scientist utilizes commitment in
LMS to foresee the presentation of the understudy. The issue of commitment concerns imparting and
associating with others, that is, those that are still new impacts on the understudy’s conduct. In any case,
the commitment and cooperation in LMS possibly occur if there is a push factor including the speakers or
the teacher’s investment. By utilizing the learning examination, we can break down the status of the
understudy’s commitment in the LMS stage. For this reason, this paper utilises the Systematic Literature
Review of the Learning Analytics as a way of gauging the student’s level of engagement in the Learning
Management System. Similar work has been conducted on the learning dashboard [11] the benefits and
challenges of learning analytics [12] as well as the practice of learning analytics and educational data
mining [13]. This systematic literature review focused on student engagement factors with the application
of learning analytics, which are the main objectives of this paper. The significance of this paper is to grab
the understanding of student engagement factors classification using the learning analytics technique.
Whereas the existing systematic literature review focused on the benefits and the challenges faced for
learning success from the use of Learning Analytics.

Further, this paper elaborates on the factors that influence students’ engagement and their interaction levels
in the LMS. The following section explains the methods applied in conducting this systematic literature review.
The results and discussion of findings are the last sections of this systematic literature review. Finally, we
summarize and highlight the study limitations and craft recommendations for future work.

2 Method

Since Systematic Literature Review (SLR) utilises in-depth and absolute methodologies as well as
guidelines in the evaluation of related literature of a research topic [14], this research, therefore,
implemented the SLR methodology as suggested by Kitchenham [14] and Kitchenham et al. [15] in the
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investigation of factors that influences students’ engagement level in the Learning Management System.
Composing of several isolated activities, the SLR is sorted into input, process and output phases. While the
input process is a systematic review planning that was identified from the research question, the processing
stage, on the other hand, is a phase that ensures the validity and reliability of the systematic review process
as relates adhering to each of the prescribed step, which is stated in the evaluation, inclusion and exclusion
criteria, as well as the quality assessment stages before concluding with a review report.

2.1 Planning Stages

Identifying the necessities - This study needs to identify the necessity of a comprehensive literature
review on student’s engagement factors in the Learning Management System from the perspective of
learning analytics, 3 research questions were thus generated for the literature review process.

Research questions - The research questions used in addressing the needs of this study are outlined as follows:

� How do students’ manage LMS engagement levels?

� What are the contributing factors to students’ engagement level in LMS as shown by the learning
analytics?

� What are the learning analytics methods used for analysing the student’s engagement level?

2.2 Conducting Stages

In the second SLR stage of conducting the review, this article will not only examine the few primary
scientific databases that were obtained from the selected keywords but will also highlight the inclusion
and exclusion criteria that were used in this research.

2.3 Literature Search Procedure and Criteria Selection

2.3.1 Search Keywords
The keywords that were used in the search engine are shortlisted as follows:

� Student engagement AND learning management

� Learning Analytic AND learning management system

� Student Engagement model in higher education

� Student Engagement AND learning analytics

2.3.2 Online Databases
The online databases that were used in the Systematic Literature Review such as Web of Science,

Science Direct, IEEE and Scopus database as described in Tab. 1, were selected based on their various
article sources as well as their credibility levels.

2.3.3 Publication Selection
The inclusion criteria used for determining the relevant literature (journal papers, conference papers) are

listed as follows: Studies that are related to the Learning Management System Engagement model, Studies
that had examined the LMS log data through the use of Learning Analytics and Studies or journals that were
published between 2005 to 2019. The exclusion criteria used are listed as follows: The omission of unrelated
material, not pertinent to the research question and research field, only abstract paper and editorial paper.
Selection of Primary Sources Tab. 2 shows the number of publications that appeared from using the
keywords of the mentioned databases in Tab. 1, where those with the ‘Student Engagement AND
Learning Management System’ keywords were found to have garnered a total of 850 articles, the
‘Learning Analytics AND Learning Management System’ with a total of 367 outcomes, while the
‘Student Engagement Model in Learning Management System’ and the ‘Student Engagement AND
Learning Analytics’ obtained around 171 and 269 articles respectively.
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Fig. 1 below shows the process of the systematic literature review from the four databases that are used
in the structured keyword search.

From these four databases, a total of 892 papers that matched the earlier mentioned keywords of the
previous section were found to have dwindled to 127 (100 journals and 27 conference papers) after
undergoing the filtering of the inclusion and exclusion phases. Since the quality assessment step is
important for ensuring the selection of higher impact journals, 58 relevant papers (45 journals and
13 conference papers) were therefore shortlisted to produce a better systematic literature review output.
The selection on the quality attribute is thus defined as such:

� Adequate findings and results that have been displayed and discussed.

� The online learning platform was discussed and implemented in the research.

� Involvement of the learning analytic approach.

3 Finding

This section discusses the results obtained from the SLR process, as presented in sub-sections below as
per the research question. The details of discussion from the findings are described in a means of answering
each research question.

Table 1: Selected online databases

Online databases Selected reasons

Web of Science
WoS provides a comprehensive citation of journals that ranges from academic to
scientific disciplines such as those from sciences, social sciences, and technologies.

Science Direct
Covers journals from the academic field of physical science and engineering, life
sciences, health sciences, social sciences as well as the leading source of over
250,000 of open access articles (www.sciencedirect.com).

IEEE
IEEE Xplore provides web access to more than four million full-text documents from
some of the world’s most highly-cited publications in electrical engineering, computer
science and other fields (https://ieeexplore.ieee.org/Xplore/home.jsp).

Scopus
Covers peer-reviewed journals in the scientific, technical, medical, social sciences as
well as those in arts and humanities.

Table 2: Number of publications that appeared from the search results

Keywords Web of
science

Science
direct

IEEE
xplore

Scopus Total

Student engagement AND learning management system 217 31 379 223 850

learning analytic AND learning management system 42 22 193 110 367

Student Engagement model in higher education 30 55 48 38 171

Student Engagement AND learning analytics 98 42 40 89 269

Total 387 150 660 460 892
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3.1 [RQ1]: How do Students’ Manage LMS Engagement Levels?

The student’s involvement level on the LMS was gauged from the diverse engagement, interaction and
participation levels of the LMS as shown in Tab. 3. As depicted from the table, these LMS interactions had
not only involved the students and their peers but also their instructors and the system. While the student to
student interaction in the LMS platform might have occurred as a result of the students’ communication and
participation in a forum, the student-lecturer interaction level, on the other hand, was based on the students’
motivation for communicating with their lecturers. For this reason, the student-lecturer interaction is seen as a
two-way communication when both the student and lecturer strive to connect through messages or via online
forums and discussions. As for the student-system interaction, this occurs when the student starts to log into
the LMS and performs a download of a required file. Under this circumstance, the interaction between the
system and resource is also regarded as the student-system interaction since it had involved the downloading
of files and viewing of systems upon the login of the respective student’s account. According to Wang et al.
[16] the learning design of the LMS can be divided into resource sharing and aggregation strategies that are
depicted by not only the course forums but also the post and blog contents discussions as well as negotiations
like those of Twitter and Facebook hence, facilitating a more thorough decision-making process. In another
study, Mirriahi et al. [17] identified four clusters of students’ learning profiles from the behaviour logs of their
video annotation tool. The categorization of the user profiles, namely the intensive users, selective users,
limited users and non-users was based on the usage intensity of the various learning tools that are
available within a learning management system. Pardo et al. [18] too had stated that information procured
from learning logs and digital traces of learning analytics do not only provide the student with timely
personalised feedback at scale but also enhances the student’s satisfaction; where the student’s inclination
towards a task-oriented strategy rather than any other identified strategy is found to have been resulted
from the formative feedback provided. Due to the high and regular usage among the strategies exhibited

Figure 1: The publication selection and collection flow
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by most of the users, an intensive user is thus defined as one who spends more time in sourcing and assessing
the additional required materials, while the regular users are seen as those spending the same amount of time
on lesser significant materials. While a comprehensive learner is defined as possessing a high self-regulated
learning profile that adheres to the course structure and completion of the course material via the online
platform, the targeting learner on the other hand only aims at passing the minimum course requirement
with a lower course engagement level. As for the sampling learner, this type of learner is defined as
having a low self-regulated learning profile with a typical behaviour of not completing the
required course [19].

Table 3: Engagement strategies in LMS

Example Strategies

[8,20] � Non-Task or Theory Oriented Group (non-procrastinators)
� Task-Oriented Group (socially-focused)
� Task-Oriented Group (individually focused)
� Non-Task Oriented Group (procrastinators)
� Teamwork

[16] � Sharing and aggregation
� Discussion and negotiation
� Reflection
� Decision making

[17] � Active
� Satisfying module requirement
� Catching up with the program requirements
� Minimalists
� Disengaged

[18,21] � Non-users;
� Performance-oriented (summative focused)
� Performance-oriented (summative and video-focused)
� Minimalist (summative focused)
� Minimalist (summative and video-focused)
� Task-oriented
� Intensive and ineffective
� Selective and effective
� Did not log in at all

[19] � Comprehensive Learners
� Targeting Learners
� Sampling Learners

[22] � Intensive use
� Regular use

[23,24] � Assistance messenger
� Visual Analysis

[25,26] � Student feedback
� Student Explorer
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3.2 [RQ2]: What are the Contributing Factors to the Student’s LMS Usage; As Shown by the Learning

Analytics?

The factors that influence a student’s engagement level in the LMS can thus be divided into several
themes as those shown in Tab. 4. As depicted in the table, these engagement factors are found to have
been influenced by the motivation and rewards from using the LMS, the student’s satisfaction level on
the system as well as the ease of usage. Most of the users agreed that an interactive and a user-friendly
LMS interface would entice them on completing their assigned tasks, while a dull and unattractive design
indicate otherwise, but also diminish their interest to engage in forum discussions [18]. Other than the
above, the other reasons that are cited for the low LMS engagement are higher workload, which is
because of its cumbersome system [27]. Since a low self-motivation is observed among the students, the
motivating factor for using the LMS is seen as leaning towards the learning interface and the LMS design
[6,28,29]; where those consisting of obsolete learning materials are hindering the student’s involvement
in the LMS [28]. For this reason, a higher LMS engagement is not only perceived as being influenced by
the system’s design and its overall performance but is also stemmed from the reward system for using the
LMS and the contributions provided by the lecturers [29]. As such, the LMS should be improved with a
more engaging system that offers rewards for a minimum level of system usage since this can be used to
trigger a student’s motivation level [30] and consequently a higher LMS participation level [28]. Next,
the commitment in LMS is low because the understudy does not effectively take part in the LMS given
the dawdling conduct. Hesitation is the demonstration of postponement and the delaying of the
culmination of an assignment [18]. The understudy’s exertion and time spent that should be yielded by
the understudy in LMS are the motivation behind why the commitment in LMS is low because the
understudy does not wish to invest more energy in LMS [8]. Hesitation is likewise the learning procedure
utilized by the understudy; it causes the understudy to interface however the commitment they produce
are not dynamic [18]. The activity of less than ideal and straightforward deferral of the entrance to the
material in LMS is likewise a purpose behind the student dawdling [31]. The inspirations are the
understudy’s craving and enthusiasm for taking an interest in the action. The understudy inspiration relies
upon three dependent measurements, intellectual is the self-guideline, nature of the learning
methodologies, the feeling is the confidence, which alludes to the understudy’s exhibition and conduct is
simply the understudy’s viability, and this is the place the inspiration originates from [30]. The inspiration
is impacted by the cooperation in the LMS [28]. Student’s inspiration additionally impacts the social
condition, the shared trust from the learning framework and the prizes they get when participating in the
framework [32]. Nguyen et al. [4] talked about the instructor association in the web-based learning
structure and their revelations demonstrate that VLE responsibility isn’t simply considerably affected by
the learning design, yet is particularly impacted by how educators inside and across over modules,
balance their learning plan practices on seven days by-week premise. The appointment of steady re-
evaluation into a module is found to have provoked extended understudy duty with that module, as
assessed by joint efforts with the VLE. The evaluation in learning the executive’s framework makes
greater commitment if the teacher structures the learning exercises well. A summary of the findings and
the engagement factors of the LMS are thus shown in Tab. 4.

Table 4: Factors for influencing the student’s LMS engagement level that was shown by the learning analytics

Example Findings Factors of engagement

[4,33,34] The level of involvement is not only influenced by the learning
design but also through a balanced module and learning activities
initiated by the educators.

Involvement from the
educator

(Continued)
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3.3 [RQ3]: What Are the Learning Analytics Methods Used for Analysing the Student’s Engagement

Level?

The various learning analytic methods that were applied in the LMS trace and log data can be classified
as qualitative and quantitative, where the former would involve the use of surveys, while the latter would
focus on the analysis, validation and clarification of the obtained data. The learning analytic methods that
are utilised by the researchers are depicted in Tab. 5. Apart from using the qualitative methods to
determine if the LMS elements design is affecting the user’s engagement [6], the testing of past theories
under a different context [16] and the gathering of student’s feedback [29] are other prediction methods
that are used for predicting the student’s behaviour use of the LMS. A summary of the learning analytics
methods that are practised by researchers, based on the review is shown in the table below.

Table 4 (continued).

Example Findings Factors of engagement

[6] Interactive design:

� Not user friendly
� Too many links
� Private and anonymous postings
Customisable tools

Design of LMS

[8] Effort and the time spent
Procrastination

Student’s procrastination

[9] Academic materials with learning design activities would help
shape the learner’s satisfaction level.

� Learning design
� System design and
satisfaction

[18] Clustering of learning strategy as being the reason for
procrastination.

Student’s procrastination

[27] A low communication level between the students throughout the
course duration.

Time-consuming

[28,35] Student’s motivation and participation Student’s motivation
level

[30,36,37] � Cognitive (self-regulation, quality of the environment and
learning strategies as increasing a student’s performance)

� Emotion (self-esteem- performance)
� Behavioural (self-efficacy- motivation)

Student’s self-motivation

[31,38] Untimely and delayed access to materials Student’s procrastination

[32] Mutual trust, social influence and reward that stems from
teamwork.

Student’s motivation

[39] The active learner regards the mismanagement of a system
platform as inhibiting the interest in using the system.

Lack of monitoring

[40] The selection of material and adapting the material into LMS
influences student engagement.

Learning Design and
resources

[29,41,42] A flexible environment that influences the perception of the user’s
engagement and satisfaction levels.

Student’s satisfaction
towards the LMS
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Table 5: Types of learning analytic methods

Example Method

[4] A Hausman test

[5] Clustering was used for:
(Applying the agglomerative hierarchical clustering that was based on Ward’s method)

� Grouping similar learning sequences
� Grouping students

[6,43,44] � Interview
� Thematic analysis and coding

[8] � Educational Data Mining
� Cluster analysis

[45] � CHAID models were developed as part of the Student Success Program (SSP) for
predicting the student’s attrition risk.

[17,18,26,28] � Hierarchical clustering algorithm
� K-mean clustering analysis
� Latent class analysis (LCA)
� Kruskal-Wallis H test

[22] � Clustering method
� IBM SPSS software for analysing the students’ participative behaviour data.

[2,9,27] � The questionnaire was analysed by using SPSS version 23.
� Frequencies, means, standard deviation and bivariate correlations
� MANOVA and ANOVA analysis
� Turkey posthoc analyses

[30,46] Second live as a virtual world and virtual reality experiment

� Factor analysis
� Pearson correlation analysis
� multiple regression

[31] Results of selected subjects were analysed with a one-way analysis of variance.

� Omnibus F-test
� Correlations using F-test
� Generated intensity images to visualize students’ interaction

[32,47,48] Partial Least Square (PLS)

[27,49,50] � Clustering model: k-means clustering.
� Classification model: Support vector machine.
� Classification model: Artificial neural networks

[51] � Analysis of variance (ANOVA)
� Chi-square test
� Multiple linear regression models
� A change in R square was calculated

(Continued)
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The above tab. 5 shows the type of data that can be obtained from the log data of an online platform, like
those of the LMS or through the use of a qualitative method. It implies that Learning Analytics is not being
bound by specific methods. Since the results varied according to the research outcome, these methods are
found to have consisted of the data mining technique; where the classification and clustering methods
[8,17,22,27,28,67] are used to cluster the data and to form relationships between respective variables,
while those of the Anova and Manova techniques [2,27,51,68] are used together with multiple
regressions to establish a correlation between the subjects of study. Apart from the descriptive analysis
that can be used to validate the results of the research [52], some researchers had also utilised the partial
least square method in their data analysis and the testing of a developed model [32,47].

4 Challenge and Drawback of LMS

The major challenge of learning analytic research is the data. A more emphasized result requires more
data. The data is very big, to the extent that specific methods and tools must be used to analyse them based on
the Researcher’s need. Even though LMS brings some form of advancement into the education world, yet it
has its disadvantages, where it may not record the student’s emotional or real situations faced during online
learning. The complex function in LMS may lead the student and educator into confusion, as regarding how
to use the function; thus, more systematic and simple functions can make the learning process better, thence
producing a more realistic outcome. In terms of student usage in LMS, issues such as procrastination might
occur, as the student may wait until the last minute to submit the given task.

Table 5 (continued).

Example Method

[52–55] � Exploratory factor analysis
� Descriptive analysis
� Factor analysis
� Multiple regression analysis

[29,56,57] � Survey questionnaire
� Open-ended survey questionnaire
� Interview for feedback
� Analyse system log

[58] � Qualitative analysis was performed by considering the perceptions.
� Questionnaire

[59,60] � Support Vector Machines (SVM)
� Naïve Bayes (NB)
� Random Forests (RF)
� Classification rule

[61–63] � Data mining
� Classification (supervised learning)
� Clustering

[64] � Employed the random forest (RF) technique as proposed by Breiman (2001).

[65] � Cognitive and fuzzy logic

[66] � Social network analysis
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5 Future Work

Although many achievements were obtained from studying the student’s LMS engagement level
through the use of Learning Analytics, the systematic review of this study is still restricted by some of
the future research direction.

5.1 Multi-tasking

With most of the students in this era being digitally literate, classroom engagement has now reached an
all-time low level, with lecturers competing against countless diversions from phones, tablets and laptops.
For this reason, countless resources should therefore be introduced to ensure enhancing the education
material and making learning more fun and effective; where future researchers can look into the
possibility of creating apps that support classroom ‘gamification,’ competitive scenarios as well as the
distribution of points and rewards system.

5.2 Privacy and Security

Since privacy and security have become an increasing concern among the students, steps should
therefore be taken to enhance the security system of the LMS. For this reason, the customization of
system administration paths or more integrated learning environments for better security control of the
LMS can thence be considered as part of the future research for this study.

5.3 Machine Learning

Despite the successful use of machine learning algorithms in other domain applications, this method is
however not used in predicting the student’s behaviour on the LMS usage. Since the machine learning
algorithm has the potential of detecting the learners’ study pattern and behaviour through the use of
system automation, we, therefore, suggest that future researchers shift their attention to the application of
machine learning in the LMS for a better assessment of the student’s engagement level.

6 Conclusion

The comprehensive SLR is performed on the engagement factors in the Learning Management System
(LMS) to discover the factors for influencing students’ LMS engagement level and consequently the intensity
of the student’s engagement level, but also the student’s engagement strategies. To support the learning
environment in LMS to become more functioning, few approaches can be used like more active strategies
in the educator approach towards the student. Also, the program requirement must be met, and the
educator needs to be focused on student performance as well as a unique task. This is important to
increase student engagement as the student’s motivation toward the LMS is the biggest thing to handle.
The LMS design, awards and satisfaction from the student is a critical factor of the engagement. There
are a lot of techniques that can be used as learning analytics tools. This method can help the institution to
find what the students’ needs are, wherein the institution can map student requirement and institution
objective. Since learning analytics and learning management system are regarded as an active research
area with quite a number of publications, the engagement factors that are extracted from the use of SLR
thus suggests the further need of generating a higher engagement level of the LMS. Apart from offering
an overview of the existing LMS research and the engagement level of an LMS environment, this
research also offers supplementary information on the learning analytic methods hence, prompting the
possibility of a better learning analytics research.
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