
Optimal Robust Control for Unstable Delay System

Rihem Farkh1,2,*, Khaled A. Aljaloud1, Moufida Ksouri2 and Faouzi Bouani2

1King Saud University, Riyadh, 11451, Saudi Arabia
2Laboratory for Analysis, Conception and Control of Systems, LR-11-ES20, Department of Electrical Engineering, National

Engineering School of Tunis, Tunis El Manar University, Tunis, 1002, Tunisia
�Corresponding Author: Rihem Farkh. Email: rfarkh@ksu.edu.sa
Received: 14 September 2020; Accepted: 08 November 2020

Abstract: Proportional-Integral-Derivative control system has been widely used
in industrial applications. For uncertain and unstable systems, tuning controller
parameters to satisfy the process requirements is very challenging. In general,
the whole system’s performance strongly depends on the controller’s efficiency
and hence the tuning process plays a key role in the system’s response. This paper
presents a robust optimal Proportional-Integral-Derivative controller design meth-
odology for the control of unstable delay system with parametric uncertainty
using a combination of Kharitonov theorem and genetic algorithm optimization
based approaches. In this study, the Generalized Kharitonov Theorem (GKT)
for quasi-polynomials is employed for the purpose of designing a robust control-
ler that can simultaneously stabilize a given unstable second-order interval plant
family with time delay. Using a constructive procedure based on the Hermite-
Biehler theorem, we obtain all the Proportional-Integral-Derivative gains that sta-
bilize the uncertain and unstable second-order delay system. Genetic Algorithms
(GAs) are utilized to optimize the three parameters of the PID controllers and the
three parameters of the system which provide the best control that makes the
system robust stable under uncertainties. Specifically, the method uses genetic
algorithms to determine the optimum parameters by minimizing the integral of
time-weighted absolute error ITAE, the Integral-Square-Error ISE, the integral
of absolute error IAE and the integral of time-weighted Square-Error ITSE.
The validity and relatively effortless application of presented theoretical concepts
are demonstrated through a computation and simulation example.

Keywords: Unstable time-delay system; interval plants; generalized Kharitonov
theorem; PID controller; Hermite-Biehler theorem; stability region; genetic
algorithms; optimum PID controller; optimum system parameters

1 Introduction

Time lags occur often in various engineering systems and industry processes, such as in communication
networks, chemical processes, turbojet engines, and hydraulic systems. Delays have a considerable influence
on the behavior of the closed-loop systems, can generate oscillations, and even lead to instabilities [1].
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Dugard et al. [1] reported that more than 90% of physical systems in process control can be approximated by
first- and second-order (about 30%) models with time delay with acceptable accuracy.

Open-loop unstable delay systems are often encountered in process industry, and pose a more
challenging problem to controller design compared to that of stable open-loop systems. The presence of
an unstable pole in the system imposes a minimum limit on the control performance, which in some
cases can lead to an excessive overshoot and long settling time.

Proportional-Integral-Derivative (PID) controller, though a very old design, is still one of the favorite
and most widely used controllers for many industrial process control applications. This is due to its
simple structure, satisfactory control performance, and acceptable robustness [2]. For systems with long
time delay, several methods for determining the PID controller parameters have been developed over the
past 60 years. Much attention has focused on stabilizing uncertain systems with or without time delay
using PID controllers.

One of the well-known approaches to computing the stabilizing PID controller region is based on a
generalization of the Hermite-Biehler theorem [3]. This approach requires sweeping over the proportional
gain to find all stabilizing regions of the PID parameters. The Hermite-Biehler theorem has become the
basis of an extended theorem used to find the PID stabilizing parameter regions, e.g., in Farkh et al. [4],
where the complete stabilizing set of the classical PI and PID controller parameter regions for unstable
second-order time-delay plants were derived.

Robust stability of uncertain systems has become of great interest in the past few decades. Robustness is
defined as the performance and stability of plants exposed to uncertainties. The Kharitonov theorem is well-
known for stability analysis of interval systems. Based on the Kharitonov theorem, the edge theorem in
Barmish et al. [5] and the box theorem in Bhattacharyya et al. [6] suggested that the set of transfer
functions generated by changing the perturbed coefficients in the prescribed ranges corresponds to a box
in the parameter space, which is referred to as “interval plants.” The Generalized Kharitonov Theorem
(GKT) reveals that a controller robustly stabilizes the interval system if it stabilizes a prescribed set of
line segments in the plant parameter space [6,7].

To determine the robust stability of a time-delay system subjected to parametric uncertainty, researchers
have extended the GKT and the edge theorem to quasi-polynomials [6,8,9].

Prior studies have obtained some important results relating to the stabilization of interval systems. Barmish
et al. [5] proved that a first-order controller stabilizes an interval plant if and only if it simultaneously stabilizes
the 16 plants of the Kharitonov plant family. A parameter plan, based on the gain phase margin tester method
and the Kharitonov theorem, was used to obtain a non-constructive region, in which a PID controller stabilizes
the entire interval plants [10]. In Tan et al. [11], it is shown that the stability boundary locus can also be
exploited to find the stabilizing region of the PI parameters for the control of a plant with uncertain
parameters. Patre et al. [12] presented a two-degrees-of-freedom design methodology for interval process
plants to guarantee both robust stability and satisfactory performance.

In Ho et al. [13] and Silva et al. [14], the Hermite-Biehler theorem was used for the formulation of P, PI,
and PID controllers to stabilize a delay-free interval plant family. In Silva et al. [14], the stabilizing problem
of a PI/PID controller for the first-order delay system was analyzed, and then used to obtain all PI and PID
gains that stabilize an interval first-order delay system [15].

In this paper, we endeavor to determine the set of all PID gains that stabilize an uncertain and unstable
second-order delay system, where the coefficients are subjected to perturbation within prescribed ranges. We
propose an approach based on combining the background considerations presented in Section 3 and the result
obtained by Farkh et al. [4]. Then, the optimal PID controller parameters and optimal system parameters are
determined by applying the optimizationmethod in the robust stable region using the integral performance criteria.
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The rest of the paper is organized as follows: In Section 2 we discuss the computation of all PID
controllers for an unstable second-order delay system. The problem formulation is given in Section 3.
Section 4 is devoted to the robust stabilization problem for an uncertain and unstable second-order
system with time delay controlled via a PID controller. Section 5 is reserved for the simulation example.
A description and application of the genetic algorithm (GA) is presented in Section 6, and conclusions
are presented in Section 7.

2 PID Control for Unstable Second-Order Delay System

In Farkh et al. [4], the computation of all stabilizing PID controllers for an unstable delay system
was considered.

2.1 Theorem 1 [4]

Under the assumptions of K > 0, L > 0, a0 < 0 and/or a1 > 0, the Kp values, for which there is a solution to
the stabilization problem of the PID controller of an unstable second-order delay system, we verify that:

� a0
K

< Kp <
1

K
a1

a
L
sinðaÞ � cosðaÞ a0 � a2

L2

� �� �

where a is the solution to the following equation:

tanðaÞ ¼ a 2þ a1Lð Þ
a2 � a1L� a0L2

in the interval ½0;p�:

For Kp values outside the above range, there are no stabilizing PID controllers. The complete stabilizing
region given by the cross-section of the stabilizing region in the (Ki,Kd)-space is the triangle D Fig. 1.

Figure 1: Stabilizing region of (Ki,Kd)-space
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The parameters bj and mj; j ¼ 1; 2 necessary for determining the boundaries, can be obtained using the
following equations:

mj ¼ mðzjÞ ¼ L2

z2

bj ¼ bðzjÞ ¼ L

Kzj
�a1

zj
L
cosðzjÞ þ sinðzjÞ

z2j
L2

� a0

 !" #
8>>><
>>>:
where zj; j ¼ 1; 2 are the positive-real roots of diðzÞ arranged in ascending order of magnitude, where diðzÞ is
expressed by:

diðzÞ ¼ z

L
KKp þ cosðzÞ a0 � z2

L2

� �
� a1

z

L
sinðzÞ

� �

2.2 Example

We consider a second-order delay system described by the following transfer function:

GðsÞ ¼ 2e�0:5s

�0:5þ 5sþ s2

To determine the Kp values, we look for a in the interval 0; p½ � satisfying
tanðaÞ ¼ 4:5a

�
a2 � 2:625ð Þ ) a ¼ 1:5617. The Kp range is given by 0:25 < Kp < 7:85. The system

stability region in the ðKp;Ki;KdÞ-plane is presented in Fig. 2.

3 Robust Controller Design for an Interval Plant with Time Delay

In this section, a procedure is proposed for robust stabilization of an unstable delay system that belongs
to a linear interval plant, where the time delay, L, is a known constant.
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Figure 2: Controller stability domain in ðKp;Ki;KdÞ-plane for an unstable second-order delay system
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Consider the following transfer function:

GðsÞ ¼ P1ðsÞ
P2ðsÞ e

�Ls (1)

where P1ðsÞ and P2ðsÞ are linear interval polynomials. Our objective is to find a robust controller,
CðsÞ ¼ F1ðsÞ=F2ðsÞ, with the fixed polynomials F1ðsÞ and F2ðsÞ to guarantee the robust stability of the system.

We can use the GKT extended for quasi-polynomials [6], to compute all the stabilizing controller
parameters for interval systems with a time delay. We review some results from the area of parametric
robust control before stating the GKT. Consider the following family of quasi-polynomials DðsÞ:
DðsÞ ¼ P1ðsÞF1ðsÞ þ P2ðsÞF2ðsÞ (2)

where PðsÞ ¼ ðP1ðsÞ;P2ðsÞÞ is a fixed two-tuple of real interval polynomials. Each PiðsÞ is a linear interval
polynomial characterized by the intervals Pj;i as follows:

pj;i 2 p
j;i
; pj;i

h i
; i ¼ 1; 2; j ¼ 0; 1;…; ni: (3)

PiðsÞ are real independent interval polynomials defined as:

PiðsÞ ¼ p0;i þ p1;isþ…þ pni;is
ni ; i ¼ 1; 2: (4)

FðsÞ ¼ ðF1ðsÞ;F2ðsÞÞ is a fixed two-tuple of complex quasi-polynomials of the following form:

FiðsÞ ¼ F0
i ðsÞ þ F1

i ðsÞe�sL1i þ F2
i ðsÞe�sL2i þ… (5)

with the Fj
i ðsÞ being complex polynomials satisfying the following condition:

degree F0
i ðsÞ

� �
> degree Fj

i ðsÞ
� �

; j 6¼ 0 (6)

In our case, we use FiðsÞ with a single delay: FiðsÞ ¼ F0
i ðsÞ þ F1

i ðsÞe�sLi .

According to Bhattacharyya et al. [6], the stability problem of Eq. (2) can be solved with the GKT
by constructing an extremal set of line segments, DEðsÞ � DðsÞ, where the stability of DEðsÞ implies the
stability of DðsÞ. DEðsÞ will be generated by constructing an extremal subset PEðsÞ, using the Kharitonov
polynomials of PiðsÞ.

3.1 Theorem 2 [6]

Let F ¼ ðF1ðsÞ;F2ðsÞÞ be a given two-tuple of complex quasi-polynomials satisfying the condition of
Eq. (6), and let P ¼ ðP1ðsÞ;P2ðsÞÞ be an independent real interval polynomial. FðsÞ stabilizes the entire
family PðsÞ if and only if F stabilizes every two-tuple segment in PEðsÞ. Equivalently, DðsÞ is stable if
and only if DEðsÞ is stable.

3.2 Corollary

FðsÞ stabilizes the linear system PðsÞ if and only if the controller stabilizes the extremal transfer function
GEðsÞ ¼ PEðsÞ discussed in detail later.

The GKT, we first need to determine the extremal set of line segments, DEðsÞ. From the segment
polynomials of P1ðsÞ and P2ðsÞ, eight Kharitonov vertex equations are obtained as follows [6,16]:

Km
1 ðsÞ; m ¼ 1; 2; 3; 4 for P1ðsÞ
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and

Km
2 ðsÞ; m ¼ 1; 2; 3; 4 for P2ðsÞ

where

K1
i ðsÞ ¼ p

i;0
þ p

i;1
sþ p

i;2
s2 þ pi;3s

3 þ…

K2
i ðsÞ ¼ p

i;0
þ p

i;1
sþ p

i;2
s2 þ p

i;3
s3 þ…

K3
i ðsÞ ¼ pi;0 þ p

1
sþ p

i;2
s2 þ p

i;3
s3 þ…

K4
i ðsÞ ¼ pi;0 þ p

i;1
sþ p

i;2
s2 þ p

i;3
s3 þ…

(7)

The extremal subset Pi
EðsÞ; i ¼ 1; 2; consists of [3]:

P2
EðsÞ ¼

Kh
1ðsÞ

�Kl
2ðsÞ þ ð1� �ÞKk

2ðsÞ
(8)

where � 2 0; 1½ �, h ¼ 1; 2; 3; 4, and l; k½ � ¼ 1; 2½ �; 1; 3½ �; 2; 4½ �; and 3; 4½ �. In the above equation, the number
of extremal equations is i4i, where i indicates the number of perturbed polynomials, and l; k½ � the connection
points to make the Kharitonov polytope �Kl

i ðsÞ þ ð1� �ÞKk
i ðsÞ.

Some of the subset equations may be the same, hence, the extremal subset is defined as [6]:

PEðsÞ ¼ P1
EðsÞ [ P2

EðsÞ (9)

The extremal subset of line segments (or generalized Kharitonov segment polynomials) is [6]:

DEðsÞ ¼ D1
EðsÞ [ D2

EðsÞ ¼ ,FðsÞ;PðsÞ. : PðsÞ 2 PEðsÞf g (10)

where

,FðsÞ;PðsÞ. ¼ F1ðsÞP1ðsÞ þ F2ðsÞP2ðsÞ þ…þ FmðsÞPmðsÞ (11)

With the knowledge that DEðsÞ � DðsÞ, if all polynomials of the linear interval system are stable, the
system with perturbed parameters will also be stable.

The previous results of the robust parametric approach control proved to be an efficient control design
technique. In the following, they will be used for the synthesis controllers that simultaneously stabilize a
given uncertain time-delay system.

4 Robust PID Stabilization for an Uncertain and Unstable Second-Order Time-Delay System

In this section, we consider the problem of characterizing all PID controllers that stabilize a given
unstable second-order interval plant with a time delay:

GðsÞ ¼ Ke�Ls

a0 þ a1sþ s2

where K 2 K;K
� �

, a0 2 a0; a0
� �

, and a1 2 a1; a1
� �

. The controller is given by CðsÞ ¼ ðKp þ Ki=sþ KdsÞ.
To obtain all PID gains that stabilize GðsÞ using the GKT for quasi-polynomials, we consider a new

transfer function GðsÞ as follows:
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GðsÞ ¼ P1ðsÞ
P2ðsÞ ¼

Ke�Ls

a0 þ a1sþ s2

and the compensator as follows:

CðsÞ ¼ F1ðsÞ
F2ðsÞ ¼ ðKp þ Ki

s
þ KdsÞe�Ls

The family of closed-loop characteristic quasi-polynomials Dðs;Kp;KiÞ becomes:

Dðs;Kp;KiÞ ¼ P1ðsÞF1ðsÞ þ P2ðsÞF2ðsÞ
¼ KðKi þ Kpsþ Kds

2Þe�Ls þ ða0 þ a1sþ s2Þs (12)

The problem of characterizing all stabilizing PID controllers requires determining all the values of Kp,

Ki, and Kd for which the entire family of closed-loop characteristic quasi-polynomials is stable. Let Kj
1ðsÞ and

Kj
2ðsÞ; j ¼ 1; 2; 3; 4 be the Kharitonov polynomials corresponding to P1ðsÞ ¼ K and P2ðsÞ ¼ a0 þ a1sþ s2,

respectively, where K 2 K;K
� �

, a0 2 a0; a0
� �

, and a1 2 a1; a1
� �

.

K1
1ðsÞ ¼ K2

1ðsÞ ¼ K
K3
1ðsÞ ¼ K4

1ðsÞ ¼ K

	

K1
2ðsÞ ¼ a0 þ a1sþ s2

K2
2ðsÞ ¼ a0 þ a1sþ s2

K3
2ðsÞ ¼ a0 þ a1sþ s2

K4
2ðsÞ ¼ a0 þ a1sþ s2

8>><
>>:

Let GEðs; �Þ denote the family of 32 plant segments:

GEðs; �Þ ¼

Glkhðs; �Þ=
Glkhðs; �Þ ¼ �Kl

1ðsÞ þ ð1� �ÞKk
1ðsÞ

Kh
2ðsÞ[

Glkhðs; �Þ ¼ Kh
1ðsÞ

�Kl
2ðsÞ þ ð1� �ÞKk

2ðsÞ
� 2 0; 1½ �; h ¼ 1; 2; 3; 4;
l; k½ � ¼ 1; 2½ �; 1; 3½ �; 2; 4½ �; 3; 4½ �

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(13)

Then, GEðs; �Þ consists of the following plant segments:
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GEðs; �Þ ¼
G1 ¼ K

a0 þ a1sþ s2
;G2 ¼ K

a0 þ a1sþ s2
G13 ¼ K

a0 þ ða1 � �ða1 � a1ÞÞsþ s2
;

G3 ¼ K

a0 þ a1sþ s2
;G4 ¼ K

a0 þ a1sþ s2
G14 ¼ K

a0 þ ða1 � �ða1 � a1ÞÞsþ s2

G5 ¼ K

a0 þ a1sþ s2
;G6 ¼ K

a0 þ a1sþ s2
G15 ¼ K

a0 þ �ða0 � a0Þ þ a1sþ s2
;

G7 ¼ K

a0 þ a1sþ s2
;G8 ¼ K

a0 þ a1sþ s2
[ G16 ¼ K

a0 þ �ða0 � a0Þ þ a1sþ s2

G9 ¼ K � �ðK �KÞ
a0 þ a1sþ s2

;G10 ¼ K � �ðK � KÞ
a0 þ a1sþ s2

G17 ¼ K

a0 þ �ða0 � a1Þ þ a1sþ s2

G11 ¼ K � �ðK � KÞ
a0 þ a1sþ s2

;G12 ¼ K � �ðK �KÞ
a0 þ a1sþ s2

G18 ¼ K

a0 þ �ða0 � a1Þ þ a1sþ s2
;

G20 ¼ G8 ¼ K

a0 þ a1sþ s2
G19 ¼ G4 ¼ K

a0 þ a1sþ s2

� 2 0;1½ �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(14)

where the 32 extremal plants in Eq. (13) are reduced to 20.

The closed-loop characteristic quasi-polynomials for each of these 32 plant segments, Glkhðs; �Þ, are
denoted by dlkhðs;Kp;Ki; �Þ and are defined as:

dlkhðs; �Þ ¼ sNumðGlkhðs; �ÞÞ þ ðKi þ KpsÞdenðGlkhðs; �ÞÞ (15)

where

NumðGlkhðs; �ÞÞ ¼ �Kl
1ðsÞ þ ð1� �ÞKk

1ðsÞ [ Kh
1ðsÞ

denðGlkhðs; �ÞÞ ¼ Kh
2ðsÞ [ �Kl

2ðsÞ þ ð1� �ÞKk
2ðsÞ

	
(16)

We posit the following theorem on stabilizing an unstable second-order interval plant with time delay
using a PID controller.

4.1 Theorem 3

Let GðsÞ be an unstable second-order interval plant with uncertain time delay. The entire family GðsÞ
is stabilized by a PID controller if and only if each Glkhðs; �Þ 2 GEðs; �Þ is stabilized by that same
PID controller.

4.2 Proof

From Theorem 2, it follows that the entire family Dðs;Kp;KiÞ is stable if and only if dlkhðs;Kp;Ki; �Þ are
all stable. Therefore, the entire family GðsÞ is stabilized by a PID controller if and only if every element of
GEðs; �Þ is simultaneously stabilized by the same PID.

To obtain a characterization of all PID controllers that stabilize the interval plant GðsÞ by applying this
procedure to each Glkhðs; �Þ belonging to GEðs; �Þ, we will use the results from Farkh et al. [4].
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5 Example

We consider the plant family GðsÞ ¼ Ke�Ls

a0 þ a1sþ s2
, where K 2 1:9; 2:2½ �, a0 2 �0:6;�0:4½ �, and

a1 2 4; 6½ �.
The entire family GEðs; �Þ is given as follows:

GEðs; �Þ ¼

Gijðs; �Þ =
Gðs; �Þ ¼ �lKl

1ðsÞ þ ð1� �lÞKk
1ðsÞ

Kh
2ðsÞ[

Gðs; �Þ ¼ Kh
1ðsÞ

�mKl
2ðsÞ þ ð1� �mÞKk

2ðsÞ
� 2 0; 1½ �; h ¼ 1; 2; 3; 4;
l; k½ � ¼ 1; 2½ �; 1; 3½ �; 2; 4½ �; 3; 4½ �

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

According to from Eq. (14), we obtain:

GEðs; �Þ ¼
G1 ¼ 1:9

�0:6þ 4sþ s2
;G2 ¼ 1:9

�0:6þ 6sþ s2
G13 ¼ 1:9

�0:6þ ð6� 2�Þsþ s2
;

G3 ¼ 1:9

�0:4þ 4sþ s2
;G4 ¼ 1:9

�0:4þ 6sþ s2
G14 ¼ 2:2

�0:6þ ð6� 2�Þsþ s2

G5 ¼ 2:2

�0:6þ 4sþ s2
;G6 ¼ 2:2

�0:6þ 6sþ s2
G15 ¼ 1:9

�0:4þ 0:2�þ 4sþ s2

G7 ¼ 2:2

�0:4þ 4sþ s2
;G8 ¼ 2:2

�0:4þ 6sþ s2
[ G16 ¼ 2:2

�0:4þ 0:2�þ 4sþ s2

G9 ¼ 2:2� 0:3�

�0:6þ 4sþ s2
;G10 ¼ 2:2� 0:3�

�0:6þ 6sþ s2
G17 ¼ 1:9

�0:4þ 0:2�þ 6sþ s2

G11 ¼ 2:2� 0:3�

�0:4þ 4sþ s2
;G12 ¼ 2:2� 0:3�

�0:4þ 6sþ s2
G18 ¼ 2:2

�0:4þ 0:2�þ 6sþ s2

G20 ¼ G8 ¼ 2:2

�0:6þ 6sþ s2
G19 ¼ G4 ¼ 1:9

�0:4þ 6sþ s2

� 2 0; 1½ �

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

We remark here that fromG9 toG18, we have an infinity of transfer function sets due to their dependence
on �. To reduce the complexity of the problem, we set � to 0, 0.33, 0.66, and 1 as different values of � 2 0; 1½ �
for G9 to G12, and we also set � to 0, 0.25, 0.5, 0.75, and 1 as different values of � 2 0; 1½ � for G13 to G18,
respectively. Therefore, we obtain:

Gh 1 ¼ Gh1ðs; � ¼ 0Þ
Gh 2 ¼ Ghðs; � ¼ 0:33Þ
Gh 3 ¼ Ghðs; � ¼ 0:66Þ
Gh 4 ¼ Ghðs; � ¼ 1Þ

8>><
>>:

We define Gk p ¼ Ghðs; �pÞ, where �p 2 0; 0:25; 0:5; 0:75; 1f g for k ¼ 13; ::; 18, and p ¼ 1;…; 5,
and obtain:
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Gh 1 ¼ Gh1ðs; � ¼ 0Þ
Gh 2 ¼ Ghðs; � ¼ 0:25Þ
Gh 3 ¼ Ghðs; � ¼ 0:5Þ
Gh 4 ¼ Ghðs; � ¼ 0:75Þ
Gh 5 ¼ Ghðs; � ¼ 0:75Þ

8>>>><
>>>>:

To compute all the stabilizing PID gains, we first determine all the Kp gain stabilizers for GEðs; �Þ:
KpðGðsÞÞ ¼ \KpðGEðs; �ÞÞ

¼ 0:2727; 5:974½ �
For a fixed Kp, for instance, Kp ¼ 1:5, we obtain the stabilizing set of ðKi;KdÞ values for GðsÞ by using

the result presented in Farkh et al. [4], which is applied to each transfer function belonging to GEðs; �Þ. Fig. 3
presents these stability regions in the ðKi;KdÞ-plane.

The intersection of these stability regions presents an overlapping area of the boundaries constituting the
entire feasible controller sets that stabilize the entire family GðsÞ. Fig. 4 presents a zoom-in of Fig. 3.

Finally, by sweeping over Kp 2 0:2727; 5:974½ � and repeating the above procedure, we obtain all the
stabilizing sets of ðKp;Ki;KdÞ.

6 Optimization

6.1 Genetic Algorithm

GAs are efficient stochastic search methods based on the concepts of natural selection and evolutionary
genetics. GAs are communities of individuals, in which through randomizing the cycle of discovery,
crossover and mutation, individuals can adjust to a specific setting. The environment offers valuable
knowledge (fitness) to individuals, and the selection mechanism supports the preservation of individuals
of greater quality. Therefore, during the development cycle, the overall output of the population is
growing, ideally contributing to an optimal solution. GAs have been used in diverse fields and are
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Figure 3: Stabilizing set of ðKi;KdÞ for Kp ¼ 1:5 of GðsÞ

316 CSSE, 2021, vol.36, no.2



considered as an efficient tool for global optimization. Attempts to apply GAs to control system and
identification design problems have been made [16]. Fig. 6 illustrates the theory of GA optimization for
control problems.
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We look for the optimum system and controller parameters in the robust stability area using one of the
following requirements ITAE integral of time-weighted absolute error, ISE Integral-Square-Error, IAE integral
of absolute error and ITSE integral of time-weighted Square-Error defined by following relationships:

ISE ¼Ptmax
0
eðtÞ2

IAE ¼Ptmax
0

eðtÞj j

ITAE ¼Ptmax
0
t eðtÞj j

ITSE ¼Ptmax
0
teðtÞ2

8>>>>>>>>>>><
>>>>>>>>>>>:

If we want to reduce the tuning energy, the ITAE and IAE criteria should be considered. Conversely, the
ITAE and the IAE parameters are being considered when we want to reduce the tuning energy. If we assign
preference to rising time, the ITSE criteria are adopted, while we choose the ISE criterion to guarantee the
energetic tuning costs [16].

The following algorithm sums up the steps of the control law:

1. Introduction of the following parameters:

- max pop: individual number in each population

- initial population

- gen max: generation number

2. Initialization of the generation counter (gen ¼ 1)

3. Initialization of the individual counter (j ¼ 1)

4. For t ¼ 1s to t ¼ tmax

efficiency evaluation of jth population individual

fitnessðJ Þ ¼ 1

1þ J
5. Individual counter incrementing (j ¼ jþ 1).

- If j < max pop, going back to Step 4.

- Otherwise, application of the genetic operators (selection, crossover, and mutation) for finding a new
population.

6. Generation counter incrementing (gen ¼ genþ 1),

Figure 6: Optimization principle
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If gen < gen max, going back to Step 3.

7. Selecting Kpopt, Kiopt, and Kdopt, which correspond to the best individual in the last population
(individual with the highest fitness).

In the following, a GAwith the generation number of 100, Pc ¼ 0:8, Pm ¼ 0:04, and individual number
in each population of 20.

6.2 Example

We consider the uncertain unstable delay system GðsÞ ¼ Ke�Ls

a0 þ a1sþ s2
, where K 2 1:9; 2:2½ �,

a0 2 �0:6;�0:4½ �, a1 2 4; 6½ �, and the delay L = 0.5 s.

The robust PID stability region is shown Fig. 5, where it can be seen that Kp, Ki, and Kd population
individuals are choosing between Kp 2 0:2727; 5:974½ �, Ki 2 0:5; 6½ �, and Kd 2 �0:5; 2½ �. The optimum
PID and system parameters provided by GA are presented in Tab. 1.

Fig. 7 shows the step responses of the closed-loop system using the values from Tab. 1.

Table 1: Optimum PID and system parameters

Criterion ISE IAE ITAE ITSE

K 1.9001 1.9002 1.9564 1.9001

a0 −0.4000 −0.4023 −0.4 −0.6000

a1 4.0001 4.0313 4.0008 5.7665

Kp 1.3280 1.3285 1.3429 4.2737

Ki 1.0007 1.0962 1.0022 1.4642

Kd 0.9605 0.2298 0.0134 0.3947

Figure 7: Step responses of closed-loop system
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The time parameters and percentage overshoot values for unit step responses shown in Fig. 7 are
given in Tab. 2.

7 Conclusions

This study proposed the application of the Hermite-Biehler and GKT to defining the robust PID stability
area for the control an of an uncertain and unstable second-order time-delay system. In the optimization
process, the optimal system and optimal PID controller parameters are calculated by using the integral
performance criterion based on the error.

Acknowledgement: The authors acknowledge the support of King Saud University, Saudi Arabia.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] L. Dugard and E. I. Verriest, Stability and Control for Time Delay System. Berlin, Heidelberg: Springer-Verlag,

pp. 5–10, 1998.

[2] C. Knospe, “PID control,” IEEE Control Systems Magazine, vol. 26, no. 1, pp. 30–31, 2006.

[3] G. J. Silva, A. Datta and S. P. Bhattacharyya, PID Controllers for Time Delay Systems. London, UK: Springer,
pp. 12–22, 2005.

[4] R. Farkh, K. Laabidi and M. Ksouri, “Stabilizing sets of PI/PID controllers for unstable second order delay
system,” International Journal of Automation and Computing, vol. 11, no. 2, pp. 210–222, 2014.

[5] B. R. Barmish, C. V. Holot, F. J. Kraus and R. Tempo, “Extreme points results for robust stabilization of interval plants
with first order compensators,” IEEE Transaction on Automatic Control, vol. 38, no. 11, pp. 1734–1735, 1993.

[6] S. P. Bhattacharyya, H. Chapellat and L. H. Keel, Robust Control: The Parametric Approach. Upper Saddle River,
NJ: Prentice-Hall, pp. 293–233, 1995.

[7] S. P. Bhattacharyya and H. Chapellat, “A generalization of Kharitonov’s theorem: Robust stability interval
plants,” IEEE Transaction on Automatic Control, vol. 34, no. 3, pp. 306–311, 1989.

[8] K. Gu and V. Kharitonov, “Robust stability of time-delay systems,” IEEE Transaction on Automatic Control, vol.
39, no. 12, pp. 20–27, 1994.

[9] V. L. Kharitonov, J. A. Torres-Muñoz and M. B. Ortiz-Moctezuma, “Polytopic families of quasi-polynomials:
Vertex-type stability conditions,” IEEE Transaction on Circuits and Systems, vol. 50, no. 11, pp. 1413–1420,
2003.

[10] Y. J. Huang and Y. J. Wang, “Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem,”
ISA Transaction, vol. 39, no. 4, pp. 419–431, 2000.

[11] N. Tan, I. Kaya, C. Yeroglu and D. P. Atherton, “Computation of stabilizing PI and PID controllers using the
stability boundary locus,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3045–3058, 2006.

Table 2: Time domain specifications

ISE IAE ITAE ITSE

Rise time 0.9723 1.0076 0.9494 0.5607

Settling time 34.4134 63.8065 64.5009 7.2038

Peak time 3.9667 3.8094 2.1109 2.1331

Overshoot 58.844 98.9484 111.0873 71.9221

320 CSSE, 2021, vol.36, no.2



[12] B. M. Patre and P. J. Deore, “Robust stability and performance for interval process plants,” ISA Transactions, vol.
46, no. 3, pp. 343–349, 2007.

[13] M. T. Ho, A. Datta and S. P. Bhattacharyya, “Design of P, PI and PID controllers for interval plants,” in Proc. of
the 1998 American Control Conf. (IEEE Cat. No. 98CH36207), Philadelphia, PA, USA, pp. 2496–2501, 1998.

[14] G. J. Silva, A. Datta and S. P. Bhattacharyya, “Robust control design using PID controller,” in Proc. the 41st IEEE
Conf. on Decision and Control, Las Vegas, NV, USA, pp. 1313–1318, 2002.

[15] R. Farkh, K. Laabidi and M. Ksouri, “Robust PI/PID controller for interval first order system with time delay,”
International Journal of Modelling Identification and Control, vol. 13, no. 1–2, pp. 67–77, 2011.

[16] D. E. Godelberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA: Addison-
Wesley, pp. 5–15, 1989.

CSSE, 2021, vol.36, no.2 321


	Optimal Robust Control for Unstable Delay System
	Introduction
	PID Control for Unstable Second-Order Delay System
	Robust Controller Design for an Interval Plant with Time Delay
	Robust PID Stabilization for an Uncertain and Unstable Second-Order Time-Delay System
	Example
	Optimization
	Conclusions
	flink8
	References


