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Abstract: This work presents the design of an Internet of Things (IoT) edge-based
system based on model transformation and complete weighted graph to detect
violations of social distancing measures in indoor public places. Awireless sensor
network based on Bluetooth Low Energy is introduced as the infrastructure of the
proposed design. A hybrid model transformation strategy for generating a graph
database to represent groups of people is presented as a core middleware layer of
the detecting system’s proposed architectural design. A Neo4j graph database is
used as a target implementation generated from the proposed transformational
system to store all captured real-time IoT data about the distances between indi-
viduals in an indoor area and answer user predefined queries, expressed using
Neo4j Cypher, to provide insights from the stored data for decision support. As
proof of concept, a discrete-time simulation model was adopted for the design
of a COVID-19 physical distancing measures case study to evaluate the intro-
duced system architecture. Twenty-one weighted graphs were generated randomly
and the degrees of violation of distancing measures were inspected. The experi-
mental results demonstrate the capability of the proposed system design to detect
violations of COVID-19 physical distancing measures within an enclosed area.

Keywords: Model-driven engineering (MDE); Internet-of-Things (IoTs); model
transformation; edge computing; system design; Neo4j graph databases

1 Introduction

Indoor tracking and monitoring systems have witnessed increased interest recently because of potential
technological advancements in the domain of the Internet of Things (IoT), wireless networks, and pervasive
computing. As a result of the current trend of artificial intelligence (AI) and computer vision, different
localization, positioning, and tracking techniques and mechanisms have been introduced, providing
indoor localization services to users. From a data engineering perspective, AI and machine learning
systems that deal with a massive amount of data, or “big data”, require appropriate architecture for a data
pipeline system design to collect, clean, transform, and route the source data, which are captured from
multiple resources, to the backend data storage of the system [1,2]. The data pipeline can be designed in
the form of layered architecture consisting of an ingestion layer and transformation layers. In the context
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of this work, data are collected from various IoT devices and represented in an initial format at the ingestion
layer. Then, a number of transformations, including filtering, aggregation, and enriching steps, are applied to
the source data forming the final format of the target storage (relational-based, document-based, or graph-
based data) [1,2]. These stored data are retrieved using several predefined queries that report results to users.

Model-driven engineering (MDE) is a software development methodology that considers—rather than
general purpose codes—the use of models constructed using appropriate modelling languages to develop
software systems. Model transformation mechanisms and code generators are two key principles or
components in the MDE software system’s development lifecycle. Model transformation plays important
roles in database reengineering, including data migration, schema construction, and normalization [3,4].

This study considers a model transformation approach, which is an aspect of the overall proposed system
design, to generate the executable graph data model and related queries from the sensor-based data captured
in the real-world situation. This research adopts MDE principles to introduce a lightweight model
transformational approach that detects the degree of violation of social distancing measures based on
personal space in groups. The mathematical foundation of the presented system is a complete weighted
graph model of a restricted network size consisting of groups of individuals who represent a real-world
crowd in an indoor scenario.

The system design supports capturing the status of individuals in a group according to determined
distancing measures. The system analyzes the distances between group individuals and decides the degree
to which the social distancing measure is being violated in a covered place. When a violation is detected,
the system sends a message to the authorized person of the area to take the appropriate corresponding
action when required. Because various applications of graph theory exist in the domain of crowd control
systems (e.g., [5–9], a wireless sensor network (WSN) technology based on Bluetooth Low Energy
(BLE) was considered the design choice for the infrastructure of the proposed system design. BLE
provides an efficient method of transferring data in a WSN using low energy, which helps mobile
Bluetooth beacons produce data for extremely long durations.

Additionally, as a result of ongoing global spread and the absence of a known treatment, the cumulative
total of confirmed cases of coronavirus (COVID-19) reached 6 million by June 2020. Consequently, various
Internet of Things (IoT)–based initiatives have been introduced using energy efficient communication
technologies and smart devices to automate physical distancing detection, tracking, and monitoring
[4,10]. Hence, a case study on detecting violations of the COVID-19 physical distancing measures was
designed as proof of concept to evaluate the introduced system architecture.

The reminder this paper is organized as follows. Section 2 briefly highlights the techniques and
technologies related to current trends that might be considered when designing an automated solution for
detecting the implementation of physical distancing measures based on IoT and wireless networks. Section
3 theoretically presents a weighted graph-based model for detecting violation of social distancing measures,
including the model’s mathematical foundation and implementation. Section 4 discusses our vision of the
architecture of the system’s major components based on MDE model transformation, the IoT, and edge
computing. Section 5 highlights the adopted strategy of the model-to-code transformation approach as a
middleware layer of the proposed data pipeline architecture. Section 6 evaluates the proposed system design
using a case study and a basic discrete-time simulation, based on real-world actions taken by international
retail supermarkets in selected countries. Finally, Section 7 concludes our proposed work.

2 Related Techniques and Technologies

This section briefly highlights the domains related to the implementation of COVID-19 social distancing
measures using the theories and applications of computer science from five main perspectives: Application
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domains, device/sensor technologies, communication technologies, overall system architectures, and
background theories or algorithms.

To explore the internet technology (IT) and computer-based approaches and systems most relevant to the
automatic implementation of COVID-19 distancing measures, a literature survey was conducted using
different research databases available in the following globally recognized academic collections: Scopus
and ISI Web of Science, Institute of Electrical and Electronics Engineers (IEEE Xplore), Association for
Computing Machinery (ACM) Digital Library, Multidisciplinary Digital Publishing Institute (MDPI),
ScienceDirect, and Springer. Technical terms, including wireless sensor network (WSN), Internet of
Things (IoT), wireless fidelity (Wi-Fi), ultrawideband (UWB), radio frequency identification device
(RFID), Bluetooth Low Energy (BLE), indoor tracking, positioning localization, monitoring, and crowd
control were utilized as search strings. Tab. 1 provides a summary of the research articles reviewed.

Table 1: A summary of research articles reviewed in the literature

Ref. Device/Sensor Application domain Communication technology

[11] Camera Vehicle tracking Industrial,
scientific & medical (ISM)–
band

[12] Healthcare devices Monitoring of patient vital signs Peer-to-peer network

[13] Tag Elderly people monitoring UWB and BLE

[14] Wearable camera + headset Museum audio guide Vision WSN

[15] Wearable device Indoor localization and motion
analysis

UWB

[16] COTS RFID Devices
(Tags)

Indoor localization system RFID

[17] User device Indoor location-based control system BLE

[18] BLE sensors Indoor localization and tracking
system

BLE

[19] Smart watch Indoor positioning system Wi-Fi fingerprinting

[20] Smartphones Traffic monitoring Bluetooth beacons

[21] ECG sensor and
smartphones

Monitoring system BLE

[22] Active RFID tags Indoor locating system RFID

[23] Wearable tag 3-D indoor localization RFID

[24] Passive tag Indoor localization RFID

[5] UHF RFID tags Indoor tracking RFID

[25] Smartphones Indoor localization Beacons BLE + Wi-Fi

[26] Smartphones Indoor positioning at smart museum Beacons BLE

[27] Bracelets Crowd monitoring and control Beacons BLE
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2.1 Application Domains

Indoor tracking, positioning, localization, and monitoring systems can be described as a collection of
networked devices used for locating or tracking objects. This includes people inside buildings, train
stations, airports, underground garages, and other locations sharing aspects of systems to detect violation
of distancing measures. These systems are related to this study’s design aim.

Different types of indoor localization applications exist that utilize various sensor and communication
technologies. For example, according to Jamil et al. [12], in the domain of e-health a localization system
for monitoring elderly people was introduced. Two kinds of communication technologies (UWB and
BLE) were used with two algorithms, hybrid localization and a TDOA-based algorithm (time difference
of arrival), to enable the evaluation of elderly behaviors, monitoring of health status and wellbeing, and
detection of emergency situations. Further, an economical design of wearable devices for indoor
localization and motion analysis using data fusion algorithms is presented in zhang et al. [15] as another
example. An interesting integration between an inertial measurement unit and UWB localization was
introduced using a Mahony filter and quaternions as a solution that achieved high-accuracy, signal
stability, and motion tracking capability.

Technologies and techniques related to outdoor monitoring and tracking approaches were omitted from
the review conducted for this study. These approaches are considered more complex than required for the
current study’s aim and normally involve more than one communication interface attached to the utilized
IoT devices to cover both short- and long-range communication [11,18,20]. At this stage of development,
introducing a detection system of distancing measures with wide coverage capability for highly movable
objects is not part of our aim.

2.2 Sensors and Communication Technologies in the Related Approaches

During the review, we found four main alternative technologies were used when designing wearable
devices for indoor localization systems, namely, RFID, BLE and UWB, smart devices [19–21,24–26],
and visual detection cameras. These alternatives strongly relate to the kinds of communication
technologies used in the systems. As the basis of these technologies, a WSN was found a suitable
communication technology adopted in the systems reviewed in this work. According to Nikodem et al.
[11], for instance, detection cameras for monitoring road traffic and detecting and classifying vehicles
were utilized and connected to a WSN. These cameras were installed on the sides of roads to track and
monitor vehicles. In another study, wearable devices equipped with cameras and headsets and connected
via a low-power Wi-Fi module could recognize paintings in a museum from the image captured by the
camera using computer vision techniques and transfer the captured data to audio [14].

In addition, accuracy and energy consumption are critical factors that must be considered when
designing wearable IoT devices and selecting their intercommunication technology. BLE is used to
address energy consumption issues in many IoT applications [13,17,18,22]. However, UWB technology
provides a high accuracy WSN for IoT systems [14,15]. In Kolakowski et al. [13], for instance, a balance
between these two factors was discussed for the proposed system. UWB- and BLE-enabled devices were
utilized in the proposed radio positioning system. UWB consumed higher energy during packet
transmission than did BLE, although BLE provided more accurate detection results. A hybrid algorithm
that offers the benefits of both technologies was designed and used for object detection and tracking [13].

In addition, a real-time intelligent crowd engineering analytical approach using mobility characterization
and energy-efficient BLE to enhance mobility characterization and signal analysis (ICE-MoCha) was
proposed in Jabbari et al. [27]. Crowd individuals wear the BLE tracker bracelets to manage the power
consumption on the bracelet. Each tracker bracelet has a unique identification code for identifying each
pedestrian in the crowd. The communication system of ICE-MoCha supports various messaging
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techniques for sending and receiving messages or probes from or to the tracker bracelets based on type: active
or passive. Generally, the approach works to translate the BLE beacon signals from various transmitters into
group semantics for tracking the status of the crowd and predicting potential accidents using a smart video
surveillance technology.

Further, RFID-based wearable devices were utilized in several IoT indoor localization systems
[5,16,22,23]. RFID technology can transmit wearable device IDs and data captured by the attached sensor
to an RFID reader over a range of about 100–200 m with low power consumption because it works on
radio frequency signals [25–28]. The RFID-based devices are normally attached by RFID tags. Each tag
consists mainly of two major components: an electronic chip for storing data corresponding to the
individual object attached to it and an electronic antenna for transmitting sensed data to the associated
readers [29].

For instance, the research discussed in Zhang et al. [22] introduced an active RFID-based indoor locating
system that uses a frequency-hopping technique to reduce the noise of the captured RSSI fingerprinting data.
Two kinds of low-cost tags, with a tag–tag communication protocol, are utilized: virtual reference tags and
object tags. The reference tags are distributed in the covered area to improve accuracy, whereas the object
tags present RFID coordinates to RFID readers. Further, an RFID-based 3D indoor tracking system for
eHealth was presented in Paolini et al. [23]. The study introduced a customized low-cost reader that is
remotely controllable and supported by real-time 3D scanning features to detect the dynamic location of a
patient within an indoor area. The algorithm developed retrieves the reader–tag distance and its height.
The approach demonstrated high accuracy detection in the tags’ height, with an error rate below 20 cm in
all the simulation experiments conducted, in which the average error of 10 experiments performed was
less than 18 cm for distances up to 4.50 m [23].

Various sensors and existing communication technologies for indoor tracking and positioning systems
were reviewed and investigated based on four main factors: energy-saving capability, accuracy, costs, and
coverage range. The following table (Tab. 2) summarizes each technology considered in the review and
its features regarding these four factors.

2.3 Related Graph-Based Approaches

Graph theory played a significant role in developing collective adaptive systems (CASs). CASs can be
defined as complex systems with a massive number of heterogeneous entities that interact with each other
without a central control to achieve an individual or shared goal. In [30], a model of pedestrian
movement was introduced as a CAS using an expressive process calculus language (CARMA). The
model is based on graph structure representing a network of pedestrian paths. Each individual entity,
which represents a pedestrian, acts as a decision-making element when it produces probabilistic choices
about the next movement in the future and how that affects other pedestrian movements. Pedestrians are
expressed as graph nodes in the model, whereas the current paths of each pedestrian are expressed via
graph edges and determined by the pedestrian’s current and next position.

Table 2: A comparison between selected communication technologies regarding four factors

Technology Energy saving Accuracy Cost Range

Radio frequency identification (RFID) ✓ ✓ ✓ Up to 1 m

Bluetooth Low Energy (BLE) ✓ Acceptable ✓ ✓

Ultrawideband (UWB) − ✓ − ✓
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In Allam et al. [5], the design of a wearable wireless sensor is presented to ensure crowd safety in high
density situations. The device communicates with other devices in its sensing range to send simple warning
and safety messages or status notifications across devices. This approach is based on the theory of graph
density, in which each device in a crowd counts the number of surrounding devices and then calculates
the density around it. Consequently, the previously determined threshold is examined to decide whether
the device is in a safe situation. If not, an appropriate warning message is propagated to other devices
within range, and guidance and instructions through messages are provided to prevent overcrowding and
dangerous situations. The technique is based on an existing agent-based crowd simulation model called
Multi-Agent Simulator of Neighborhoods (MASON), which is written in Java and used in 2D
environment simulation tools.

Additionally, graph theory applications have a long history in the domain of crowd analysis, monitoring
and control. In Matthias et al. [29], for instance, a graph-based framework for detecting and tracking
pedestrians, dense crowds, and events is proposed using hidden Markov models. The framework requires
a short sequence of images for effective pedestrian tracking and location of possible danger areas in a
crowd. All results are implemented and demonstrated using a simulation model.

Further, in Angela et al. [7], a graph-based approach obtains indoor dense locations from tracking data
using the semantic location. The dense location queries, processing, and indexing are performed using a
proposed technique called the Dense Location Time Index, which combines the information of locations
with time points. In another approach [8], a decision graph finds the cluster centers in the proposed pre-
screening method. This method is presented to the density-based clustering algorithm to obtain possible
shapes of the clusters and the internal density between each point in the graph [8].

Moreover, Xu et al. [9] introduces an approach for analyzing and recognizing crowd dynamics based on
a static proximity graph. The proximity graph data structure represents crowd textures as graph vertices.
Spatial closeness relationships between persons in the crowd are recognized in terms of their texture over
time. The graph is supported by annotation extension attached to the vertices to add further semantics
representing crowd context. Thereby, it provides a precise picture for the decision maker. Wearable
devices on graph individuals collect information and are connected via a Bluetooth-based wireless
communication technology and utilized as a network infrastructure.

3 The Mathematical Graph Model

Graphs are an appropriate data structure for managing and processing connected data. They enable
tracing of interconnections between data entities to understand dependencies between them. In regard to
the context of this work, tracing links among persons who spend time together as a group in public
places, representing this in a graph data structure, and identifying possible clusters might provide deeper
insights into the spread of the COVID-19 virus in the community.

Unlike the construction of direct simulations and predictions or video tracking systems, which are based
on substantial processing of images and videos, and complex AI techniques for detecting abnormal events in
crowds, the proposed graph-based mathematical model is defined here as a formal basis for all utilized
concepts that are stored in the backend database. The proposed approach only requires information such
as locations, distances, and other attributes associated with a group of people that are modelled using
graph theory.

3.1 Foundation of the Graph Model

In previous research, a substantial number of real-world problems are represented mathematically and
formalized using either directed or undirected graph theory. The cyber security knowledge (directed) graph
and route planning (directed) graph presented in Jia et al. [31] and [32], respectively, are examples of the
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variety of applications of graph theory. In this study, it is assumed that the direction of each individual is not
vital information in the model. Thus, the (undirected) complete weighted graph model is considered a
theoretical base of this work.

In this section, the notation of first-order predicate logic (FOPL), with extensions for equality (¼), and
membership (2), is employed to express the mathematical foundation of the graph concepts used in the
proposed system design. A syntactic sugar notation is used for a unary predicate to assign a type to a
variable, for example, Graph gð Þ is re-expressed as g :Graph. Further, the notation (;) is utilized to shorten
and replace the logical AND ^ð Þ operator.

In the proposed FOPL formalization system, there are four basic types of variables, namely
Graph; Vertex; Edge; Attribute; and Value. Each variable is utilized to represent concepts of graph
theory in the system. The following formal definition describes the notation of the computational graph
model adopted in this work:

A Graph is a tuple G ¼ V ; E; P; w; tð Þ (1)

V:A finite set of all vertices in graph G. Vertices correspond to individuals within a specific place who
form a crowd. A vertex is expressed using the following formula:

8 v; u : Vertex � v; u 2 Vð Þ (2)

E:A finite set of all edges in graph G. Edges are undirected and correspond to the actual distances
between the graph vertices. This is expressed in the formula:

8 e1; e2 : Edge � e1; e2 2 Eð Þ (3)

The notation evu is used to represent an edge between two vertices v and u, where v and u are called the
endpoints of evu.

Pv: A set of all attributes that belong to the value of a vertex v expressed as a pair of keys. Similarly, some
edges may also have attributes in the model. The notation Pevu is used to represent the set of all attributes of
the edge evu. The pair of keys’ values is described by the following formula:

8i; j 2 1; 2; . . . ; nf g; i 6¼ j

8v : Vertex; 8 keyi; keyj : Attribute; vali; valj : Value (4)

9Pv � ðPv ¼ f{keyi; valig; keyj; valj
� �gÞ

w : When modelling a distance between individuals in the crowd, it is important to determine a weight
function w, where R is a real number associated with each edge e in the graph. This is represented via the
following expression:

w : E ! R

8 v; u : Vertex; evu : Edge; g : Graph � v; u; evu 2 gð Þ ^ evu 2 Eð Þ (5)

9 x 2 Rð Þ � w evuð Þ ¼ x

The weight is computed using the traditional distance formula as:

DISTANCE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v2

p
(6)

where v and u are two points that have x and y coordinates v x1; y1ð Þ and u x2; y2ð Þ.
Unlike other crowd modelling approaches that consider including all edges in the model, only edges

between individuals that reflect the social distancing rules for reducing the transmission rate of
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COVID-19 are included in the current study. Thus, the range of distance considered in the approach falls
between 0 m and 4 m. Thus, it is unnecessary to represent all of the connections between individuals in
the crowd that have distances (weights) over 4 m. Function t is used to indicate that two individuals
(vertices), v and u in the model, fall within the range of interest for evaluation of COVID-19 physical
distancing measures. Therefore, edge e links the pair v and u. This is expressed using the formula:

t : E ! N � Nð Þ
8 g : Graph; v; uð Þ : Vertex; e : Edge � v; u; e 2 gð Þ ^ t e; v; uð Þ (7)

The convention evu is adopted to represent each edge that connects the pair of vertices v; uð Þ and appears
in E for simplicity, where v and u are said to be the end vertices of an edge evu. The following formula
describes this concept of the model:

8 v; u : Vertex;

9evu : Edge � t evu; v; uð Þ ^ evu 2 Eð Þ (8)

3.2 The Creation of the Graph Model

The graph model of the crowd in a determined place is created by locating each individual as a graph
point (vertex) within a specific area at an exact time using appropriate technology, for example, BLE. Each
graph vertex, in the real-world set, has attributes to store the intersection of latitude and longitude lines,
which represent the coordinates of that vertex. The coordinates are used to identify the exact location of
the vertex in the place.

The proposed model focuses on modelling the distance between crowd individuals to observe the
violation of social distancing rules. The distance (in meters) between each pair of vertices is calculated to
be the weight of the undirected edge between that pair. Times and dates are other possible pieces of
information (attributes) that might be assigned to each edge.

The type of graph model based on a related technology for capturing vertex locations is a complete
undirected weighted graph. Graph G is considered a complete graph if there is a unique edge connecting
every pair of its distinct vertices. If G has n vertices the graph is called Kn and the number of its edges is
n n� 1ð Þ=2.

Mathematically, graphs can be represented in several ways, such as via adjacency lists and adjacency
matrices. The adjacency matrix is considered one of the graph representation alternatives adopted in this
work. To create a corresponding adjacency matrix A of the complete graph Kn, suppose the total number of
vertices is n; then, the definition of the adjacency matrix A can be expressed with the following formula:

8i; j 2 1; 2; . . . ; nf g; i 6¼ j

8 v; u : Vertex; evu : Edge � ð v; u; evu 2 Knð Þ ^ w evuð Þ ¼ xð Þ
! (10)

½A�i;j ¼ w evuð Þ

4 Conceptual Design and Implementation Choice

This section presents a conceptual view of the system’s major components. Our vision of the overall system
architecture falls within the scope of IoT edge-based architecture. The traditional IoT edge-based architecture
consists of four layers: A sensing layer, an edges layer, a communication layer, and a cloud layer [33].
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The high-level architecture of the core system components, shown in Fig. 1, consists of three main
layers, namely, the sensing layer, middleware layer, and data storage layer. Fig. 1 demonstrates the
communication between these three layers in terms of their inputs and outputs. The following subsections
briefly describe each layer, focusing mainly on the detail of the data storage layer.

4.1 Implementation of the Graph Model

Managing a massive amount of stored data (big data) requires a type of data model that can support its
characteristics, namely, volume, velocity, variety, and veracity. These characteristics are not fully supported
in the traditional relational data models. However, owing to the dynamic nature of the NoSQL data model, it
is suitable to deal with critical issues of big data that are related to its characteristics, such as efficiency,
scalability, and availability [33,34]. A graph database, as a form of the data model, has demonstrated the
ability to express and manage connected sensor-based data in various IoT systems [35,36], and is an
example of a dynamic big data schema.

This study introduces a Neo4j graph database implementation of the complete weighted graph data
model, discussed previously in Section 3, to model the violation of distancing regulations within a
particular place. Neo4j is one of the most popular Java-based open-source native graph database systems
and is used to implement the property graph data model efficiently. In the Noe4j graph model, data are
structured as nodes, relationships, and properties attached to the nodes or relationships. It provides robust
transactional storage of big data and supports full ACID features (atomicity, consistency, isolation,
durability) to maintain the integrity of stored data. Neo4j also supports deep graph analysis and querying
using a query language named “Cypher” [37]. It is a reliable graph database system for large and rich

Figure 1: High-level architecture of the proposed system design
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graph modelling of crowds. Consequently, Neo4j is considered an appropriate implementation platform for
the proposed weighted graph model presented in this paper.

Noe4j’s declarative query language, Cypher, is similar to SQL but specialized for graphs. The Cypher
language is considered a simple and easy to learn language that allows users to store, retrieve, and manipulate
data stored in a graph database. The Cypher syntax is declarative and is expressed in a logical way for
matching patterns of nodes and relationships in graphs. For example, the keywords “MATCH/ RETURN”
work similarly to the “SELECT” statement in SQL to project nodes or relationships that satisfy given
constraints. Additionally, the keywords “CREATE/ MERGE” are used to create new nodes in the graph,
similarly to the “INSERT” statement in SQL. The following figure (Fig. 2) provides an example of a
complete directed weighted graph consisting of 11 nodes and 54 relationships.

Because the output of the proposed transformational system in the middleware layer, discussed in the
following subsections, is an executable Neo4j Cypher query script file, the Noe4j database engine can run
Cypher script files to construct, or update, the graph representation of the real-world group in the system.
Then, several predefined queries that support decision makers might be executed on the stored graph to
retrieve insight results. The following snapshot of the Cypher script (Listing 1) illustrates the executable
code used to generate three graph nodes, A, B, and C, using CREATE statements, in addition to three
undirected and weighted relationships with a randomly computed distance weight between them, using
MERGE statements.

Figure 2: A complete directed weighted graph used to represent a group of individuals and the physical
distances between them
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Nodes of the Neo4j crowd graph represent people (individuals) in a crowd, whereas undirected and
weighted edges represent the actual distances between individuals at a corresponding time point. Thus,
the graph created at a specific time interval represents the status of the social distancing rule application
at that given point in time. In the real world, the person node holds properties to represent the location of
an individual who wears a sensor or is attached to a communication device.

Each person node in the crowd graph is located near another person node within a particular distance.
The distance between them is represented in the graph by a relationship between two person nodes. Each
distance relationship has a calculated weight property to represent the measure between each pair of
individuals. The weight of each distance is computed using Formula 7, as mentioned previously in
Section 3.1 and Section 3.2.

4.2 Technology and Connectivity of the Sensing Layer

This layer consists of wearable devices connected to a wireless network. In this layer, a WSN (e.g., Wi-
Fi and Bluetooth, Zonal Intercommunication Global-standard [ZigBee], and fifth generation cellular wireless
[5G]) and a suitable tag-based detection technology were combined to collect required information about
physical distancing between individuals during a corresponding time interval. Thus, the physical
distancing was tracked using wearable devices or tracker badges and transmitted to the nearest edge point
for analysis and processing.

As a design choice, Bluetooth smart badges were considered IoTwearable devices. These cost-effective
badges are based on BLE technology, which facilitates short-range communication and offers an adequate
level of indoor tracking accuracy. Additionally, beacon devices were used to expand the Bluetooth
coverage range of the closed area because the standard beacons have an approximate range of 70 m.
Thus, based on the dimensions of the closed area, the number of required beacons could be determined.
Fig. 3 shows the Bluetooth network infrastructure using multiple BLE beacons and cloud beacons that
were connected to the proposed IoT edge-based cloud system.

Because one of the objectives of the proposed design was to introduce a social distancing tracking
solution, cloud beacons, which have the capability of data backup, configuration, and application of
updated settings to all other connected BLE beacons, were employed to monitor other BLE beacons and
send their collected data over the Internet to the cloud backend data storage. They were also used to
increase the collection of distancing data for more than one closed area. Owing to the Wi-Fi connectivity
feature available in cloud beacons, they can upload data to the edge server and then to the centralized
cloud storage over Wi-Fi. It is worth mentioning that the range of Wi-Fi networks can be up to 200 m
greater than the standard Bluetooth range.

Listing 1: A snapshot of the Neo4j Cypher script used to create three nodes including their interrelations

CREATE(v0:person { vId: 'A' })

CREATE(v1:person { vId: 'B' })

CREATE(v2:person { vId: 'C' })

MERGE (v0)-[e0:DISTANCE {weight: apoc.number.format(rand()*10, '#.##;(#.##)')}]-(v1)

MERGE (v0)-[e1:DISTANCE {weight: apoc.number.format(rand()*10, '#.##;(#.##)')}]-(v2)

MERGE (v1)-[e11:DISTANCE {weight: apoc.number.format(rand()*10, '#.##;(#.##)')}]-(v2)
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As a result, each person approaching the area covered by the proposed physical distancing monitoring
system is asked to wear the Bluetooth smart badge assigned by a previously configured unique ID to sense
and report distance changes within the group to the decision maker via the wireless network infrastructure.
The assigned ID of each badge represents a specific location and direction (if required) of an individual
within the group inside the closed area. The approximate distances within the group of individuals and a
timestamp are detected and transferred via the Wi-Fi connection to the edge point and then stored in the
backend data storage.

This approach also considers information security issues and individual privacy since the distributed
Bluetooth badges and the cloud beacons only monitor and record anonymous data at each point in the
area, excluding any information that can identify an individual. It should be noted that detailed
specification regarding algorithms and techniques used for detecting distances between individuals is
outside the scope of this paper.

4.3 Defined Structure and Queries of the Data Storage Layer

The collected and processed information in the middleware layer is stored in the system using a
centralized cloud database that supports big data storage, future processing, and retrieval. The stored data
might be used for real-time or post processing, archiving, querying, analysis, or prediction.

The graph-oriented database system was selected as a backend data model to gain the benefits of the
graph data structure. This is because of the nature of the sensed data stored in the database and the
capability of graph databases to perform efficient query processing and deep graph analytics. Importantly,
the data storage is physically located in the cloud storage as a centralized cloud database.

Figure 3: Bluetooth-based (BLE) network infrastructure
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To enable the system to calculate the degree to which the existing group is violating the social distancing
regulation, the number of edges, with distance values < = 2 m, is counted and compared with the total number
of edges between group individuals (with distance > 2 m and < = 4 m). Additionally, the number of
individuals involved in the graph is considered to examine the size of the graph. In the proposed proof of
concept, this can be achieved using several simple Neo4j Cypher query statements:

Q1: What is the number of attached nodes in the graph?

MATCH (n:person)-[r:DISTANCE]->(m:person) WHERE toFloat(r.weight) < 4.0

RETURN COUNT(n)

Q2: What is the number of the considered edges in the graph?

MATCH (n:person)-[r:DISTANCE]->(m:person) WHERE toFloat(r.weight) < 4.0

RETURN COUNT(r)

Q3: What is the number of edges with no violation of distancing measure in the graph?

MATCH (n:person)-[r:DISTANCE]->(m:person) WHERE toFloat(r.weight) >= 2

AND toFloat(r.weight) < 4.0

RETURN COUNT(r)

Q4: What is the number of edges with mild violation of distancing measure in the graph?

MATCH (n:person)-[r:DISTANCE]->(m:person) WHERE toFloat(r.weight) > 1.40

AND toFloat(r.weight) < 2.0

RETURN COUNT(r)

Q5: What is the number of edges with high violation of distancing measure in the graph?

MATCH (n:person)-[r:DISTANCE]->(m:person) WHERE toFloat(r.weight) > 0.01

AND toFloat(r.weight) <= 1.39

RETURN COUNT(r)

Based on the results returned from these queries, simple calculations are required to allow the decision
support system to generate an appropriate message to send to the decision maker:

1. The percentage of individuals who are involved in the group:
% involved = (total nodes - no of nodes out of the group) / total nodes)*100

2. The percentage of individuals who violated the social distancing measures:
% violation = (no of edges with distance less than 2 meters / total nodes)*100

5 Overview of Transformation Approach

A major contribution of this study is the design of a model transformation layer, which is considered a
middleware layer of the proposed architecture. Three main operations are performed in this layer, namely,
constructing a source model that conforms to a defined source metamodel, translating the source model
into a target model that conforms to a defined target metamodel, and executing the target model and
generating insight reports for decision makers. It is worth mentioning that the mapping rules were
implemented using Atlas Transformation Language (ATL). Further details about ATL are presented in
Subsection 5.2. The following figure (Fig. 4) illustrates the model transformation approach adopted in the
proposed system design.
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5.1 Constructing the Source Model

Two main steps are considered for creating the source model. The first step is to construct a complete
graph structure on the fly by gathering all the sensed data, captured at a specific time from IoT sensors,
and manipulated as a density matrix in memory based on edges. The second step is to create an
eXtensible Markup Language (XML) memory model of the captured complete graph. During the process
of building the XML memory model, all nodes that are outside the range of distancing violations are
eliminated. This XML memory model implementation [37] represents the simplified matrix and is
considered the source of the translation operation in the form of a graph structure.

A common method to represent and parse XML memory models is to use a Document Object Model
(DOM) or Java Document Object Model (JDOM) package. Moreover, options other than XML might be
used for data formatting and serialization standards, namely JavaScript Object Notation (JSON) and
YAML Ain’t Markup Language (YAML). XML has the advantage of describing the structure of data
using a human-readable and friendly format and it has a flat learning curve. In addition, the XML format
relies on a standard means of representing models using the XML Metadata Interchange (XMI) format in
the model transformation strategy adopted in this work, as explained in the following subsection. The
following algorithm (Listing 2) describes the rules of translating the complete in-memory graph model
into the simplified intermediate source graph model of the core transformation step.

This output source model is considered an intermediate textual domain specific language (DSL) for
describing the structure of a graph using XML and conforming to a defined metamodel of a source model
(Fig. 5). Listing 3 provides a snapshot of the graph model produced. It is important to note that
constructing an intermediate representation, using a language similar to the structure of graph databases,
is considered a critical step in the design because it leads to simplifying the process of generating the
executable Neo4j Cypher in the transformation chain.

5.2 The Core Transformation Strategy

To present transformation rules applied to the final executable Neo4j Cypher queries for the intermediate
XML graph model, the ATL language was used to express each matching rule of this transformation
component in the middleware layer [38]. ATL is a hybrid model transformation language that contains a
mix of declarative and imperative constructs to describe rules of transformation in a simple manner. One
of the main reasons for adopting the hybrid approach of model transformation is to simplify mapping
rules to be easier to read and understand, which is crucial in larger transformation modules from a
software engineering perspective.

Figure 4: The ATL approach of model transformation
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Listing 2: Algorithm of building the intermediate graph model for the complete graph density matrix

STEP 1: Use A[v][u]
Define enum[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q]

STEP 2: Initialize a new XML Graph element

STEP 3: for each row i in the A
Create a new XML Vertex element as a child of the Graph element
Set a Vertex attribute id=enum[i]

End for

STEP 4: for each row i in the A
for each column j in A
if (A[i][j] > 0) AND (A[i][j] ≤ 4)
Create a new XML Edge element as a child of Graph element
Set an Edge attribute id=”auto" and weight= A[i][j]
Create a new XML Endpoint element as a child of Edge element
Set an Endpoint attributes ref=vertex(i).id
Set an Endpoint attributes ref=vertex(j).id

STEP 5: for each row node r in Graph element g
for each cell node c in r
if the values of all cell elements in r are zeros
then
Eliminate r

Figure 5: The source graph metamodel
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The transformational approach of ATL is based on pattern matching, in which a pattern of a source
model, expressed using XMI standards, is evaluated and transformed using a set of declarative ATL
matching rules into a pattern of a target model, also expressed using XMI format. The approach
maintains traceability links between elements in a source model, rules, and the created elements in the
target model. The imperative side of ATL can be seen when the developer needs to encode or customize
control flows explicitly for complex parts of transformational algorithms. These imperative definitions of
mapping rules are used to support the declarative mapping rules in the transformation module. This is
implemented in ATL using helper functions, as shown in Listing 4, which demonstrates the definition of
two ATL declarative matching rules, Vertex2CreateNodeStmt and Edge2MergeStmt, used to transform the
intermediate graph XML model into an executable Neo4j Cypher script. In each rule, one-to-one mapping
statements are declared. For instance, each vertex v is mapped into a generated CREATE Cypher script
statement for creating a new Neo4j graph node with the same properties of v. Additionally, to specify the
concrete syntax of the generated script, helper functions are utilized to express the detailed syntax of
the target script. A detailed description of the syntax and semantics of the ATL language are outside the
scope of this work but can be found in Jouault et al. [38].

6 Case Study

In this work, the case study presented was based on a real-world example of actions taken by various
global supermarket and grocery store chains around the world, such as Tesco, Waitrose, and Dunnes, to

Listing 3: A snapshot of the generated XML graph model

<Graph>

<Vertex id=”v0” label=”A” />
<Vertex id=”v1” label=”B” />
<Vertex id=”v2” label=”C” />
<Edge id=”e0” weight=”0.36”>
<Endpoint ref=”v0” />
<Endpoint ref=”v1” />

</Edge>

<Edge id=”e1” weight=”2.92”>
<Endpoint ref=”v0” />
<Endpoint ref=”v2” />

</Edge>

<Edge id=”e2” weight=”1.07” label=”DISTANCE”>
<Endpoint ref=”v1” />
<Endpoint ref=”v2” />

</Edge>

</Graph>

Listing 4: ATL matching rules for mapping the intermediate model into an executable Cypher script

MATCH (n:person)-[r:DISTANCE]->(m:person)

WHERE toFloat(r.weight) >= 4.0

RETURN n.vId, r.weight, m.vId
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slow the transmission of the COVID-19 virus. As an example of common implemented physical distancing
measures, the governments of the United Kingdom and the Republic of Ireland advise maintaining a gap of at
least 2 m (6 feet) from others in public places, specifically those who are coughing, sneezing or have a fever
[16–19]. In more detail, these rules restrict the number of customers allowed in medium-sized stores at a
given time to between 10 and 25 persons, which represents 40% of the stores’ normal capacity. A
supermarket consists of one main entrance, several aisles, shelves, fridges, and four cashier desks.

Consequently, initial criteria were defined for categorizing distance properties in the weighted graph
model. It can be concluded that an individual is considered out of a group when he or she is located at a
distance of more than 4 m from all other individuals in the same group. The distancing rule for reducing
the transmission of COVID-19 is based on maintaining a space between individuals of over 2.5 m as
much as possible. Thus, to represent the group of people within the crowd that are closer than 2.5 m to
each other, an undirected weighted subgraph G is extracted from the original complete graph Kn. The
weight of each edge w eð Þ represents the actual distance between each pair of individuals that violate the
social distancing measure to a particular degree (high, low, or safe). Similarly, another adjacency matrix
M is extracted from A in which M � A implements the undirected weighted subgraph G. The following
formula describes the definition of M :

8G : Graph � O Gð Þ ¼ n;

8x 2 R � 0 < xð Þ ^ x < 2:5ð Þ
8e : Edge � e 2 Gð Þ ^ w eð Þ ¼ xð Þ;
8i; j 2 1; 2; . . . ; nf g ^ i 6¼ j (11)

½M �i;j
x; 0, x, 2:5

0; : evu 2 Eð Þ _ x � 2:5

8<
:

From the constructed matrixM , all individuals in the place who are violating the distancing rule for that
place, at a specific time, are captured. The matrixM is considered a submatrix of A after eliminating all vertex
entries that have a weight equal to zero or greater than 4.

6.1 The Simulation Strategy

As proof of concept, a discrete-time simulation model is adopted. It is assumed that the changes in
distances between individuals occur only at each discrete time tick. Consequently, a simple algorithm for
generating multiple weighted graphs with random distances between their nodes is implemented using
Noe4j Cypher script. The Neo4j built-in random function rand() is used to generate random weights for
all edges in each complete graph to represent distances between individuals rather than to detect real-
world locations of individuals inside the store at a specific time. In the simulation, 21 weighted graphs
are generated randomly. After inspecting the weights on their edges, all edges with distances of > 4 m are
eliminated from the graph and their end-point nodes are considered unattached. Listing 4 illustrates the
Cypher script used to return the updated graph after eliminating edges with weights > 4 m.

The simulation then answers the five queries, presented in Subsection 4.3.1, for each of the generated
graphs (Tab. 3). The Neo4j 3.5.14 database system is used to run the script, thus producing 21 graphs
with a total of 176 nodes, 1040 properties, and 864 relationships, completed after 103 ms. Fig. 6 provides
a snapshot of the creation of the weighted graphs used in the simulation.
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A second round of inspection is applied, and it is noted that the simulation results showed three different
cases. These cases can be categorized based on the number of nodes falling in the distancing range as no
violation, mild violation, and high violation cases. Generated graphs belonging to the no violation case
represent the possible potential ideal situation, captured by the system at a specific time tick, when there
is no detected violation of social distancing measures inside the store; that is, the majority of distances
between individuals range between 2 m and 4 m.

Graphs belonging to the mild violation cases demonstrate a situation where some minor or moderate
violations of the distancing measures in the store are detected. The group of persons has a small number
of nodes falling in the range of 1.4 m and 2 m, whereas the remainder fall in the greater range. However,
graphs belonging to the high violation cases show major violations of distancing measures captured by
the system. A larger number of nodes violates the social distancing rules inside the store, with distancing
ranges starting from 0 m to about 1.39 m.

Table 3: Simulation results of the 21 generated graphs and their classifications

Graph
no.

# Connected
nodes

# Edges
(distances
< 4)

# No violation
cases

# Mild violation
cases

# High
violation
cases

Category

1 11 19 11 5 3 Mild

2 11 21 14 4 3 Mild

3 10 25 17 2 6 High

4 9 7 7 0 0 No violation

5 11 29 12 5 12 High

6 8 10 5 1 4 High

7 14 25 15 7 3 Mild

8 7 6 6 0 0 No violation

9 11 20 12 5 3 Mild

10 11 14 6 2 6 High

11 8 5 1 3 1 Mild

12 11 23 17 5 1 Mild

13 8 22 13 0 9 High

14 9 19 10 3 6 High

15 11 21 11 3 7 High

16 3 2 2 0 0 No violation

17 11 19 12 7 0 Mild

18 11 18 9 1 8 High

19 11 26 15 9 2 Mild

20 11 21 9 2 10 High

21 8 13 3 1 9 High
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6.2 Technical Discussion

According to the simulation results demonstrated in Tab. 3, it is possible at this stage of system
development to detect the distancing measure violations for a group of individuals using simple graph
database queries, rather than machine learning and computer vision techniques. From the 21 randomly
generated graphs, the system detects the class of violation and its degree, as demonstrated in the
following chart. Fig. 7 summarizes the results showing the difference in violation of social distancing
measures for each case. The simulation produces results of 10 high violation, 8 mild violation, and 3 no
violation cases. For simplicity, a selected graph from each category, represented in Tab. 3, is considered
in the following subsections to demonstrate in more detail the simulation results of Graphs 4, 11, and 21.

Figure 6: A snapshot of the generated graph networks used in the simulation

Figure 7: A summary of the experiment results
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6.2.1 Detecting No Violation of Social Distancing Measures
The graph generated in case 4 is considered for demonstrating the detection of no violation of distancing

measures. A subgraph representation of individuals inside the store and their distances that range between
2 m and 4 m only are considered.

This range of distances is considered a safe and acceptable measure for coronavirus and the need to
maintain separation between the customers in the store as much as possible. For illustration only, the
graph nodes are positioned manually in possible locations inside the store sketch, maintaining the
distances generated between them, to present a possible visualization in this proof of concept. In Fig. 8, it
is evident that the original completed graph has become two subgraphs. The first graph consists of four
vertices and three edges, whereas the second graph contains five nodes and four relationships only.

Based on the simulation results illustrated in Tab. 3, which provide the answers to the predefined queries
Q1–Q5, the system should output the message shown in Tab. 4 to the decision maker.

6.2.2 Detecting a Moderate (Mild) Violation of Social Distancing Measures
Like the steps applied to the first case, the generated graph in case 11 is considered to demonstrate the

detection of a mild violation of distancing measures. Subgraphs of persons in the store in which some nodes
fall in the range of 1.4 m and 2.0 m are considered, while the remainder exceed that range.

The chosen distance range in this case is considered to represent a low degree of transmission of the
COVID-19 virus in public. Like the first case, the graph vertices are located manually inside the store
sketch, maintaining the distances generated between them, to provide a visualization for decision makers.

Figure 8: A case representing no violation of social distancing measures inside a supermarket

Table 4: Results of generated Graph 4 and the output message to decision support

Q1 Q2 Q3 Q4 Q5 % Node Involved % Violation Message to User

9 7 7 0 0 82 0 There are no violations of physical distancing measures in the store.

32 CSSE, 2021, vol.36, no.1



Fig. 9 shows three small subgraphs derived from the original graph. The first graph consists of two nodes and
an edge, and each of the second and third graphs has three nodes and two relationships.

Like the previous case, based on the simulation results and answers to the predefined queries Q1–Q5 in
Tab. 3, the system should output the message shown in Tab. 5 to the decision maker.

6.2.3 Detecting a High Violation of Social Distancing Measures
Like the steps applied in the previous cases, the generated graph in case 21 is considered for

demonstrating the detection of a high violation of social distancing rules that leads to a high degree of
transmission of the virus. Subgraphs for this situation with a distancing range between 0.01 m and
1.39 m are considered.

As for the previous cases, Fig. 10 demonstrates that there are two subgraphs that violate the distancing
measures inside the virtual store. The first graph is considered a large graph and accounts for about 64% of
the total number of the nodes in the original graph (7 nodes and 12 relationships). The second subgraph is a
smaller graph with two vertices and one relationship. Like the past cases, based on the simulation results and
the answers to the predefined queries Q1–Q5 in Tab. 3, the system should output the message shown in Tab. 6
to the decision maker.

Figure 9: A case representing mild/moderate (limited) violation of social distancing measures inside a
supermarket

Table 5: Results of generated Graph 11 and the output message to decision support

Q1 Q2 Q3 Q4 Q5 % Node involved % Violation Message to user

8 5 1 3 1 73 60 There are moderate violations in the store at the time of this message.
Advice to customers might be required.
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6.3 Scalability and Limitation of the Proposed Approach

Before discussing the scalability details of the proposed design, it should be recalled that the main
objective of the system is to detect violations of COVID-19 physical distancing measures. To evaluate
scalability, a larger test case to detect distancing violations of a crowd of people (121 persons) was
designed. The Neo4j 3.5.14 database system was utilized to run the Cypher script, shown in Listing 5, to
produce a larger graph with 121 nodes and 2020 relationships (edges) in 176 ms.

Tab. 7 shows the number of generated elements of the graph, including the number of created nodes and
the number of created or matched edges. It also lists the time the system took to assess the graph structure and
edges with weights > 4 m.

The concept of connected graphs was considered in orchestrating the generation of edges between nodes
to make this case more realistic. The 121 nodes were distributed into five groups of nodes, each of which
represented a subgraph. Then, edges were defined between nodes in every pair of neighboring graphs.
This strategy is illustrated in Fig. 11.

Like the strategy of assessing graphs in the original cases discussed in Section 6.2, the predefined queries
Q1–Q5 were considered to determine the level of distancing violation. For simplicity, Tab. 8 shows the triples
of Group1 and Group2, including their connected nodes and edges. These triples are presented following the
format: (NODE EDGE[weight] NODE).

Figure 10: A case representing high violation of social distancing measures inside a supermarket

Table 6: Results of generated graph 21 and the output message to decision support

Q1 Q2 Q3 Q4 Q5 % Node involved % Violation Message to user

8 13 3 1 9 72 77 There are high violations in the store at the time of this message.
Urgent action must be taken.
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Based on the results shown in Tab. 7 and Tab. 8, no problems are apparent with the horizontal scaling of
the proposed system design. As with any expansion of the graph size, the system is able to record all of the
triples to be assessed using the predefined queries Q1Q5 and provide the percentage of violations to output an
appropriate message to the decision maker, as shown in Tab. 9.

Overall, the proposed approach employed various utilizations of IoT devices, edge/cloud computing,
and BLE beacons for indoor localization, detection, and monitoring. Consequently, the main objective of
the system design presented is achievable. An advantage of the proposed design is the ability to use the
recorded data in the closed area to analyze and understand group behavior inside that area using only
simple graph database query processing. For deeper analysis, the Neo4j Graph Data Science library
introduced by Neo4j enables data scientists to make valuable predictions.

Another advantage is that the proposed design can be considered vertically scalable by increasing the
number of IoT devices, including BLE beacons and Bluetooth badges, to accommodate larger crowds and
coverage areas. A potential extension of the proposed system architecture is the adoption of smartphones
or smart watches as alternatives to Bluetooth badges because all smart devices are currently equipped

Listing 5: Neo4j Cypher script used to generate a larger graph with 121 nodes

# Creating two groups and edges between them

UNWIND $group1 AS cycle1

UNWIND $group2 AS cycle2

MERGE (x1:per1 { vId: cycle1.vId })

MERGE (y1:per2 { vId: cycle2.vId })

MERGE (x1)-[e0:DISTANCE {weight: apoc.number.format(rand()*10, '#.##;(#.##)')}]->(y1)

# Eliminating edges that have weight > 4.

MATCH (x1)-[e0:DISTANCE]->(y1)

WHERE toFloat(e0.weight) >= 4.0 OR (toFloat(e0.weight) >= 0 AND toFloat(e0.weight) <= 0.1)

DELETE e0

RETURN x.vId, e0.weight, y.vId

Table 7: Total number of elements in the generated graph and the time of their creation

#Nodes #Edges #Deleted edges Time (ms)

Group1 41 420 267 29

Group2 20 400 241 33

Group3 20 400 256 28

Group4 20 400 263 40

Group5 20 400 259 46

Total 121 2020 1286 176
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with Bluetooth connectivity. This would enable the design presented to be expanded to include, for instance,
a mobile application installed in smart devices to notify individuals about the status of their current location,
which could also apply to outdoor areas.

Figure 11: Snapshot of the larger graph for evaluating the scalability of the proposed approach

Table 8: Resulting graph triples of the simulation of the large graph

120 Graph triples

A6 0.86 A36 A5 3.19 A26 A19 2.25 A34 A9 1.35 A26 A14 3.02 A37 A17 1.36 A29 A14 0.18 A21

A11 3.34 A37 A17 0.43 A26 A11 1.91 A34 A0 3.77 A26 A6 0.18 A38 A9 3.67 A29 A10 0.27 A21

A20 2.58 A24 A8 0.29 A26 A3 0.94 A34 A7 3.7 A27 A18 3.02 A38 A11 3.92 A29 A20 0.27 A21

A10 3.55 A24 A11 2.68 A26 A15 1.71 A34 A16 2.8 A27 A7 2.95 A38 A10 0.65 A29 A9 2.7 A21

A12 3.82 A24 A14 1.6 A26 A18 2.96 A35 A5 1.06 A27 A16 0.82 A38 A19 3.65 A30 A17 2.38 A21

A7 3.86 A24 A20 1.05 A26 A15 2.07 A35 A19 3.55 A27 A17 3.61 A38 A15 0.41 A30 A11 3.73 A21

A5 0.53 A24 A0 0.36 A27 A3 0.27 A27 A6 2.41 A29 A19 3.1 A38 A20 3.83 A30 A8 2.83 A22

A13 3.39 A33 A1 2.62 A27 A18 0.91 A27 A15 2.57 A29 A8 0.57 A38 A5 1.6 A30 A0 0.36 A22

A20 0.69 A33 A15 1.86 A24 A15 3.3 A37 A4 0.75 A35 A20 2.92 A38 A8 2.06 A30 A5 1.08 A22

A12 2.38 A34 A3 3.6 A25 A0 2.43 A37 A8 0.45 A35 A12 0.47 A38 A14 0.85 A31 A6 0.24 A22

A5 2.48 A34 A4 3.52 A25 A9 3.36 A37 A2 3.97 A35 A15 1.05 A39 A10 3.59 A31 A10 0.95 A22

A18 1 A34 A7 1.07 A25 A10 0.24 A37 A0 1.29 A35 A10 2.78 A39 A0 1.31 A31 A1 1.81 A22
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7 Conclusion

This paper presented a conceptual design for an indoor physical distancing monitoring system based on
a graph database and edge processing. The IoT edge-based system architecture introduced consists of several
components; each of the components is responsible for performing and managing a variety of tasks. These
components comprise wearable devices and WSN infrastructure (sensing layer), data processing at edge
points (middleware layer), and a cloud graph database (data storage layer). By using the BLE beacon
technology in the proposed design for indoor detecting physical distancing, the network infrastructure
presented has the advantages of low energy consumption, signal range and accuracy of BLE standards,
and cloud beacons. A graph database is used to represent the distancing between individuals in a group,
and distancing measures are implemented via graph database queries as an alternative solution to that of
the traditional tracking and localization system. A Neo4j graph database system was used to conduct
several experiments as proof of concept of the overall design idea. These system layers are glued by a
strategy of model transformation aimed at generating the final executable Neo4j Cypher script code from
a high-level graph model (intermediate). The mapping rules are implemented using the commonly known
hybrid transformation language, ATL.

Experimental results indicate the proposed design would allow decision makers to detect COVID-
19 social distancing measures within an enclosed area. The proposed system includes a notification sent
to an authorized person informing them about the status of physical distancing measures at a specific time
and advising when urgent action is required. Based on the recorded and analyzed data, the number of
individuals permitted to be inside the monitored area at a specific time of the day or on a particular day
of the week can be reduced. Conversely, the permitted number of individuals can be increased in areas in
which rules of social distancing have been followed without violation.

Table 8 (continued).

120 Graph triples

A7 0.95 A34 A14 0.37 A25 A16 1.19 A37 A3 2.83 A35 A4 2.53 A39 A5 3.77 A31 A11 0.24 A22

A7 2.6 A33 A15 2.1 A25 A12 1.35 A37 A6 2.11 A35 A20 1.21 A39 A11 2.55 A31 A16 0.48 A22

A15 0.41 A28 A3 3.14 A36 A7 0.31 A37 A19 0.22 A29 A14 2.93 A39 A3 3.94 A31 A14 1.07 A22

A14 0.25 A28 A8 2.87 A36 A1 1.92 A37 A3 2.78 A29 A1 0.83 A39 A9 1.5 A31 A17 1.23 A22

A2 2.32 A28 A18 2.38 A36 A3 3.62 A37 A0 2.77 A28 A6 0.54 A39 A16 2.41 A31 A2 2.95 A22

A18 1.3 A28 A14 0.61 A36 A2 0.15 A33 A11 0.44 A28 A7 1.36 A40 A2 3.68 A32 A9 2.12 A22

A7 3.98 A28 A11 1.27 A23 A15 0.28 A32 A18 3.93 A33 A9 2.22 A40 A12 2.02 A32 A15 3.92 A23

A10 2.85 A28 A10 1.13 A23 A8 0.8 A32 A19 3.81 A33 A19 3.84 A40 A1 2 A32 A2 2.11 A23

A8 2.07 A33 A1 3.05 A24 A16 1.43 A40 A5 2.54 A32 A10 1.23 A40 A0 2.13 A32 A1 2.79 A23

A7 3.98 A28 A11 1.27 A23 A9 1 A36 A17 2.69 A32 A1 0.82 A40 A13 2.02 A32 A6 2.68 A23

A17 2.75 A23

Table 9: Results of the generated larger graph and the output message to decision support

Q1 Q2 Q3 Q4 Q5 % Node involved % Violation Message to user

40 154 83 8 64 100 47 There are high violations in the store at the time of this message.
Urgent actions must be taken.
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