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Abstract: In this research, we propose a new change in classical epidemic models
by including the change in the rate of death in the overall population. The existing
models like Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-
Recovered-Susceptible (SIRS) include the death rate as one of the parameters
to estimate the change in susceptible, infected and recovered populations. Actu-
ally, because of the deficiencies in immunity, even the ordinary flu could cause
death. If people’s disease resistance is strong, then serious diseases may not result
in mortalities. The classical model always assumes a closed system where there is
no new birth or death, no immigration or emigration, while in reality, such
assumptions are not realistic. Moreover, the classical epidemic model does not
report the change in population due to death caused by a disease. With this study,
we try to incorporate the rate of change in the population of death caused by a
disease, where the model is framed to reduce the curve of death along with the
susceptible and infected populations. Since the rate of change turned out to be
very small, we have tried to estimate it fractionally. Thus, the model is defined
using fuzzy logic and is solved by two different methods: a Laplace Adomian
decomposition method (LADM) and a differential transform method (DTM) for
an arbitrary order �. To test its accuracy, we compared the results of both
DTM and LADM with the fourth-order Runge-Kutta method (RKM-4) at � ¼ 1.

Keywords: Susceptible-infected-recovered-dead; epidemic model; fractional-
order; differential transformation method; Laplace Adomian decomposition
method; Fourth-order; Runge-Kutta method

1 Introduction

The present study on modeling epidemics like infectious diseases is an interesting topic in the fields of
mathematical biology. The medical world is still struggling a lot to provide medicines that can cure deadly
diseases and prevent recurring infections. For example, the Human Immunodeficiency Virus (HIV) disease
already found is still being treated instead of being cured. The epidemic models are the pioneers of all
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mathematical models in studying the growth of diseases. Epidemics are the root of various diseases. The
existing models in epidemiology are close-ended where no new birth or death occurs. Basically, a patient
can die with or without the symptoms of a disease. So death is not only a parameter to make changes in
susceptible, and infected. It is also subject to change depending on immunity, the dosage of medicine,
age, etc. So, we are interested to propose a new model in epidemiology called Susceptible-Infected-
Recovered-Dead (SIRD). In this paper, such a model is suggested and we convert it into a fuzzy
fractional model. These models are studied with three methods of the same order to find the best out of
them and the used methods are all fourth-order in Laplace Adomian decomposition method (LADM),
differential transform method (DTM), and fourth-order Runge-Kutta method (RKM-4). In 1965 Zadeh
introduced the fuzzy sets [1]. Bukley et al. [2] proposed the fuzzy differential equations in the year 2000.
Abbasbandy [3] has extended Newton’s method for a system of nonlinear equations by modified the
ADM in 2005. Allen [4] in 2007 studied an introduction to mathematical biology. In the same year,
Makinde [5] suggested a SIR epidemic model with constant vaccination within ADM. Ongun [6] has
applied the Laplace Adomian decomposition method for solving a model for HIV infection of CD4+T
cells in 2011. Arafa et al. [7] studied the solutions of the fractional order model of Childhood disease
with constant vaccination strategy in 2012. Farman et al. [8] analyzed and numerically found the solution
of SEIR epidemic model of measles with non-integer time- fractional derivatives by using LADM in
2018. Moustafa et al. [9] and Palese et al. [10] mathematically solved the influenza type problems.
Recently, many authors showed interest to study fractional-order mathematical models in HIV,
Tuberculosis (TB), and cancer [11–13]. After the classical epidemic model [14], many research papers
arrived at the advanced epidemic models. Authors of manuscripts [15–19] have regularly treated fuzzy
differential equations numerically. Numerical solutions of epidemic models are studied by many authors
[20–25]. Recently, many researchers discussed the coronavirus, a pandemic disease [26–30].

This manuscript consists of 8 sections. In Section 2, we are forming a new epidemic model. In Section 3,
we are discussing the basic definitions and describing the parameters involved in solving this new model. In
Section 4, we are analyzing the equilibrium and stability of the presented model. In Section 5, we are
analytically finding the solution of the model by fourth-order DTM and fourth-order LADM. In Section
6, we are using the RKM-4 to find the numerical solution of the model. Section 7 presents numerical
simulations of our study. In Section 8, the study of the whole paper was concluded.

2 SIRD-Epidemic Model-Formulation

Let us consider a fuzzy fractional epidemic model-SIRD (See, Fig. 1) under Caputo derivative cD
a
,

where ‘S’ denotes Susceptible, ‘I’ denotes the Infected, ‘R’ denotes the recovered hosts, and ‘D’ denotes
death hosts. The model is considered to be close-ended i.e., no new birth or death can occur. So, we shall
assume the following information as the background of the model. Let us consider an unknown disease
spread in a place where it holds few susceptible, infected, recovered, and dead cases in the overall
population. Also, at the stage of observation, it is noted that few people died out because of the severity of

Figure 1: Model formulation
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the disease, due to lack of immunity, or due to lack of medication.We also assert that no new people further died
or were further assumed to be susceptible. The model is also framed to improve on the classical epidemic model
SIR framed by Kermack-Mckendrick [14]. The classical epidemic model does not change for susceptible,
infected, and dead cases (SID). For any common flu or severe disease, it is quite natural that few people
can recover, few people can die and few recovered people may become infected. Recovered is also a part of
susceptibility. Both recovered and dead people are free from infection, but the recovered people may
become infected again, or even die naturally, whereas the dead people would not become infected,
susceptible or recovered. With these ideas in mind the following model is assumed:

DSðtÞ ¼ �bSðtÞIðtÞ � cSðtÞ
DIðtÞ ¼ bSðtÞIðtÞ � ðdþ cÞIðtÞ
DRðtÞ ¼ ð2d� wÞIðtÞ � cRðtÞ
DDðtÞ ¼ ðw� dÞIðtÞ � cDðtÞ

(1)

Throughout the paper, D represents the death population and D represents d/dt.

3 Basic Definitions and Parameters

This section consists of some basic results in fractional differential equation in terms of fuzzy.

Definition 3.1: The fuzzy Caputo fractional order derivative of a function f on the interval [0,t] is defined

as cD
a~f tð Þ ¼ 1

� n� að Þ
Z t

0
t � sð Þn�a�1~f n sð Þds, where n ¼ a½ � þ 1 and a represents the integer part of a.

Definition 3.2: The Laplace transform of fuzzy Caputo fractional derivative is given to be

L cD
a~f tð Þ� � ¼ kag kð Þ �Pn�1

s¼0 k
a�i�1~f sð Þ 0ð Þ; where n� 1 < a � n; n 2 N . For arbitrary Ci 2 R; i ¼

0; 1; 2; . . . ; n� 1: where n ¼ a½ � þ 1and a½ � represents the integer part of a:
The system of differential equations (1) is rewritten as the fractional system of differential equations

(FDE) which is given as

cD
a1SðtÞ ¼ �bSðtÞIðtÞ � cSðtÞ

cD
a2 IðtÞ ¼ bSðtÞIðtÞ � ðdþ cÞIðtÞ

cD
a3RðtÞ ¼ ð2d� wÞIðtÞ � cRðtÞ

cD
a4DðtÞ ¼ ðw� dÞIðtÞ � cDðtÞ

(2)

It becomes a fuzzy fractional-order system of differential equation using the ideas given in
preliminaries

cD
a1 ~SðtÞ ¼ �b~SðtÞ~IðtÞ � c~SðtÞ

cD
a2~IðtÞ ¼ b~SðtÞ~IðtÞ � ðdþ cÞ~IðtÞ

cD
a3 ~RðtÞ ¼ ð2d� wÞ~IðtÞ � c~RðtÞ

cD
a4 ~DðtÞ ¼ ðw� dÞ~IðtÞ � c~DðtÞ

(3)

where ~f tð Þ ¼ 0:75þ 0:25r; 1:125� 0:125rð Þ f tð Þ is the fuzzy number with r 2 0; 1½ �.
The initial conditions are satisfied implying that the total population is constant with the size N.

S 0ð Þ þ I 0ð Þ þ R 0ð Þ þ D 0ð Þ ¼ N . Here we shall take the initial populations as S 0ð Þ ¼ S0 ¼ m1 ¼ 25;
I 0ð Þ ¼ I0 ¼ m2 ¼ 30; R 0ð Þ ¼ R0 ¼ m3 ¼ 20; D 0ð Þ ¼ D0 ¼ m4 ¼ 25:

The parameters are defined as follows:

b ! The rate at which the susceptible become infected = 0.0006

d ! The rate at which the infectious become recovered = 0.03
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w ! The rate at which the infectious become dead because of disease = 0.02

c ! The rate at which natural death occurs in each population = 0.01

4 Equilibrium Points and Stability Analysis

Calculation of Basic Reproduction Number (R0):

Basic reproduction number or ratio is defined as the number of secondary infections produced by an
infected single individual during the total epidemic period. This number is calculated from the rate of

change in the population of infected people when the time t ¼ 0. We found that, R0 ¼ S0
b

dþ c
. Suppose

the critical value Sc ¼ dþ c
b

then if S0 < Sc the disease will not survive and if S0 > Sc then there is an

epidemic. Also, if R0 > 1, the disease will spread and for R0 < 1; the disease will die out.

Equilibrium Points:

In Eq. (3), we take cD
a1 ~S tð Þ ¼ 0; cD

a2~I tð Þ ¼ 0; cD
a3 ~R tð Þ ¼ 0 & cD

a4 ~D tð Þ ¼ 0. i.e.,

�b~SðtÞ~IðtÞ � c~SðtÞ ¼ 0 (4)

b~SðtÞ~IðtÞ � ðdþ cÞ~IðtÞ ¼ 0 (5)

ð2d� wÞ~IðtÞ � c~RðtÞ ¼ 0 (6)

ðw� dÞ~IðtÞ � c~DðtÞ ¼ 0 (7)

From Eqs. (4)–(7) we get the disease-free equilibrium point as 0; 0; 0; 0ð Þ and disease dependant

equilibrium point as
dþ c
b

;
c
b
;
w� 2d

b
;
d� w
b

� �
. i.e., 66:667;�16:667;�66:667; 16:667ð Þ is the disease

dependant equilibrium point.

Theorem 1:

When all the real values of complex or non-complex eigenvalues of the linearized form of 3ð Þ < 0 then
the model is asymptotically stable.

Proof:

Let us first linearize the model (3) in the form of Jacobian matrix and name it as E.

E ¼
�ðbIðtÞ þ cÞ �bSðtÞ 0 0

bIðtÞ bSðtÞ � ðdþ cÞ 0 0
0 2d� w �c 0
0 w� d 0 �c

0
BB@

1
CCA (8)

After substituting all values of all parameters we get, the characteristic polynomial of a matrix is
t4 þ 0:053t3 þ 0:000825t2 � 5:3� 10�6t � 9:25� 10�8. Equating the above polynomial to zero we have
found the eigenvalues as �0:0265þ 0:0163631ið Þ; �0:0265� 0:0163631ið Þ; �0:01;�0:01. Since
eigenvalues have the negative real parts we can conclude the system (3) is asymptotically stable.
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5 Analytical Solution of the SIRD Model

5.1 Differential Transform Method (DTM)

For finding the analytical solution, we use DTM similar to [8]. The idea of differential transformation
was derived from the Taylor series expansion. In this method, given the system of differential equations and
the respected initial conditions are transformed into the system of recurring equations and at last, these
equations become the Taylor series expansion about the point t ¼ 0: The differential transform of the

function f xð Þ when k

a
2 Z þ can be defined as Dt f xð Þ½ � ¼ 1=

k

a

� �
!
d

k

af xð Þ

dx

k

a

2
664

3
775
x¼0

. Also if f xð Þ ¼ g xð Þh xð Þ,

F kð Þ ¼ P
n¼0 kG kð ÞH k � nð Þ. Now for a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1. The system (3) becomes

~Sðk þ 1Þ ¼ 1

k þ 1
�b~SðkÞ~Iðk � nÞ � c~SðkÞ� �

~Iðk þ 1Þ ¼ 1

k þ 1
b~SðkÞ~Iðk � nÞ � ðdþ cÞ~IðkÞ� �

~Rðk þ 1Þ ¼ 1

k þ 1
ð2d� wÞ~IðkÞ � c~RðkÞ� �

~Dðk þ 1Þ ¼ 1

k þ 1
ðw� dÞ~IðkÞ � c~DðkÞ� �

(9)

At t0 ¼ 0, the inverse differential transform of ~S kð Þ, ~I kð Þ, ~R kð Þ and ~D kð Þ are given by
~S tð Þ ¼ P1

k¼0
~S kð Þtk , ~I tð Þ ¼ P1

k¼0
~I kð Þtk , ~R tð Þ ¼ P1

k¼0
~R kð Þtk and ~D tð Þ ¼ P1

k¼0
~D kð Þtk . For the model

(3), the solution obtained by DTM up to order 4 is

~SðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð25� 0:7t þ 0:0154t2 � 0:000264342t3 þ 3:26386� 10�6t4Þ 0 � r � 1

~IðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð30� 0:75t þ 0:003075t2 � 0:000171925t3 � 4:32226� 10�6t4Þ 0 � r � 1

~RðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð20þ t � 0:02t2 þ 0:000107667t3 þ 1:45008� 10�6t4Þ 0 � r � 1

~DðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð25� 0:55t þ 0:0065t2 � 0:0000319167t3 � 3:50021� 10�7t4Þ 0 � r � 1

(10)

5.2 Laplace Adomian Decomposition Method (LADM)

In order to find the analytical solution of the new fractional epidemic model, we are using the second
method called the LADM similar to [11], and the values of ~S tð Þ, ~I tð Þ, ~R tð Þ, and ~D tð Þ are solved by the
following procedures.

~Sðk þ 1Þ ¼ L�1 �b
sa1

LðAkÞ � c
sa1

L ~Sk
� �� �

~Iðk þ 1Þ ¼ L�1 b
sa2

LðAkÞ � ðdþ cÞ
sa2

L ~Ik
� �� �

~Rðk þ 1Þ ¼ L�1 ð2d� wÞ
sa3

L ~I k
� �� c

sa3
L ~Rk

� �� �

~Dðk þ 1Þ ¼ L�1 ðw� dÞ
sa4

L ~Ik
� �� c

sa4
L ~Dk

� �� �
(11)

CSSE, 2021, vol.37, no.3 335



where Akð Þ is an Adomian polynomial defined by Ak ¼ 1

k!

dk

d�k

Xk

l¼0
�lSl:�

lIl
� �j� ¼ 0: i.e., A0 ¼ S0I0,

A1 ¼ S0I1 þ S1I0, A2 ¼ S0I2 þ S1I1 þ S2I1, and so on. Also, ~S tð Þ ¼ P1
k¼0

~S kð Þ, ~I tð Þ ¼ P1
k¼0

~I kð Þ,
~R tð Þ ¼ P1

k¼0
~R kð Þ and ~D tð Þ ¼ P1

k¼0
~D kð Þ. For model Eq. (3), after assigning the values to all the

parameters, the solution obtained by LADM up to order 4 defining for a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1 is found as
same as the solution obtained by DTM

~SðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð25� 0:7t þ 0:0154t2 � 0:000264342t3 þ 3:26386� 10�6t4Þ 0 � r � 1

~IðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð30� 0:75t þ 0:003075t2 � 0:000171925t3 � 4:32226� 10�6t4Þ 0 � r � 1

~RðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð20þ t � 0:02t2 þ 0:000107667t3 þ 1:45008� 10�6t4Þ 0 � r � 1

~DðtÞ ¼ ð0:75þ 0:25r; 1:125� 0:125rÞ
ð25� 0:55t þ 0:0065t2 � 0:0000319167t3 � 3:50021� 10�7t4Þ 0 � r � 1

(12)

6 Numerical Solution of the Suspected Infected Recovered and Dead (SIRD) Model by Runge-Kutta
Method of Order 4 (RKM-4)

In this section, we are using RKM-4 with a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1. We are finding the values of ~S tð Þ,
~I tð Þ, ~R tð Þ and ~D tð Þ at h ¼ 0:1 for the best approximation. For 0 � r � 1,

We evaluate ~S tð Þ, ~I tð Þ, ~R tð Þ and ~D tð Þ:
~K1 ¼ h �b ~SðtÞ� �

~IðtÞ� �� c ~SðtÞ� �� �
~L1 ¼ h b ~SðtÞ� �

~IðtÞ� �� dþ cð Þ ~IðtÞ� �� �
~M1 ¼ h 2d� wð Þ ~IðtÞ� �� cð Þ~R tð Þ� �
~N1 ¼ h w� dð ÞI tð Þð Þ � cð Þ~DðtÞ� �

~K2 ¼ h �b ~SðtÞ� �þ ~K1

2

� �
~IðtÞ� �þ ~L1

2

� �
� c ~SðtÞ þ

~K1

2

� �� �� �� �

~L2 ¼ h b ~SðtÞ� �þ ~K1

2

� �
~IðtÞ� �þ ~L1

2

� �
� dþ cð Þ ~IðtÞ þ

~L1
2

� �� �� �� �

~M2 ¼ h 2d� wð Þ ~IðtÞ þ
~L1
2

� �� �
� c ~RðtÞ þ

~M1

2

� �� �� �� �

~N2 ¼ h ðw� dÞ ~IðtÞ þ
~L1
2

� �� �
� c ~DðtÞ þ

~N1

2

� �� �� �� �

~K3 ¼ h �b ~SðtÞ� �þ ~K2

2

� �
~IðtÞ� �þ ~L2

2

� �
� c ~SðtÞ þ

~K2

2

� �� �� �� �

~L3 ¼ h b ~SðtÞ� �þ ~K2

2

� �
~IðtÞ� �þ ~L2

2

� �
� dþ cð Þ ~IðtÞ þ

~L2
2

� �� �� �� �

~M3 ¼ h 2d� wð Þ ~IðtÞ þ
~L2
2

� �� �
� c ~RðtÞ þ

~M2

2

� �� �� �� �

~N3 ¼ h ðw� dÞ ~IðtÞ þ
~L2
2

� �� �
� c ~DðtÞ þ

~N2

2

� �� �� �� �

(13)
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~K4 ¼ h �b ~SðtÞ� �þ ~K3

� �
~IðtÞ� �þ ~L3

� �� c ~SðtÞ þ ~K3

� �� �� �� �
~L4 ¼ h b ~SðtÞ� �þ ~K3

� �
~IðtÞ� �þ ~L3

� �� dþ cð Þ ~IðtÞ þ ~L3
� �� �� �� �

~M4 ¼ h 2d� wð Þ ~IðtÞ þ ~L3
� �� �� c ~RðtÞ þ ~M3

� �� �� �� �
~N4 ¼ h ðw� dÞ ~IðtÞ þ ~L3

� �� �þ� c ~DðtÞ þ ~N3

� �� �� �� �
For 1 � p � 4 and 0 � r � 1

~Kp ¼ ~Kp t; rð Þ ¼ Kp t; rð Þ; �Kp t; rð Þ� 	
; ~Lp ¼ ~Lp t; rð Þ ¼ Lp t; rð Þ; �Lp t; rð Þ� 	

~Mp ¼ ~Mp t; rð Þ ¼ Mp t; rð Þ; �Mp t; rð Þ� 	
; ~Np ¼ ~Np t; rð Þ ¼ Np t; rð Þ; �Np t; rð Þ

h i

For 0 � t � n; n ¼ 1; 2; 3; . . . and for q ¼ t; �q ¼ t þ 1; t ¼ 0; 1; 2; 3; . . .

Here; f t; rð Þ; �f t; rð Þ
h i

¼ 0:75þ 0:25r; 1:125� 0:125r½ � f tð Þ with

~Sðt þ 1Þ ¼ ~SðtÞ þ 1

6
ð~K1 þ 2~K2 þ 2~K3 þ ~K4Þ

� �

~Iðt þ 1Þ ¼ ~IðtÞ þ 1

6
ð~L1 þ 2~L2 þ 2~L3 þ ~L4Þ

� �

~Rðt þ 1Þ ¼ ~RðtÞ þ 1

6
ð ~M1 þ 2 ~M2 þ 2 ~M3 þ ~M4Þ

� �

~Dðt þ 1Þ ¼ ~DðtÞ þ 1

6
ð~N1 þ 2~N2 þ 2~N3 þ ~N4Þ

� �
(14)

7 Numerical Simulations

The relationship between ~S tð Þ, ~I tð Þ, ~R tð Þ and ~D tð Þ at r ¼ 1; ai ¼ 1; i ¼ 1; 2; 3; 4 for t 2 0; 1000½ � for
the fuzzy model Eq. (3) is given in Fig. 2.

Figure 2: Fuzzy fractional SIRD model
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In Tabs. 1–4, non-fuzzy, non-fractional valued susceptible infected, recovered and dead populations
have been provided. In Tabs. 5–8, fractional valued susceptible infected, recovered, and dead populations
have been provided and their respective plots have been given in Figs. 3–6. In Tab. 9 as a sample, fuzzy
fractional SIRD populations are provided for t ¼ 0:5; a 2 0; 1½ �; r 2 0; 1½ �: But in Figs. 7–10, the plots
of fuzzy fractional SIRD populations for t 2 0; 1½ �; a 2 0; 1½ �; r 2 0; 1½ � are provided.

Table 1: Susceptible population (S)

S

t DTM-4 LADM-4 RKM-4

0 25 25 25

0.1 24.9302 24.9302 24.9302

0.2 24.8606 24.8606 24.8606

0.3 24.7914 24.7914 24.7914

0.4 24.7225 24.7225 24.7225

0.5 24.6538 24.6538 24.6538

0.6 24.5855 24.5855 24.5855

0.7 24.5175 24.5175 24.5175

0.8 24.4497 24.4497 24.4497

0.9 24.3823 24.3823 24.3823

1 24.3152 24.3152 24.3152

Table 2: Infected population (I)

I

t DTM-4 LADM-4 RKM-4

0 30 30 30

0.1 29.925 29.925 29.925

0.2 29.8501 29.8501 29.8501

0.3 29.7753 29.7753 29.7753

0.4 29.7005 29.7005 29.7005

0.5 29.6258 29.6258 29.6258

0.6 29.5511 29.5511 29.5511

0.7 29.4766 29.4766 29.4766

0.8 29.4021 29.4021 29.4021

0.9 29.3276 29.3276 29.3276

1 29.2532 29.2532 29.2532
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Table 3: Recovered population (R)

R

t DTM-4 LADM-4 RKM-4

0 20 20 20

0.1 20.0998 20.0998 20.0998

0.2 20.1992 20.1992 20.1992

0.3 20.2982 20.2982 20.2982

0.4 20.3968 20.3968 20.3968

0.5 20.495 20.495 20.495

0.6 20.5928 20.5928 20.5928

0.7 20.6902 20.6902 20.6902

0.8 20.7873 20.7873 20.7873

0.9 20.8839 20.8839 20.8839

1 20.9801 20.9801 20.9801

Table 4: Death population (D)

D

t DTM-4 LADM-4 RKM-4

0 25 25 25

0.1 24.9451 24.9451 24.9451

0.2 24.8903 24.8903 24.8903

0.3 24.8356 24.8356 24.8356

0.4 24.781 24.781 24.781

0.5 24.7266 24.7266 24.7266

0.6 24.6723 24.6723 24.6723

0.7 24.6182 24.6182 24.6182

0.8 24.5641 24.5641 24.5641

0.9 24.5102 24.5102 24.5102

1 24.4565 24.4565 24.4565

Table 5: Fractional susceptible population (S)

a\ t 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 24.33 24.33 24.33 24.33 24.33 24.33 24.33 24.33 24.33 24.33 24.33

0.10 25.00 24.44 24.40 24.37 24.36 24.34 24.33 24.32 24.31 24.30 24.30

0.20 25.00 24.53 24.47 24.42 24.39 24.36 24.34 24.32 24.30 24.29 24.27
(Continued)
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Table 5 (continued).

a\ t 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.30 25.00 24.62 24.53 24.47 24.43 24.39 24.36 24.33 24.30 24.28 24.25

0.40 25.00 24.69 24.59 24.53 24.47 24.42 24.38 24.34 24.31 24.27 24.24

0.50 25.00 24.75 24.65 24.58 24.51 24.46 24.41 24.36 24.32 24.28 24.24

0.60 25.00 24.81 24.71 24.63 24.56 24.50 24.44 24.39 24.34 24.29 24.24

0.70 25.00 24.85 24.75 24.67 24.60 24.54 24.47 24.41 24.36 24.31 24.25

0.80 25.00 24.88 24.79 24.72 24.64 24.58 24.51 24.45 24.39 24.33 24.27

0.90 25.00 24.91 24.83 24.76 24.68 24.62 24.55 24.48 24.42 24.35 24.29

1.00 25.00 24.93 24.86 24.79 24.72 24.65 24.59 24.52 24.45 24.38 24.32

Table 6: Fractional infected population (I)

a\ t 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 29.26 29.26 29.26 29.26 29.26 29.26 29.26 29.26 29.26 29.26 29.26

0.10 30.00 29.38 29.33 29.31 29.29 29.27 29.26 29.25 29.24 29.23 29.22

0.20 30.00 29.49 29.41 29.36 29.33 29.29 29.27 29.25 29.23 29.21 29.19

0.30 30.00 29.58 29.49 29.42 29.37 29.33 29.29 29.26 29.23 29.20 29.17

0.40 30.00 29.66 29.56 29.48 29.42 29.36 29.32 29.27 29.23 29.20 29.16

0.50 30.00 29.73 29.62 29.54 29.47 29.40 29.35 29.30 29.25 29.20 29.16

0.60 30.00 29.79 29.68 29.59 29.52 29.45 29.39 29.33 29.27 29.22 29.17

0.70 30.00 29.84 29.73 29.65 29.57 29.49 29.43 29.36 29.30 29.24 29.18

0.80 30.00 29.87 29.78 29.69 29.61 29.54 29.47 29.40 29.33 29.26 29.20

0.90 30.00 29.90 29.82 29.74 29.66 29.58 29.51 29.44 29.36 29.29 29.22

1.00 30.00 29.93 29.85 29.78 29.70 29.63 29.55 29.48 29.40 29.33 29.25

Table 7: Fractional recovered population (R)

a\ t 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 20.96 20.96 20.96 20.96 20.96 20.96 20.96 20.96 20.96 20.96 20.96

0.10 20.00 20.81 20.86 20.90 20.92 20.94 20.96 20.97 20.99 21.00 21.01

0.20 20.00 20.67 20.77 20.83 20.88 20.91 20.95 20.98 21.00 21.02 21.04

0.30 20.00 20.55 20.67 20.75 20.82 20.88 20.92 20.97 21.00 21.04 21.07

0.40 20.00 20.44 20.58 20.68 20.76 20.83 20.89 20.95 21.00 21.04 21.08

0.50 20.00 20.35 20.50 20.61 20.70 20.78 20.85 20.92 20.98 21.03 21.09

0.60 20.00 20.28 20.42 20.53 20.63 20.72 20.80 20.88 20.95 21.02 21.08

0.70 20.00 20.22 20.35 20.47 20.57 20.67 20.75 20.84 20.92 20.99 21.07

0.80 20.00 20.17 20.29 20.41 20.51 20.61 20.70 20.79 20.88 20.96 21.05

0.90 20.00 20.13 20.24 20.35 20.45 20.55 20.65 20.74 20.83 20.93 21.02

1.00 20.00 20.10 20.20 20.30 20.40 20.50 20.59 20.69 20.79 20.88 20.98
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Table 8: Fractional dead population (D)

a\ t 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 24.46 24.46 24.46 24.46 24.46 24.46 24.46 24.46 24.46 24.46 24.46

0.10 25.00 24.55 24.52 24.50 24.48 24.47 24.46 24.46 24.45 24.44 24.44

0.20 25.00 24.63 24.57 24.54 24.51 24.49 24.47 24.45 24.44 24.43 24.42

0.30 25.00 24.70 24.63 24.58 24.54 24.51 24.48 24.46 24.44 24.42 24.40

0.40 25.00 24.76 24.68 24.62 24.58 24.54 24.50 24.47 24.44 24.42 24.39

0.50 25.00 24.81 24.73 24.66 24.61 24.57 24.53 24.49 24.46 24.42 24.39

0.60 25.00 24.85 24.77 24.70 24.65 24.60 24.55 24.51 24.47 24.43 24.40

0.70 25.00 24.88 24.80 24.74 24.68 24.63 24.58 24.53 24.49 24.45 24.41

0.80 25.00 24.91 24.84 24.78 24.72 24.66 24.61 24.56 24.51 24.46 24.42

0.90 25.00 24.93 24.87 24.81 24.75 24.70 24.64 24.59 24.54 24.49 24.44

1.00 25.00 24.95 24.89 24.84 24.78 24.73 24.67 24.62 24.56 24.51 24.46

Figure 3: Fractional susceptible (S)

Figure 4: Fractional infected (I)
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Figure 5: Fractional recovered (R)

Figure 6: Fractional dead (D)

Table 9: Fuzzy fractional epidemic model

t ¼ 0:5; a 2 0; 1½ �; r 2 0; 1½ �
S I R D

r min max min max min max min Max

0.0 21.8750 26.5625 26.2500 31.8750 17.5000 21.2500 21.8750 26.5625

0.1 21.6591 26.3004 26.0164 31.5913 17.8087 21.6249 21.7044 26.3554

0.2 21.5712 26.1936 25.9200 31.4742 17.9346 21.7777 21.6344 26.2704

0.3 21.5044 26.1125 25.8461 31.3846 18.0304 21.8940 21.5810 26.2055

0.4 21.4485 26.0446 25.7839 31.3091 18.1106 21.9914 21.5361 26.1509

0.5 21.3995 25.9851 25.7293 31.2427 18.1808 22.0767 21.4967 26.1031

0.6 21.3554 25.9316 25.6799 31.1827 18.2440 22.1534 21.4611 26.0599

0.7 21.3151 25.8827 25.6345 31.1276 18.3018 22.2236 21.4286 26.0204

0.8 21.2778 25.8373 25.5923 31.0764 18.3554 22.2887 21.3983 25.9837

0.9 21.2429 25.7949 25.5528 31.0284 18.4055 22.3496 21.3700 25.9492

1.0 21.2100 25.7550 25.5154 30.9830 18.4528 22.4069 21.3432 25.9168
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Figure 7: Fuzzy fractional susceptible (S)

Figure 8: Fuzzy fractional infected (I)
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8 Conclusion

The stability of the epidemic model SIRD was confirmed by studying the nature of eigenvalues. Since
the system is nonlinear, we applied and compared three different methods LADM-4, DTM-4, and RKM-4.
Fuzzy valued Sa1 ; Ia2 ; Ra3 and Da4 at t 2 0; 1½ � and at r 2 0; 1½ � are shown in the tables and figures. The
solutions obtained by LADM-4, DTM-4, and RKM-4 were compared and it was noticed that all the above
three methods are equally good in accuracy. Also, we have to keep in mind that all these three methods are
very direct since there is no linearization made. The table values were presented only by
fixing a1 ¼ a2 ¼ a3 ¼ a4. The graphical representations were plotted by considering all the values of
ai; i ¼ 1; 2; 3; 4 irrespective of whether they are equal or not. As future works, we would like to frame
the model of COVID-19 by using the fuzzy fractional differential equations and their solutions will be
found by using any of the above three equally good accuracy methods.

Figure 9: Fuzzy fractional recovered (R)

Figure 10: Fuzzy fractional dead (D)
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