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Abstract: The data generated from non-Euclidean domains and its graphical
representation (with complex-relationship object interdependence) applications
has observed an exponential growth. The sophistication of graph data has posed
consequential obstacles to the existing machine learning algorithms. In this study,
we have considered a revamped version of a semi-supervised learning algorithm
for graph-structured data to address the issue of expanding deep learning
approaches to represent the graph data. Additionally, the quantum information
theory has been applied through Graph Neural Networks (GNNs) to generate Rie-
mannian metrics in closed-form of several graph layers. In further, to pre-process
the adjacency matrix of graphs, a new formulation is established to incorporate
high order proximities. The proposed scheme has shown outstanding improve-
ments to overcome the deficiencies in Graph Convolutional Network (GCN), par-
ticularly, the information loss and imprecise information representation with
acceptable computational overhead. Moreover, the proposed Quantum Graph
Convolutional Network (QGCN) has significantly strengthened the GCN on
semi-supervised node classification tasks. In parallel, it expands the generalization
process with a significant difference by making small random perturbations �G
of the graph during the training process. The evaluation results are provided on
three benchmark datasets, including Citeseer, Cora, and PubMed, that distinctly
delineate the superiority of the proposed model in terms of computational accu-
racy against state-of-the-art GCN and three other methods based on the same
algorithms in the existing literature.
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1 Introduction

Text classification (TC) is an imperative process of Natural Language Processing (NLP) to categorize the
unstructured textual data into a structured format. At present, TC has numerous applications in various
domains, such as news filtering [1], spam detection [2–4], opinion mining [5–8], document organization,
and retrieval [9,10]. TC is a widely studied subject in the field of information science and has been
important since the beginning of digital text documents. The TC process can be divided into two phases
i.e., preprocessing and classification [11]. The preprocessing transforms the text data into valuable
features, as this step is important before the classification; in the next phase, classification has been
applied to predict a classifier. A model has been built on the grounds of labeled training data and this
model will predict the label of previously unlabeled test data. Feature selection and text representation are
the two substantive steps in every TC task [12,13]. Conventionally, two prominent techniques are used to
represent text data, i.e., bag-of-words (BoW) [14–17] and n-grams [18,19]. In the earlier mentioned
technique, a text document has been presented as a set of words with their corresponding frequencies in a
document, while in the latter one, the sequence of data elements is found in a more extensive chain of
data elements. In the context of the text, an n-gram is the sequence of n words or n characters, where n is
an integer greater than zero. In the frame of reference for language comparison, an n-gram is a sequence
of characters.

The recent progress in the domain of deep learning has offered promising avenues for researchers.
Numerous Deep-Learning based methods emerged for TC. The existing reports indicated that the Deep
Neural Networks (DNNs) exceptionally outperform with less demand for engineered features. DNNs can
mainly classify into two categories based on hierarchical (e.g., Convolutional Neural Networks (CNN’s)
[20–25]) and sequential (e.g., Recurrent neural networks (RNNs)) structures. The RNNs are further
defined into more categories, such as Long short-term memory (LSTM) [26–28] and Gated Recurrent
Unit (GRU) [29] based on gating mechanisms.

The evidence from respective cohort studies indicated that various text data retain the complex
relationship, which can assist in improving classification accuracy�for instance, a citation network where
articles are linked via citationship. Hence, for better classification results, some graph-based algorithms
can efficiently be employed to enjoy the perk of the link’s information [18,30]. One of the pioneering
works had been undertaken in 2013 by Bruna et al. [31], a purposing model utilizes spectral graph theory
to develop a variant of graph convolution. Starting, thereby, a broad spectrum has been observed in the
development and extension of GNNs [20–22]. The research discussed in this article contributes to the
prior experimentation done by Kipf et al. [32]. The main contributions of this study are as follows:

� The proposed method overcomes the shortcomings of previous work, with acceptable computational
overhead.

� The proposed method can significantly strengthen the semi-supervised node classification task and
expand the generalization process with significant differences.

� The QGCN scaffold the quantum information theory with GCN to generate Riemannian metrics to
preprocess the adjacency matrix of graphs.

This paper is structured into five sections: The first section gives a brief introduction to TC. The second
section examines the earlier endeavors towards TC. In the third section, a new methodology is proposed with
schematic illustration, and the processing of the proposed model has been explained with the empirical
demonstration. The fourth section is followed by the results obtained using the proposed QGCN, and
their comparison with previous models such as GCN, GCNT, Fisher GCN, and Fisher GCNT. Lastly,
summarized the main findings and conclusions.
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2 Literature Review

2.1 Text Classification

The TC problem has been extensively addressed and implemented in various NLP domains, including
databases, information collection, and data mining. In a TC problem: the analysis contains training data
D ¼ D1 . . . . . .Dnf g; per-labeled with a class C ¼ C1;C2 . . .Cnf g. The task now is to train a
classification model that can predict the appropriate class for an unknown entity L, which can assign one
or more class labels for C [30,33]. The ultimate objective of TC is to train a classifier for predefined
categories and enable it to predict the unknown entities [34]. Formally, we can define TC as a process of
sorting documents/texts into single/multiple classes, as specified by their genre [35]. TC can mainly be
categorized into two broad categories; single-label and multilabel documents. A single-label document
relates to one class, whereas a multilabel document can have multiple classes.

2.2 Graph Convolutional Neural Networks

The existing studies under the umbrella of GNNs are derived from the seminal work of Gorei et al. [36]
Furthermore, expounded by Micheli [37] and Scarselli et al. [38]. Numerous initial studies have utilized
recurrent neural architectures to investigate the representation of a node of a target by disseminating
neighborhood information. CNN’s in the domain of computer vision was the inspiration behind the
GCNs. In the past few years, various new techniques emerged to address graph phenomena. Spectral
graph theory, as stated by Bruna et al. [31] presented the first prominent research on GCNs.

In the graph, Graph embedding [39,40] is used to capture structural similarities. Deep walk [39] makes
the most of the simulation localized walks in the vicinity of the node that is then transmitted to the neural
network for language modeling to build the node background. Node2Vec [41] interplays breadth and
depth-first sampling techniques to combine and investigate the various neighborhood types.

Monti et al. [40] spread the concept of coordinates of space via learning a series of Gaussian function
parameters corresponding to a certain distance towards the embedding of the node. Graph attention networks
(GAT) can learn these weights through a mechanism of self-attention. Jumping knowledge networks
(JKNets) [42] often concentrate on the node locality concept. JK-Nets experiments show that the notion
of subgraph neighborhood varies depending on the graph topology, e.g., random walks advance at
nonuniform variance in various graphs. Hence, JK − Nets aggregates across different neighborhoods and
takes into account multiple node localities.

2.3 Quantum Fisher Information Matrix

The Quantum information matrix (QIM) is a central aspect in the speculative quantum computation
since Cramér-Rao quantum bonds are quite effective when it comes to estimating quantum parameters.
After the explosive growth initiated, quantum technology is not theoretical, but technology and has now
reached every race of modern life and science. A quantic mechanism technique is referred to as the
quantum technique and is intended to create new techniques or enhance current technology in
conjunction with quantum resources/phenomena/effects.

Across both theoretical and practical fields, a range of features of quantum technology demonstrated a
prodigious impact across leading the next industrial revolution, such as quantum computation, quantum
communication, quantum metrology, and quantum cryptography. In the nearish term, quantum metrology
has been proven to be an evolving source of practical implications among such techniques.

Quantum metrology is the analysis of high-resolution measurements of physical parameters with high
sensitiveness, employing quantum theories to understand physical structures, in particular using quantum
entanglement and quantum compression. This area is expected to emerge with more precise measuring
technology than the conventional measuring technology.
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Both quantum metrology and Cramér-Rao bound use the estimation of quantum parameters, and it is
evident that both methods are well-researched mathematical means of estimating the quantum parameter.
In quantum Cramer-Rao, the quantum Fisher information and the Quantum fisher information matrix
(QFIM) are the principal elements for one-parameter and multiparameter estimates [43].

In addition to quantum metrology, QFIM also interacts with other aspects of quantum physics, such as
quantum phase and entanglement witnesses [44,45].

The QFIM also links to other main quantities, such as the quantum geometric tensor [46]. Therefore, a
separate evaluation for QFIM in quantum mechanics should be rendered because of the main value of
quantum parameter estimation. QFIM calculation techniques have evolved rapidly in various scenarios
and models in recent years. However, these methods are not structurally outlined by the community.

2.4 Formulation of QFIM

Let the vector variable~x ¼ x0; x1; . . . ; xa; . . .ð ÞT with xa the ath component.~x is encoded in the density
matrix q ¼ q ~xð Þ: QFIM is represented as F , and entry of F implies as [44–46]

F ab :¼ 1

2
T� q La; Lbf gð Þ; (1)

where 0;0f g symbolizes the anti-commutation and La Lbð Þ is symmetric logarithmic (SLD) parameter

derivative xa xbð Þ, described by the equation
@

@xa

@

@t

� �
.

@aq ¼ 1

2
qLa þ Laq
� �

(2)

The symmetric logarithmic derivative (SLD) is a Hermit operator with the average value T� qLað Þ by
using the above equation, F ab can also be explained by Fujiwara et al. [45].

F ab ¼ T� Lb@aqð Þ ¼ �T� q@aLbð Þ (3)

Based on Eq. (1), the sloping input of QFIM is:

F ab ¼ T�qL
2
a (4)

That is precisely the parameter of xa for QFI. The Fisher Information Matrix (FIM) concept was derived
from traditional statistics. For the distribution of probability p yj~xð Þwhere p yj~xð Þ is the conditional probability
for the outcome y, concerning variable x an entry of FIM is presented as

Tab: ¼ @ap yj~xð Þ½ � @bp yj~xð Þ½ �
p yj~xð Þ dy (5)

For discrete outcome results:

Tab: ¼
X
y

@ap yj x!
� �h i

@bp yj x!
� �h i

p yj x!
� � (6)

As the metrology develops, with the development of quantum metrology [47], the classical probability
distribution related FIM is usually denoted as Classical Fisher Information Matrix (CFIM), and its diagonal
components are called Classical fisher information (CFI). There is no doubt in the quantum mechanical
situation that the measurement method adopted would hardly influence the probability distribution and so
to CFIM. This fact indicates the CFIM is a function of measurement. However, QFI is obtained until the
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optimized measurements are made [5], i.e., F aa ¼ maxf�yg Taa q;�y

� �
; where �y represents a positive-

operator valued measure (POVM); usually, all the available methods lack in estimating QFIM. The SLD
based QFIM is one of the numerous quantum variants of CFIM. The best-suited ones are those
containing logarithmic derivatives on either the left or right side.

The SLD-based QFIM is not the only CFIM quantum version. Another well-used ones are centered on
logarithmic derivatives from the right and left [48], defined by @aq ¼ qRa and @aq ¼ Rt

aq, with the
corresponding QFIM F ab ¼ T� qRaRt

a

� �
. On the contrary to the SLD based quantum variant, the QFIM

are complex with hemitian matrix. QFIMs of all the types fall under a family of Riemannian monotone
metrics, as stated by Petz et al. [49] in 1996. Generally speaking, all QFIMs lead to Cramér-Rao bound
version but with different achievability. For example, D-invariant, which is based on the right algorithmic
derivative approaches the goal of bound. Unlike SLD-based, which are real symmetrical, the QFIM is
complex and Hermitian oriented on the left and right logarithmic derivatives. All QFIM versions are from
a family of monotonous Riemannian metrics generated by Petz [49]. Both QFIMs can provide Cramér-
Raobound quantum versions but have different achievements. For example, only the one based on the
right logarithmic derivative generates an attainable limit for D-invariant models [50]. For pure states,

Fujiwara et al. [45] employed the SLD to a group via @aq ¼ 1

2
qLa þ Ltaq
� �

; whereas La is conditionally.

Hermitian, and it will roll back to SLD. A practical example of an antisymmetric logarithmic derivative
is the Lta ¼ �La.

The arbitrary size input graphGj Vj;Ej

� �
inG is first compared with the prototype graphGk Vk ;Ekð Þ Then

Gj is encoded into a fixed, aligned vertex grid structure, where the vertex orders are preceded by the Gk

structure. The grid structure of Gj is carried through multiple quantum GCN layers to collect multi-scale
vertex features, where information on the vertex is propagated among selected vertices after the average
mixing matrix. While the GCN layers maintain the original vertex structure orders, the concatenated
vertex features form a new grid structure for Gj through the graph convolution layers. This grid structure
is then moved to a standard CNN layer to learn a classification method. Note that vertex features are
displayed in various colors.

3 Methodology

3.1 Quantum GCN Architecture

The proposed model pipeline is depicted in Fig. 1. two major modules make up the QGCN architecture.
The first module is a data handler that collects input data from different sources and preprocesses the data to
be passed on to the Quantum GCN module. The QGCN module takes the input graphs and assigns them to
the corresponding class labels. Cora, Citeseer, and PubMed are preprocessed weighted datasets that we
acquired from Yang et al. [51]. Graph data is the graph metadata of the vertex and the edge, and
attributes of the vertex typically contain attributes within each vertex. Then, vector attributes were
embedded at the graph vertices. Instead of categorical and text variables, we preprocess every graph data
and vertex attribute to translate data to real values, then transfer the attributed weighted graph dataset to
the QGCN module. The QGCN module receives the weighted attributed graph data set as input and
learns the labeled graph data and distribution of the vertex attributes to classify the labels of the graphs
not seen. We transfer the associated weighted graph dataset to the module Quantum GCN. The Quantum
GCN module receives the weighted assigned graph dataset as input and prelabeled graph details, and
distribution of the vertex attribute to identify the labels of the graphs that are unknown. The Quantum
GCN module contains a series of convolution layers followed by a pooling layer based on the specified
depth of the proposed neural network followed by a prediction layer. Based on the classification problem,
the prediction layer predicts the probability of inputs belonging to the corresponding class labels.

CSSE, 2021, vol.36, no.2 373



3.2 Problem Formulation

As we know, a graph is directly handled by the multi-layered neural network; in other words, the
induction of node vectors is positioned as per neighboring properties. Consider a graph G ¼ V ;Eð Þ,
where sets of nodes are E, and edges are V Vj j ¼ nð Þ. When node connections are converging, i.e.,
v; vð Þ e E for any v. Let X eRn�m be a matrix consisting of all n nodes with their features, where m is the
dimension of the feature vectors, each row xvRm is the feature vector for v. We introduce an adjacency
matrix A of G and its degree matrix D, where Dii ¼

P
j
Aij. Because of self-loops, the A diagonal elements

are set to 1. GCN can collect information with only one convolution layer of its immediate neighbors; if
several GCN layers are stacked, additional information is integrated. For a one-layer GCN, the new k-
dimensional node feature matrix L 1ð ÞeRn�k is computed as:

L 1ð Þ ¼ q ~AXW0

� �
(7)

where ~A ¼ D
1
2AD

1
2 is the normalized symmetric adjacency matrix and W0eRm�k is a weight matrix. P is an

activation function, e.g., a ReLU q xð Þ ¼ max 0; xð Þ. Multiple GCN layers assists in reducing higher-order
neighborhoods information:

L jþ1ð Þ ¼ q ~AL0 jð ÞWj

� �
(8)

where j denotes the layer number and L 0ð Þ ¼ X .

The objective of learning [48] is to predict those graph perturbations are robust by applying the optimal
minimax problem.

min
w

max
’

� 1

NM

XN

i¼1

XN

j¼1
logp Yi j Xi;A f ’; ej

� �� �
;W

� �
(9)

Here, M represents the total number of perturbations (e.g., M ¼ 5), which is similar to the GAN
training procedure. The Eq. (9) alternatively updates ’ along ∇’, the gradient to ’. Moreover, the
optimization problem can be solved by updating alternatively the W w.r.t. -∇W . Before proceeding to
compute the density matrix and to avoid the numerical instability caused by multiple multiplications,
q Að Þ matrix should be normalized at first. To compute the correction term like in Eq. (10) to avoid sparse
q Að Þ term. Moreover, W contains most of the free parameters. When compared with the GCN, the

Figure 1: Graphical structure of the proposed model QGCN
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eigen-decomposition of the sparse needs to be solved once, before training, the eigenvectors multiply the
computational cost of training with a factor of M .

�Un�kdiag
exp �hþ f
� �

1>exp �hþ f
� �� ��

 !
�UT
k�n

" #
Xm�D (10)

That can be resolved in O knDð Þ time effectively. This computation cost can be overlooked if k is
minimal (without increasing the complexity overall), AX computation has the complexity of O mdð Þ.
Where the number of links is m. Shortly, under similar parameters and complexity, QGCN is slower as
compared to GCN. Based on a randomly perturbed graph, the QGCN can be understood as running
multiple GCN in parallel, leads to implement our perturbed QGCN.

3.3 Calculating Quantum GCN

The main purpose of the proposed research is to present a node-based graph convolution layer to extract
multi-scale vertex features and to spread each vertex information progressively towards its nearby vertices
and to the vertex itself. This typically requires the transmission of information between each vertex and
its surrounding vertices. To extract richer vertex features from the proposed graph convolutional layer, we
proposed QIM in terms of the GCN. The design of our proposed model has two sequential stages, firstly
the structure and input layer of the grid, secondly the graphic convolution layer in the QIM. In particular,
grid structure and input layer maps the arbitrary size graphs to grid structures in a fixed size, along with
the aligned vertex grid structures and corresponding vertex matrices of the adjacent matrix, and integrates
the matrix structures in the current QGCN model. By propagating vertex information in terms of a QFIM
between the aligned grid vertices, the quantum information matrix graph convolution layer further
extracts the multi-scale vertex features. Because the extracted vertex features from the graph convolution-
layer retain the input grid structure properties, the extracted vertex characteristics can be read, and the
graph class can be predicted.

The map graphs of different sizes to the grid structure of fixed-size can be aligned vertices and the related
adjacency matrix of the corresponding fixed size. Suppose G ¼ G1;G2 . . .Gnf g e G represents a set of
graphs. Gp Vp;Ep;Ap

� �
eG is a sample graph from G, with Vp representing the vertex set, Ep representing

the edge set, and Ap representing the vertex adjacency matrix. Suppose each vertex vpeVp is represented
as a c-dimensional feature vector, the feature information of all n vertices in Vp can be denoted by a
n� c matrix Xp; i:e:;XpeRn�c. It should be noted that the row of Xp follows the same vertex order of Ap.
If the graphs in G are vertex attributed graphs, Xp can be the one-hot encoding matrix of the vertex labels.

Sun et al. [52] stated that the canonical parameterization could be derived in a closed-form with the
following equation:

ds2 ¼ 1

2

Xn

j¼1

Xn

k¼1

uTj dquk
� �2
�j þ �k

(11)

However,

ds2 ¼ qG (12)

A constant scaling of the edge weights results in ds2 = 0 because the density matrix does not vary; hence,
either q can be zero or G, since q is the density, so it can never be zero, hence, G ¼ 0 ⇒ ρ 6 = 0, G = 0
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Now the density matrix can be defined as

q ¼
Xn

l¼1
�iuiu

T
i (13)

Multiplying the above equation by q, we can achieve

q2 ¼
Xn

l¼1
�iquiu

T
i (14)

By taking derivative, we get

2qdq ¼
Xn

l¼1
�iquiu

T
i

) 2qdq
�i

¼
Xn

l¼1
uidqu

T
i

(15)

Or it can also be written as

Xn

l¼1
uTj dquk
� �2

¼ 2qdq
�i

� �2

¼ b (16)

where

b ¼ 2qdq
�i

� �2

(17)

Since the result of b is a numerical value, so that we can consider it for our convenient such as

ln ydzdð Þ ¼ b (18)

Substituting the value of ds2 from Eq. (12) and the value of b from Eq. (18) in to Eq. (11) and replacing
the indices; such that j = l,k = m,λj = Δl,λk = Δm.

We can get our QGCN formulation as below.

QG ¼ 1

2

Xn

l¼1

Xn

m¼1

ydzd
Dl þ Dm

(19)

where yd represent set of documents with labels, and n is the dimension of the output features, and it is equal
to the number of classes, y represents the label indicator matrix, and to evaluates the performance of our
Algorithm, we utilized Gradient descent for training the weight parameters Di and Dm, Gradient descent
is an algorithm of optimization to find parameter values (coefficients) of an fð Þ that minimizes a cost
function (cost).

4 Results and Discussion

This section evaluates the proposed QGCNmodel for better classification, even with limited labeled data
to determine its performance. Three standard datasets Cora, Citeseer, and PubMed are used to assess the
efficiency of the proposed QGCN model. The statistic of different benchmark datasets is shown in Tab. 1
[32]. The Citeseer, PubMed, and Cora datasets with citation network types are also presented. It can be
seen that the nodes for Citeseer, PubMed, and Cora are 3227, 197171 and 2708, respectively. The total
number of classes are 6, 2 and 7, in Citeseer, PubMed, and Cora, respectively. The values of features are
3703, 500, 1433 for Citeseer, PubMed, and Cora, respectively. Finally, the label rate for Citeseer,
PubMed, and Cora is 0:036, 0:003, and 0:052, respectively. Datasets variance has been also enabled to
deviate the performance efficiency from the set and expected results.
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We test the efficiency of the proposed QGCN model with four deep learning methods for graphs,
including GCN, GCNT, Fisher GCN, and Fisher GCNT [52]. The experiment was conducted on a Core
i7 PC with 8 GB RAM and windows 10. We used Python as coding language and TensorFlow for high-
performance numerical computation.

An experimental analysis of semi-supervised classification tasks of the transductive node has been
conducted. As recently suggested in Monti et al. [40], random training: validation: testing datasets are
used, which is based on the same ratios as the Planetoid split as indicated in the “Train: Valid: Test”
column of Tab. 1.

We primarily equate GCN that is a state-of-the-art on such datasets and utilized GCNT as a baseline. It
was established that random walking similarities would lead to better learning of GNNs [49]. On semi-
supervised node classification tasks, preprocessing of the adjacency matrix A can enhance the overall
performance of GCN. This procedure is focused on DeepWalk similarities [39].

The GCN codes [32] are adapted to equate the four approaches precisely the same configuration and
only differ in matrix A used for the measurement of the graph convolution. As a result of improved
perturbation and pre-processing with an enhanced process of generalization, QGCN significantly
improves over GCN, GCNT, Fisher GCN, and Fisher GCNT. Additionally, the QGCN provides best
performance with both techniques. This variability has been pbserved due to various split of training,
validation and testing datasets [40] hence, the scores vary with the split. We have seen a clear
development of the approaches introduced over the baselines in repeated experiments.

Tab. 2 validates the proposed QGCN model that significantly outperforms state-of-the-art deep learning
methods for graph classifications on the Cora, Citeseer, and PubMed datasets. Here, we have also provided a
detailed comparison of the proposed method and its competitors in Figs. 2, 3 and 4.

Table 1: Summary statistics of datasets. As reported in Kipf et al. [32]

Dataset Type Nodes Edges Classes Features Label rate

Citeseer Citation Network 3,327 4,732 6 3,703 0:036

PubMed Citation Network 19,717 44,338 3 500 0:003

Cora Citation Network 2,708 5,429 7 1,433 0:052

Table 2: Results comparison with State-of-the-art GCN and its other extensions

Methods Cora Citeseer PubMed

Acc Loss Acc Loss Acc Loss

GCN 80.82 1.072037265 69.515 1.37340863 78.69 0.73688188

GCNT 81.855 1.046698965 70.445 1.33260797 78.345 0.697023411

Fisher GCN 80.67 1.03020443 69.775 1.36068933 78.865 0.729672466

Fisher GCNT 81.405 1.031641146 70.385 1.31951523 79.065 0.690237115

Quantum GCN 82.045 1.06086768 70.975 1.36238394 79.45 0.726651127
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The Epoch versus accuracy results on the Cora is shown in Fig. 4. QGCN outperformed from given
methods, as shown in Tab. 2. The proposed method shows the best results on the Cora dataset, which is
82.045 as compared to others.

The experimental results on Citeseer are shown in Fig. 3. from comparison: we tested all of the five
methods like GCN, GCNT, Fisher GCN, Fisher GCNT, and Quantum GCN for the Citeseer dataset. The
GCN showed low performance as compared to Quantum GCN, GCNT, Fisher GCN, and Fisher GCNT.
In Tab. 2. it is clear that the proposed QGCN showed high accuracy as compared to other methods,
which is 70.975.

The change of accuracy for Epochs on PubMed dataset is shown in Fig. 2. The comparison between
GCN, GCNT, Fisher GCN, Fisher GCNT, and Quantum GCN for the PubMed dataset is obtained from

Figure 2: Results on cora dataset

Figure 3: Results on citeseer dataset
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the presented Tab. 2. The GCNT showed low performance, where the proposed method again outperformed
and showed a high accuracy value, which is 79.45.

5 Conclusion

This paper proposes a newmethod, “QuantumGCN”, based on Quantum Information theory and the GCN
model for TC. In this proposed work, graph structures are modified in the GCN framework to reveal major
improvements in text classification tasks. The overall generalization of the GCN is improved by introducing
a new formulation Eq. (19), which is exhibited from quantum information theory. The proposed approach
facilitates pre-processing of the GCN graph adjacency matrix to integrate the proximities of a high order.
The experimental results are compared with state-of-the-art graph-based methods on three benchmark
datasets, namely, Cora, Citeseer, and PubMed Tab. 2. And the proposed method accuracy on the Cora
dataset 82.045, Citeseer 70.975, and on PubMed 79.45, which shows superiority over its competitors.

Future work: Our perturbation is efficient enough to add high-order polynomial filters. It would be more
beneficial if alternative perturbations based on other distances, e.g., matrix Bregman divergence, can be
explored. At the same time, the improved accuracy would broaden the application of the GCN in
emerging machine learning processing. Future work will be compromised by comparing various
perturbations in the GCN configuration.
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