
An Evaluation of Value-Oriented Review for Software Requirements
Specification

Qiang Zhi1,* and Shuji Morisaki2

1Tokyo Institute of Technology, Tokyo, 152-8550, Japan
2Nagoya University, Nagoya, 464-8601, Japan

�Corresponding Author: Qiang Zhi. Email: zhiqiang0728@gmail.com
Received: 08 November 2020; Accepted: 11 January 2021

Abstract: A software requirements specification (SRS) is a detailed description of
a software system to be developed. This paper proposes and evaluates a light-
weight review approach called value-oriented review (VOR) to detect defects
in SRS. This approach comprises setting core values based on SRS and detecting
the defects disturbing the core values. To evaluate the effectiveness of the pro-
posed approach, we conducted a controlled experiment to investigate whether
reviewers could identify and record the core values based on SRS and find defects
disturbing the core values. Results of the evaluation with 56 software engineers
showed that 91% of the reviewers identified appropriate core values and 82%
of the reviewers detected defects based on the identified core values. Furthermore,
the average number of defects detected using the proposed approach was slightly
smaller than that detected using perspective-based reading (PBR); however, PBR
requires defining review scenarios before attempting to detect any defects. The
results also demonstrated that the proposed approach helped reviewers detect
the omission defects, which are more difficult to detect from SRS than defects
because of ambiguity or incorrect requirements.

Keywords: Value-oriented review; perspective-based reading; scenario-based
reading; lightweight review; software requirements specification

1 Introduction

Software review is an important part of the software development cycle that assists software engineers in
detecting defects early [1], during the requirement and design phases. It is usually performed without
executing programs. Detecting and correcting defects in the early stages of the software development life
cycle reduces rework effort; therefore, software review methods and approaches that help reviewers
efficiently detect defects are particularly valuable. Collaflello et al. [2] and Kusumoto et al. [3] proposed
methods that minimize rework effort by measuring the impact of early defect detection and correction. In
their experiment [3], subjects were divided into seven groups that worked to develop different software
versions satisfying the same specifications. Experimental results showed that detecting and fixing defects
during software testing took more effort than writing and reviewing the code.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.015157

Review

echT PressScience

mailto:zhiqiang0728@gmail.com
http://dx.doi.org/10.32604/csse.2021.015157
http://dx.doi.org/10.32604/csse.2021.015157


Review guidelines help reviewers efficiently spot defects by establishing a detection procedure that does
not treat every defect as equally important, but rather assigns priorities. Typical review methods include
checklist-based reading (CBR) [4,5] and scenario-based reading (SBR) [6].

In CBR reviews, reviewers use a checklist as a guide. The checklist provides inspection objects but
offers little guidance on how to perform the inspection. In SBR reviews, reviewers use scenarios as a
guide; a scenario provides them a way to read software documents and detect defects. Many studies have
investigated the effectiveness of SBR [7–12]. Perspective-based reading (PBR) [7,13–16] is a common
SBR method that helps stakeholders such as software users, designers, and testers to focus on software
requirements specification (SRS) problems. Guided reviews require additional effort and guides must be
prepared beforehand; review scenarios should be tailored to the review goals [17,18].

In ad hoc reviews [19], reviewers do not receive any guidelines on how to conduct the review. The
review can be as simple as reading the code and identifying defects sequentially. However, the efficiency
and effectiveness depend on the reviewers’ skill and capability. Many studies have compared reviews
with and without guidelines (ad hoc). Results demonstrated that guided reviews outperformed reviews
without guides [7–9,12]. Manual inspection (MI) [20] is an alternative when other inspection techniques
are difficult to follow.

For SRS reviews, many software companies in Japan follow diametrically opposed approaches: they
either spend considerable on conducting an exhaustive and comprehensive CBR or SBR review or do not
spare any significant effort, and the project manager performs an ad hoc review. The value-oriented
review (VOR) approach for requirement inspections presented in this paper is a lightweight approach to
effectively and efficiently review requirements specifications without much preparation effort. In this
approach, reviewers first specify the core values of the software, and then detect defects that disturb these
core values. VOR does not require any complex guides; rather it requires specifying core values. We
assume that VOR can be used in cases where review scenarios or guides do not exist or when defects
related to software core features need to be found quickly and efficiently. Presumably, this is the first
study that investigates the effectiveness of such an approach.

The remainder of this paper is structured as follows: Section 2 describes software review issues. Section
3 defines the VOR approach. Section 4 describes the setup of a controlled experiment to evaluate the VOR
approach. Section 5 presents the experimental results. Section 6 discusses the results. Finally, Section
7 provided a summary of this paper.

2 Related Research

Gordijn et al. [21] investigated value-based requirements engineering for e-commerce system
requirements and business process analysis. Lee et al. [22] pointed out that previous studies treated
software review in a value-neutral setting and proposed a value-based review (VBR) process. Thew et al.
[23] proposed a method for value-based requirements engineering to guide the elicitation of stakeholders’
values, motivations, and potential emotional reactions. In our approach, software provides value for
stakeholders’ requirements and is largely defined by its features. Our approach differs from VBR in that
the latter is based on CBR review methods. Furthermore, the “value” in our approach focuses on software
features rather than economic values. The rest of this section presents concerns regarding the reading
techniques reported by previous studies and describes the efforts required for preparing the review scenarios.

Denger et al. [24] developed a framework called TAQtIC to customize reviews for the target software by
defining appropriate review scenarios for novice and expert developers. The main concerns in the novice
developer scenarios were ensuring sufficient documentation, source code comments, error definition,
exception handling in user interaction, and debug logging whereas those in the expert developer scenarios

444 CSSE, 2021, vol.37, no.3



were ensuring appropriate performance and time-memory trade-off, rounding error acceptability, and source
code reusability. In Laitenberger et al. [25], defined PBR scenarios for UML documents. The PBR scenarios
were constructed on the basis of perspectives of the tester, designer, maintainer, and requirements engineer.
The tester’s concern was to ensure sound operations in the object diagram. The designer’s concern was to
ensure that the operations met their responsibilities in terms of the object interactions. The maintainer’s
role was to ensure that the interactions among the objects in the collaboration diagram could be easily
changed and maintained in the future. The requirements engineer’s focus was on ensuring consistency
among various operation descriptions in the analysis models. In Laitenberger et al. [26], conducted a
controlled experiment with UML documents to compare and evaluate the effectiveness and efficiency of
PBR and CBR. PBR included the perspectives of a tester, designer, and software programmer. The
tester’s role was to ensure software testability. The designer’s role was to ensure the correctness and
completeness of the design diagrams with respect to the analysis diagrams, and the software
programmer’s role was to ensure design consistency and completeness. Further, Laitenberger et al. [27]
conducted a controlled experiment with code documents and 60 professional developers to compare and
evaluate the effectiveness and efficiency of PBR and CBR. The PBR scenarios were constructed from the
perspectives of the tester and code analyst. From the tester’s perspective, the aim was to ensure that the
implemented functionality was correct, and from the code analyst’s perspective, the goal was to ensure
that the expected functionality was implemented.

Defect-based reading (DBR) [6,8,28,29] aims to detect defects that are classified into specified types and
provide guides for detection. Porter et al. [28] conducted a controlled experiment with 24 graduate students to
compare and evaluate the effectiveness and efficiency of DBR, CBR, and ad hoc reading. The defect types
were as follows: data type consistency, incorrect functionality, and ambiguities or missing functionality
types. Porter et al. [6] utilized the requirement specification documents in [28]. Forty-eight graduate
students were asked to compare and evaluate the effectiveness and efficiency of DBR, CBR, and ad hoc
reading. In Porter et al. [8], sought to replicate the experiment of [28] asking professional developers to
compare and evaluate the effectiveness and efficiency of DBR and ad hoc reading. The defect types of
DBR scenarios were the same as those in Porter et al. [28].

In Thelin et al. [30] a similar approach to CBR was introduced, i.e., usage-based reading (UBR). In
UBR, a predefined list of prioritized use-cases is used for design inspection. As inspection is a resource-
intensive process [4], researchers and practitioners have sought to optimize the inspection by automating
inspection process via tool-assisted techniques [31,32]. Recently, an IoT-based scenario description
inspection method based on SBR named SCENARIOTCHECK was proposed [33]. Ali et al. [34]
proposed an inspection process to enhance the quality of SRS using a mapping matrix and third-party
inspection. Naveed Ali et al. [35] proposed a method for a situation in which the software teams are
located in different parts of the world. Laat et al. [36] conducted an experiment to evaluate checklist
quality; their results showed that checklist quality had a significant effect on SRS review. Because all
proposed methods require considerable preparation and time, we consider a compromised approach,
VOR, rather than an ad hoc one, when review scenarios or guides are unavailable.

3 Value-Oriented Review

3.1 Core Value

3.1.1 Definition
In this paper, we call core values the software features that are relevant to the stakeholders’ requirements.

In other words, core values can be considered important functional and non-functional requirements and can
be determined by designers, developers, and users. Therefore, the core values defined in this paper can be
considered system goals [37]. However, system goals can also be defined as the form decoupled from

CSSE, 2021, vol.37, no.3 445



implementations such as “high- profit in the business.” VOR excludes such goals that are decoupled from
SRS reviews.

Core values can be defined using various abstraction levels. Similar to system goals, core values range
from high-level strategic concerns to low-level technical requirements [37]. For example, for an ATM
(Automatic Teller Machine), a high-level abstract core value is “providing safe transactions.” The
corresponding low-level specific core values are “service for withdrawal, deposit, and transfer” and
“protecting a banking account from spoofing.” Furthermore, a core value can be defined more specifically
as “stopping service for 24 h when incorrect PIN codes are entered thrice consecutively”.

3.1.2 Defects Disturbing the Core Values
Defects disturbing the core values are inappropriate descriptions in SRS, that prevent software from

providing the core values. Taking the example of ATM again, the defect disturbing the core value
“stopping service for 24 h when incorrect PIN codes are entered thrice consecutively” can be the
omission of the definition “the number of incorrect PIN codes is reset to zero when the correct PIN code
is entered.” Nonfunctional requirements include defects that affect the core values as well as functional
requirements. For an online communication system, although a description of user authentication exists in
SRS, there is no description of the encryption of communications. An error that disturbs the core value
“online communication is secure” should be an omission error.

3.2 VOR and the Procedure

We organize the basic principle of VOR into three Ws (Why · What · How) as follows:
Why: Purpose of system development

� Current Issues

� Goals (what it should be)

� Gaps between current issues and goal (issues to be resolved)

What: What are the functional and the nonfunctional requirements?

� Functional requirements: list of features to be implemented in the system

� Nonfunctional requirements: efficiency, processing speed, security, etc.

How: Specific usability and implementation methods (tasks similar to system design)

� Basic design

� UI design
� Functional design
� Data design

� Detailed design

� Class diagrams and sequence diagrams
� System architecture
� Technology for mounting each part

The review procedure is as follows.

1. Why: Reviewers understand the background and purpose of software development and then read the
SRS document.

446 CSSE, 2021, vol.37, no.3



2. What: Reviewers identify and specify the software core values. The core-value identification method
follows the goals specifying and reasoning methodology in Lamsweerde [37], which was introduced
in our training seminar (Section 4), and then refines the top-level core values and extracts sublevel
core values. As previously stated, unlike the goal definition [37], we exclude factors that are not
directly related to software development and SRS based review. Reviewers may discuss core
values with other software stakeholders (in our controlled experiment, discussions of the core
value identification are not permitted).

3. How: Reviewers detect defects that can disturb core value implementation.

In guided reviews, the review organizer first defines criteria for detecting defects. Then, the criteria are
provided to reviewers as a guideline. Finally, the reviewer detects defects using the guideline. For VOR,
reviewers should identify and specify core values before defect detection. In other words, PBR requires
review scenarios to detect specific types of defects before defect detection. A review scenario for PBR
generally comprises the following parts:

1. Introduction of role (perspective) and interest

2. How to extract information

3. Ask questions about the extracted information to help reviewers to detect defects

The effectiveness of PBR tends to depend more on the review scenarios, whereas that of VOR tends to
depend more on the core value identification. Details about PBR and VOR are covered in our training
seminars (See Section 4).

4 Experiment

4.1 Experiment Overview

The purpose of this experiment is to compare the number and type of defects detected using VOR and
PBR. Moreover, this experiment evaluates whether reviewers can identify core values and detect defects that
disturb core values based on the aforementioned procedure. Besides, we also study the effect of reviewers’
experience and expertise on both methods.

The purpose of this experiment can be formulated in the form of the following research questions:

RQ1: Can reviewers identify the core values appropriately?

RQ2: Can reviewers detect defects disturbing the identified core values?

RQ3: How effective is VOR in defect detection compared with PBR?

RQ3.1: What is the number of defects detected by VOR as a percentage of that by PBR?

RQ3.2: Are the types of detected defects different between VOR and PBR?

RQ3.3: Does the experience of the reviewer affect the number of defects detected?

We propose two hypotheses:

Hypothesis 1: As there are several different perspectives and elaborate guides for PBR, we assumed that
PBR detects a larger number of defects.

Hypothesis 2: Because identifying core values before detecting defects for VOR is necessary, the number
of core value related defects detected by VOR and PBR might be similar.

We selected and planned an experiment in a training seminar for practitioners as an empirical
investigation for the following reasons: First, a training seminar should meet both our and the
participants’ objectives. The purpose of the participants was to gain knowledge and skills. Our goal was

CSSE, 2021, vol.37, no.3 447



to investigate the effectiveness of VOR by statistical analysis with practitioners as subjects. Second,
statistical analysis requires a certain number of subjects. We employed a training seminar to increase the
number of subjects for providing meaningful results. Third, we judged that the benefit of the experiment
in the training seminar exceeded the constraints and limitations that Basili et al. [7] noted. This training
seminar is held once a year and must be designated as one day (six-and-a-half hours). The training
comprises several lectures and three exercises. All participants attended the training seminar in the same
lecture room. Most of them came from different companies.

4.2 Subjects and Material

The subjects were asked to review and document any defects found. They were also asked to answer a
questionnaire on their software development experience.

Considering that the entire training takes six-and-a-half hours, the review material should not be
too lengthy. Most participants can quickly understand the system behavior defined in the material
without having a hands-on experience of developing such a system. We prepared three different SRS
documents (Tab. 1).

Document P is used for the pretest: it is a used car sales management system document. The groupings
are based on the pretest scores. Documents A and B are used for the main experiment: Document A is an
internal library management system document, and Document B is an internal attendance management
system document for study meetings and invited talks. Documents P, A, and B are written in natural
language (Japanese) with several figures. There are 577 words in Japanese and two figures in Document
P, 1908 Japanese words and two figures in Document A, and 1709 Japanese words and two figures in
Document B. We injected omission, ambiguity, incorrectness, and cosmetic defects in these documents.
Omission, ambiguity, and incorrect types were defined as in Porter et al. [6]. Several software engineers
advised regarding the experiment design. The designed defects were common in similar SRS documents.
Documents A and B have the same number of defects. Both Documents A and B begin with a
description of the background for developing the software.

4.3 Experiment Design

To reduce the impact of document content as well as the learning effect on experimental results, we
randomly divided the subjects into four groups, i.e., X, Y, Z, and W, based on the pretest results. The
experiment was designed as a crossover study [38]. The training seminar included three exercises. We
assigned the pretest to Exercise 1, the first review to Exercise 2, and the second review to Exercise 3. In
Exercise 1, the participants detected defects using ad hoc reading. The SRS document for the pretest is
Document P for all subjects. After the lectures, the participants performed reviews using VOR and PBR
in Exercises 2 and 3. The review techniques and review materials for Exercise 2 and 3 were different.

The details of the design are given in Tab. 2.

Table 1: Experimental SRS documents and inspection methods

Document Name Words Figures Method

P Used Car Sales Management System 577 2 Ad hoc

A Internal Library Management System 1908 2 VOR/PBR

B Internal Attendance Management System 1709 2 VOR/PBR

448 CSSE, 2021, vol.37, no.3



In this experiment, we prepared three review roles for PBR: the designer’s, tester’s, and user’s
perspectives, which are publicly available PBR scenarios [7]. The subjects were asked to select one out
of the three perspectives based on their experience and preference.

4.4 Procedure

4.4.1 Pretest (Exercise 1)

1. The organizer of the training seminar distributed answer sheets among all participants.

2. The participants were asked to detect defects in Document P using ad hoc reading and record the
defects in the defect list form.

3. The organizer collected and scored all the defect lists and then divided the participants into four
groups (X, Y, Z, and W) according to the score.

4.4.2 Lecture
The lecturer introduced and explained VOR, PBR, and other techniques.

4.4.3 First Review (Exercise 2)

1. The organizer distributed answer sheets for Exercises 2 and 3 and review material for Exercise 2. The
organizer distributed PBR scenarios for groups X and Z.

2. The participants were asked to detect defects in the distributed document (A or B, Tab. 2) using a
specified review technique (VOR or PBR, in Tab. 2) within 40 min.

4.4.4 Second Review (Exercise 3)

1. The organizer distributed the review material for Exercise 3 as well as PBR scenarios for groups Y
and W.

2. The participants were asked to detect defects in the distributed document (A or B, Tab. 2) using a
specified review technique (VOR or PBR, in Tab. 2) within 40 min.

4.4.5 End of the Training Seminar
The subjects were required to submit the defect lists from Exercises 2 and 3. The overview of this

controlled experiment is shown in Fig. 1.

4.5 Analysis Procedure

This section describes the analysis strategy for answering the research questions. Subsection 1 describes
the value classification in the experiment. Subsection 2 presents the defect classification in the experiment.
Finally, the comparison with PBR is explained in Subsection 3.

Table 2: Experimental design

Group Exercise 2 Exercise 3

Technique Document Technique Document

X PBR A VOR B

Y VOR A PBR B

Z PBR B VOR A

W VOR B PBR A

CSSE, 2021, vol.37, no.3 449



4.5.1 Core Values
Tab. 3 lists the top core values of Documents A and B. Tab. 4 gives the core values and examples of the

corresponding disturbing defects. RQ1 would be evaluated based on whether the subjects identified the
defined core values (top or lower level), and RQ2 would be evaluated based on whether the subjects who
identified the core values detected the defects that disturbed the identified core values.

4.5.2 Defect Classification
We classified the detected defects into five categories; Tab. 5 lists the categories and examples. A value-

disturbing defect categorized as (I) refers to a defect that disturbs the realization of the defined core values
(Tab. 4). A nonvalue disturbance defect categorized as (II) refers to a defect that does not disturb the core
values in Tab. 4. A false-positive defect (III) is not a true defect caused by subjects’ misunderstandings.
A cosmetic error (IV) is a minor defect that does not cause serious defects, such as misspelling and
layout improvement. A feature suggestion (V) recommends a desirable (but not required) feature.

4.5.3 Comparison with PBR
We compared VOR and PBR in terms of the number of detected defects. In PBR reviews, reviewers

(perspectives) were expected to form a team. Therefore, we combined the subjects in a virtual team and

Figure 1: Overview of the controlled experiment

Table 3: Top core values of the target software

Software Document Core values

Book management system A Borrowing and returning books without the reception person

Sharing books efficiently according to appropriate borrowing
period

Attendance management
system

B Reducing the vacant seats by real-time cancelation and
registration

Reducing the burden on the organizers

450 CSSE, 2021, vol.37, no.3



calculated the total average number of detected defects. This experimental method is consistent with the
method in Basili et al. [7]. If a team detected the same defects, then the number of detected defects would
be counted as one. We also compared the individual averages of the two methods. In PBR, the subjects
should select a perspective before the review.

Furthermore, we evaluated the impact of development experience on the defect detection results and
which defect categories were easier to detect using VOR. From the defined perspectives, we evaluated the
experimental results for RQ3.1 in terms of the number of defects detected by individuals and teams. For
RQ3.2, we compared the percentage of the categorized defects between VOR and PBR. For RQ3.3, we
evaluated the effect of the developer experience on the number of detected defects. In particular, we
divided the subjects into senior and junior developers based on their experience.

Table 4: Examples of top core value types and defects

Type Example of the disturbing defect

Aa Borrowing and returning books
without the reception person

The procedure of the specified borrow procedure is flawed.

Ab Sharing books efficiently according to
appropriate borrowing period

Delay notifications are incorrectly sent.

Ac Other GUI buttons on the screen should be aligned horizontally.

Ba Reducing the burden of the organizers Attendee list should be sent to the organizer before the study
meetings and invited talks.

Bb Reducing the vacant seats by real-time
cancelation and registration

Waiting list feature in case of full seats should be
implemented.

Bc Other The maximum length of the name of study meetings and
invited talks should be defined and verified.

Table 5: Classification of defect types

Defect category Description Example

I Core value
disturbing
defects

The defects disturb the realizations of core
values

The waiting list feature is omitted.

II Noncore value
disturbing
defects

The defects cannot directly disturb the
realization of the core values indicated as Aa,
Ab, Ba, and Bb.

The authentication and
authorization server is not
specified.

III False-positive Incorrect defects due to reviewers’ misjudgment
or unexplained opinion

Barcodes attached to each book
should be replaced with RFID.

IV Cosmetic error The description error and format error, which
will not cause serious problems

GUI buttons in the screen should
be left-aligned not center-aligned.

V Feature
suggestions

Proposal for adding optional features The meeting search feature
should accept regular
expressions.

CSSE, 2021, vol.37, no.3 451



5 Results

5.1 Experiment Subjects

Fifty-six software engineers were involved in this experiment. The subjects were divided into four
groups, each comprising 14 subjects. Tab. 6 gives the distributions of the perspectives for PBR in each group.

5.2 Identified Core Values (RQ1)

The high-level core values identified by the subjects using VOR are summarized in Tabs. 7 and 8. Most
of the identified core values were the same as those defined in Tab. 3. Some of the identified core values were
the subset of the high-level core values. Tabs. 9 and 10 give the percentage of the subjects who identified
either the core values or the subset of the core values. Twenty-six out of 28 subjects identified the core
values of Document A and 25 out of 28 subjects identified the core values of Document B. In total,
51 subjects (91.1%) identified the core values.

Table 6: Number of subjects for each perspective in each group

Group X Y Z W

Designer 7 3 4 3

Tester 4 5 6 4

User 3 6 4 7

Table 7: Identified top-level core values in Document A (internal library management system)

Top-level core values Partial subset of the core values

Aa: Borrowing and returning books
without the reception person

Login screen for users with administrator privileges, users can
identify themselves as an administrator or a user because
administrators cannot borrow books

The system should help users look for books with the location ID

Ab: Books can be effectively
borrowed and returned

Notification regarding the return date and delay

Book retrieve function

Lending restriction on the number of books

Table 8: Identified top-level core values in Document B (Internal attendance management system)

Top-level core values Partial subset of the core values

Ba: Reducing the burden on organizers Meeting information such as starting time and meeting room
can be changed after starting the registration

Meeting notifications should be sent to the attendees before the
meeting.

Bb: Reducing the vacant seats by real-
time canceling and registration

The number of maximum attendees can be changed after
starting the registration

452 CSSE, 2021, vol.37, no.3



5.3 Defects Disturbing the Core Values (RQ2)

Tab. 11 lists the number and percentage of subjects who detected defects that disturbed the core values
(defect type-I in Tab. 5). For example, in Group Z, 12 subjects identified the core values, and nine out of
12 subjects detected the type-I defects. Forty-two out of 51 (82.4%) subjects detected type-I defects.
Tab. 11 lists the number of subjects who detected type-I defects in each group. Tab. 12 gives the number
of detected defects disturbing the core values in each group with VOR. One core value may correspond
to several defects.

Table 10: Percentage of the subjects who identified the core values in Document B

Core value Number of subjects (X) Number of subjects (W) Percentage

Ba 9 6 53.6%

Bb 2 4 21.4%

Ba and Bb 2 2 14.3%

Table 9: Percentage of the subjects who identified the core values in Document A

Core value Number of subjects (Y) Number of subjects (Z) Percentage

Aa 10 9 67.9%

Ab 2 3 17.9%

Aa and Ab 2 0 7.1%

Table 11: Number of the subjects who detected the defects disturbing the identified core values in each group

Core value Group X / Proportion Group Y / Proportion Group Z / Proportion Group W / Proportion

Aa – 7 / 70.0% 6 / 66.7% –

Ab – 2 / 100.0% 3 / 100.0% –

Aa and Ab – 2 / 100.0% 0 / 0.0% –

Ba 7 / 77.8% – – 5 / 83.3%

Bb 2 / 100.0% – – 4 / 100.0%

Ba and Bb 2 / 100.0% – – 2 / 100.0%

Table 12: Number of detected defects disturbing the core values in each group

Core value Group X Group Y Group Z Group W

Aa – 26 12 –

Ab – 14 9 –

Ba 25 – – 26

Bb 12 – – 7

CSSE, 2021, vol.37, no.3 453



5.4 Comparison with PBR (RQ3)

5.4.1 Number of Defects (RQ3.1)
As described in Section 4, we measured the number of defects detected using PBR and VOR for a team

comprising three subjects. In the PBR experiments, each subject actively chose the perspective they preferred
(In fact, because of the size and number of subjects in the experiment, we were unable to evenly distribute the
PBR perspectives.) According to the distributions of the perspectives for PBR in Tab. 6, we counted the data
of eight PBR teams from groups X and W for Document A, and seven PBR teams from groups Y and Z for
Document B. Notably, for a fair comparison of the data of virtual teams, we selected the VOR data from the
same subjects who also conducted a review using PBR (although it is a crossover experiment). Tab. 13 lists
the average number of detected defects for a team.

We also counted all subjects’ data and performed a more in-depth analysis. Tab. 14 lists the defect
statistics, including averages and confidence intervals. Tab. 14 reveals that the averages of the number of
defects detected using PBR were larger in an individual comparison; however, the confidence intervals
could overlap in almost all groups. The detected defects discussed here include types I, II, and V.
Comparison of type-I (core-value disturbing defects) is provided in the Appendix.

5.4.2 Number of Defects in Each Type (RQ3.2)
Figs. 2 and 3 show the proportion of detected defect types for VOR, PBR, and each role of PBR. In these

figures, “PBR” represents the proportion of the average number of defects found from the designer’s, tester’s,
and user’s perspectives. The proportions of the omission defects detected using VOR were larger in both

Table 13: Average number of detected defects for a team

Document Method Average

A PBR 7.15

A VOR 6.38

B PBR 9.69

B VOR 7.43

Table 14: Statistics for the number of detected defects

Document Group Method Average Standard deviation Lower
endpoint

Upper endpoint

A Y VOR 4.36 2.38 2.93 5.78

X PBR 5.57 1.80 4.49 6.65

Z VOR 2.79 2.45 1.31 4.26

W PBR 4.36 2.44 2.90 5.82

B W VOR 3.71 1.79 2.64 4.79

Z PBR 4.50 2.82 2.81 6.19

X VOR 3.86 1.81 2.77 4.94

Y PBR 6.86 3.11 4.99 8.72

454 CSSE, 2021, vol.37, no.3



documents (53% and 50% for VOR, 34% and 42% for PBR). The proportions of the feature suggestions
between VOR and PBR were comparable (13% for both VOR and PBR in Document A, 22% and 18%
for both VOR and PBR in Document B).

Fig. 4 shows the average number of defects and the confidence intervals. The horizontal axes represent
the defect types. The vertical axes represent the average number of defects. The number of omission defects
was the greatest among all groups, and the number of omission defects detected by VOR was greater than

Figure 2: Proportion of the defects in six categories for Document A

Omission
50%

Ambiguity
19%

Incorrect
3%

Description 
Problem

5%

Feature 
Suggestion

22%

False-
positive

1%
VOR

Omission
42%

Ambiguity
27%

Incorrect
1%

Description 
Problem

10%

Feature 
Suggestion

18%

False-
positive

2%

PBR

Omission
38%

Ambiguity
36%

Incorrect
2%

Description 
Problem

11%

Feature 
Suggestion

11%

False-
positive

2%
DESIGNER

Omission
38%

Ambiguity
30%

Incorrect
0%

Description 
Problem

16%

Feature 
Suggestion

13%

False-
positive

3%

TESTER

Omission
51%

Ambiguity
16%

Incorrect
0%

Description 
Problem

5%

Feature 
Suggestion

28%

False-
positive

0%

USER

Figure 3: Proportion of the defects in six categories for Document B

CSSE, 2021, vol.37, no.3 455



that detected by PBR. The average number of ambiguous defects detected by VOR was smaller than that
detected by PBR.

5.4.3 Effect of Development Experience (RQ3.3)
We divided the subjects into junior and senior developers (>10 years of software development

experience). All the subjects had more than three years of experience in software development with the
average being ten years. Tab. 15 gives the average number of detected defects for the senior and junior
developers using VOR and PBR, respectively. For both methods, the average number for the senior
developers was greater.

6 Discussion

6.1 Hypotheses

Hypothesis 1 can be confirmed from the experimental results. Nevertheless, the confidence intervals can
overlap in almost all groups. For Hypothesis 2, the total number of type I defects detected using VOR is also
smaller than PBR; however, the difference is minimal (See Appendix).

6.2 RQ1: Can Reviewers Identify the Core Values?

As seen in Tabs. 9 and 10, the answer to RQ1 is that over 90% of the subjects identified the core values or
the subset of core values. The results indicated that the core values could be identified in different abstraction
levels. We believe that exchanging the identified core values among the reviewers and stakeholders before
defect detection activities can reduce the variation of identified core values. Moreover, based on the setup
described in Section 3, modeling the core values by specifying and reasoning procedures [37] can reduce
the variation.

0

1

2

3

4

Omission Ambiguity Incorrect Feature Suggestion

Document A

VOR_1st(Y) PBR_1st(X) VOR_2nd(Z) PBR_2nd(W)

0

1

2

3

4

Omission Ambiguity Incorrect Feature Suggestion

Document B

VOR_1st(W) PBR_1st(Z) VOR_2nd(X) PBR_2nd(Y)

Figure 4: Defect comparison for the average number of detected defects and the confidence interval of each
defect type for each document

Table 15: Average number of defects for senior and junior developers

VOR PBR

Senior developers 3.89 5.50

Junior developers 3.58 5.24

456 CSSE, 2021, vol.37, no.3



6.3 RQ2: Can Reviewers Detect Defects Disturbing the Identified Core Values?

The answer to RQ2 is that 26 out of 28 subjects identified core values without relying on guides for
Document A, and 20 out of 26 subjects detected the defects disturbing the identified core values. For
Document B, 25 out of 28 subjects could identify core values without relying on guides, and 22 out of
25 subjects detected the defects disturbing the identified core values. In total, 91% of the reviewers
identified appropriate core values and 82% detected the corresponding defects. In this experiment,
subjects who could not identify the core values were also considered to be unable to detect the
corresponding defects.

6.4 RQ3.1: What is the Number of Defects Detected by VOR as a Percentage of That by PBR?

The results of VOR are inferior compared with those of PBR. Regarding group comparison, the answer
for RQ3.1 is 89.2% and 76.7% for Documents A and B, respectively (Tab. 13). Regarding the comparison for
each subject, the confidence intervals among almost all groups can overlap according to Tab. 14. In this
experiment, PBR realized comprehensive defect detection by assigning different perspectives to
reviewers, whereas VOR needed to specify core values before defect detection. Besides, the core value
identification and defect detection were conducted within a limited time frame.

6.5 RQ3.2: Are the Types of Detected Defects Different Between VOR and PBR?

The answer to RQ 3.2 is that VOR and PBR detect similar types of defects. The differences between
Documents A and B with respect to ambiguity, incorrect, cosmetic, feature suggestion, and false-positive
types were minimal. Further, it is encouraging that the average number of omission-type defects detected
by VOR was greater than that detected by PBR in this experiment. For VOR, the percentages of the
omission-type defects were 53% and 50% for Documents A and B, respectively. The omission-type
defects are difficult to detect than other types of defects because reviewers must imagine the behaviors of
the software and identify the omitted description for the behaviors.

6.6 RQ3.3: Does the Experience of the Reviewer Affect the Number of Defects Detected?

The answer to RQ 3.3 is yes; however, the impact was small. As seen in Tab. 15, the average number of
defects detected by senior developers was greater than that detected by junior developers for both VOR and
PBR. The differences between senior and junior developers were 0.31 and 0.26 for VOR and PBR,
respectively. Thus, VOR may require more development experience from reviewers because it does not
provide guides.

6.7 Implications

VOR enables a fast and cost-effective review, especially when review scenarios or guides are
unavailable. In addition, the number of detected defects is expected to be greater than that in this
experiment, because the core values were not shared among the reviewers in this experiment. In practice,
core values can be shared among stakeholders, users, and other developers to improve effectiveness.
Moreover, because VOR is a lightweight review technique, it can be performed in the early stages of
requirement definition. Besides, combining VOR and PBR may improve the review quality by first
performing VOR in an early stage and then using PBR as a gate check.

6.8 Threats to Validity

In this study, we took software engineers as the subjects and conducted experiments to evaluate the VOR
method. However, it is difficult to simply state whether VOR is effective as it depends on several factors such
as cost and accuracy. The following issues need to be considered for validating the experiment: how a
human-oriented experiment affects the effectiveness [38], whether the constituent elements of the

CSSE, 2021, vol.37, no.3 457



experiment can be guaranteed, and whether the results of the experiment can be generalized to the actual
working environment.

6.8.1 Internal Validity
The second review may have been affected by learning effects [38] because the experiment was

performed twice in a day. In the reading technique literature, this problem can be suppressed by
crossover-design [26,39]. As shown in Fig. 1, our controlled experiment was designed using the same
philosophy. Besides, as the subjects were software engineers with software development experience, that
the learning effect was expected to be smaller than that in the subjects who were students or software
engineers with little or no experience.

6.8.2 External Validity
Because of the small scale of the SRS documents used in the experiment, the experimental results may

not be generalized. However, this experiment could be considered a part of the large-scale software system
review experiment. In other words, decomposing a large-scale software system into smaller parts before
reviewing is also realistic, and large-scale software is indeed often decomposed in accordance with
certain criteria before being reviewed.

6.9 Limitations

Although VOR performed efficiently (especially for the omission-type defects) with less cost in our
controlled experiment, it is important to study the criticality degree of failure to identify defects. Besides,
we suggest using VOR when review scenarios or guides are not available or the defects related to
software core features need to be found quickly and efficiently: this is because in many cases, more
defects should be detected even if costs increase.

7 Conclusion

In this paper, we proposed and evaluated VOR, which does not require preparation of review guides. In
VOR, reviewers need to identify the core values of the target software before detecting defects. To evaluate
VOR, we conducted a controlled experiment involving 56 practitioners. The results of the controlled
experiment showed that 91% of the subjects identified appropriate core values and 82% of the subjects
detected the defects disturbing the identified core values. The number of defects detected by VOR was
slightly less than that detected by PBR. Regarding the individual comparison, the confidence intervals
were overlapped. Besides, the total number of type-I defects detected by the two methods is similar.
Furthermore, the results indicated that VOR helps the subjects detect the omission-type defects, which are
difficult to detect than the other defect types. The results also showed that both junior and senior
developers found an equal number of defects using VOR and PBR. Additionally, two of the companies
that participated in the training seminar have piloted VOR in place of ad hoc reading within their
premises and rated it favorably in our follow-up questionnaire. In summary, VOR can be implemented
when review scenarios or guides are unavailable or when the defects related to software core features
need to be found quickly and efficiently.

Funding Statement: This study was supported by the 2020 TSUBAME project of Tokyo Institute of
Technology (Grant No. 20D10597).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

458 CSSE, 2021, vol.37, no.3



References
[1] M. E. Fagan, “Design and code inspections to reduce errors in program development,” IBM Systems Journal, vol.

15, no. 3, pp. 182–211, 1976.

[2] J. S. Collofello and S. N. Woodfield, “Evaluating the effectiveness of reliability-assurance techniques,” Journal of
Systems and Software, vol. 9, no. 3, pp. 191–195, 1989.

[3] S. Kusumoto, K. I. Matsumoto, T. Kikuno and K. Torii, “A new metric for cost effectiveness of software reviews,”
IEICE Transactions on Communications Electronics Information and Systems, vol. 75, no. 5, pp. 674–680, 1992.

[4] T. Gilb and D. Graham, S. Finzi (Ed.), Software Inspection. 75 Arlington Street, Suite 300 Boston, MAUnited
States: Addison-Wesley Longman Publishing Co., Inc., 1993.

[5] B. Brykczynski, “A survey of software inspection checklists,” ACM SIGSOFT Software Engineering Notes, vol.
24, no. 1, pp. 82–89, 1999.

[6] A. A. Porter, L. Votta and V. R. Basili, “Comparing detection methods for software requirements inspections: A
replicated experiment,” IEEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563–575, 1995.

[7] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull et al., “The empirical investigation of Perspective-
Based Reading,” Empirical Software Engineering, vol. 1, no. 2, pp. 133–164, 1996.

[8] A. Porter and L. Votta, “Comparing detection methods for software requirements inspections: A replication using
professional subjects,” Empirical Software Engineering, vol. 3, no. 4, pp. 355–379, 1998.

[9] F. Shull, I. Rus and V. Basili, “How perspective-based reading can improve requirements inspections,” Computer,
vol. 33, no. 7, pp. 73–79, 2000.

[10] T. Thelin, P. Runeson and B. Regnell, “Usage-based reading—an experiment to guide reviewers with use cases,”
Information and Software Technology, vol. 43, no. 15, pp. 925–938, 2001.

[11] T. Thelin, P. Runeson and C. Wohlin, “An experimental comparison of usage-based and checklist-based reading,”
IEEE Transactions on Software Engineering, vol. 29, no. 8, pp. 687–704, 2003.

[12] M. Ciolkowski, O. Laitenberger and S. Biffl, “Software reviews: The state of the practice,” IEEE Software, vol.
20, no. 6, pp. 46–51, 2003.

[13] O. Laitenberger, “Cost-effective detection of software defects through perspective-based inspections,” Empirical
Software Engineering, vol. 6, no. 1, pp. 81–84, 2001.

[14] V. R. Basili and F. Shull, “Developing techniques for using software documents: A series of empirical studies,”
Ph.D. dissertation, University of Maryland, Maryland, 1998.

[15] O. Laitenberger, “Cost-effective detection of software defects through perspective-based inspections,” Empirical
Software Engineering, vol. 6, no. 1, pp. 81–84, 2001.

[16] M. Ciolkowski, “What do we know about perspective-based reading? An approach for quantitative aggregation
in software engineering,” in Int. Sym. on Empirical Software Engineering and Measurement, Lake Buena Vista,
FL, 2009.

[17] S. Biffl and M. Halling, “Investigating the defect detection effectiveness and cost benefit of nominal inspection
teams,” IEEE Transactions on Software Engineering, vol. 29, no. 5, pp. 385–397, 2003.

[18] J. C. Carver, F. Shull and I. Rus, “Finding and fixing problems early: A perspective-based approach to
requirements and design inspections,” Journal of Defense Software Engineering, vol. 19, pp. 25–28, 2006.

[19] W. E. Lewis and W. H. C. Bassetti, Software Testing and Continuous Quality Improvement, 3rd ed. Imprint of
Warren, Gorham and Lamont 31 St. James Avenue Boston, MAUnited States: Auerbach Publications, 2008.

[20] S. A. Ebad, “Inspection reading techniques applied to software artifacts - a systematic review,” Computer Systems
Science and Engineering, vol. 3, pp. 213–226, 2017.

[21] J. Gordijn and J. M. Akkermans, “Value-based requirements engineering: Exploring innovative e-commerce
ideas,” Requirements Engineering, vol. 8, no. 2, pp. 114–134, 2003.

[22] K. Lee and B. Boehm, “Empirical results from an experiment on value-based review (VBR) processes,” in Int.
Sym. on Empirical Software Engineering, Australia: Noosa Heads Qld., 2005.

[23] S. Thew and A. Sutcliffe, “Value-based requirements engineering: Method and experience,” Requirements
Engineering, vol. 23, no. 4, pp. 443–464, 2018.

CSSE, 2021, vol.37, no.3 459



[24] C. Denger and F. Shull, “A practical approach for quality-driven inspections,” IEEE Software, vol. 24, no. 2, pp.
79– 86, 2007.

[25] O. Laitenberger and C. Atkinson, “Generalizing perspective-based inspection to handle object-oriented
development artifacts,” in Proc. of the 1999 Int. Conf. on Software Engineering, Los Angeles, CA, USA, 1999.

[26] O. Laitenberger, C. Atkinson, M. Schlich and K. E. Emam, “An experimental comparison of reading
techniques for defect detection in UML design documents,” Journal of Systems and Software, vol. 53, no. 2,
pp. 183–204, 2000.

[27] O. Laitenberger, K. E. Emam and T. G. Harbich, “An internally replicated quasi-experimental comparison of
checklist and perspective based reading of code documents,” IEEE Transactions on Software Engineering, vol.
27, no. 5, pp. 387–421, 2001.

[28] A. A. Porter and L. G. Votta, “An experiment to assess different defect detection methods for software
requirements inspections,” in Proc. of 16th Int. Conf. on Software Engineering, Sorrento, Italy, Italy, 1994.

[29] A. Aurum, H. Petersson and C. Wohlin, “State-of-the-art: software inspections after 25 years,” Software Testing,
Verification & Reliability, vol. 12, no. 3, pp. 133–154, 2002.

[30] T. Thelin, P. Runeson, C. Wohlin, T. Olsson and C. Andersson, “Evaluation of usage-based reading—conclusions
after three experiments,” Empirical Software Engineering, vol. 9, no. 1/2, pp. 77–110, 2004.

[31] T. Thelin and P. Andersson, “Tool support for usage-based reading,” in The IASTED Int. Conf. on Software
Engineering, Innsbruck, Austria, 2004.

[32] F. Wedyan, D. Alrmuny and J. M. Bieman, “The effectiveness of automated static analysis tools for fault detection
and refactoring prediction,” in Int. Conf. on Software Testing Verification and Validation, Denver, CO, 2009.

[33] d. s. BP and R. C. Motta, “An IoT-based scenario description inspection technique,” in Proc. of the XVIII Brazilian
Sym. on Software Quality, Fortaleza, 2019.

[34] S. W. Ali, Q. A. Ahmed and I. Shafi, “Process to enhance the quality of software requirement specification
document,” in Int. Conf. on Engineering and Emerging Technologies, Lahore, 2018.

[35] N. Ali and R. Lai, “A method of software requirements specification and validation for global software
development,” Requirements Engineering, vol. 22, no. 2, pp. 191–214, 2017.

[36] M. D. Laat and M. Daneva, “Empirical validation of a software requirements specification checklist,” in 24th Int.
Working Conf. on Requirements Engineering, Utrecht, Netherlands, 2018.

[37] A. V. Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in Proc. IEEE Int. Sym. on
Requirements Engineering, Toronto, Ontario, Canada, 2001.

[38] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell et al., Experimentation in Software Engineering.
Springer Publishing Company, Incorporated, 2012.

[39] J. Miller, M. Wood and M. Roper, “Further experiences with scenarios and checklists,” Empirical Software
Engineering, vol. 3, no. 1, pp. 37–64, 1998.

Appendix

As VOR focuses on defects related to the core features of software, discussing the comparison with PBR
regarding the type-I defect (core-value disturbing defects) is also necessary. Each subject may describe the
defects in different ways, but as long as the detected defect is related to the corresponding core value, it is
considered a valid one. Besides, as mentioned in Section 3, core values can be defined according to various
abstraction levels. An abstract core value can be decomposed into more specific core values.

Regarding Document A, the subjects of groups Y and Z conducted the review using VOR, and those of
groups X andW conducted the review using PBR. The total number of defects related to core values detected
by VOR and PBR are 61(63) and 67, respectively. However, the number of subjects of VOR was 26 instead
of 28 because we excluded the data for subjects who did not identify core values as previously mentioned.
Interestingly, one of the two subjects who did not identify core values also found type-I defects. Regarding

460 CSSE, 2021, vol.37, no.3



Document B, the subjects of groups X and W conducted the review using VOR, and those of groups Yand Z
conducted the review with PBR.

The details are given in Tab. A1; “()” represents the data for all the subjects with VOR (subjects who did
not identify core values are also included).

It can be seen that the total number of type-I defects detected using VOR is also slightly smaller than that
using PBR.

Table A1: Type-I defect comparison between VOR and PBR for Documents A and B

Core values Number of defects detected by VOR Number of defects detected by PBR

Aa 38 (39) 41

Ab 23 (24) 26

Ba 51 (53) 45

Bb 19 30

CSSE, 2021, vol.37, no.3 461


	An Evaluation of Value-Oriented Review for Software Requirements Specification
	Introduction
	Related Research
	Value-Oriented Review
	Experiment
	Results
	Discussion
	Conclusion
	References
	flink9
	Appendix


