
Numerical Simulations of Hydromagnetic Mixed Convection Flow of Nanofluids
inside a Triangular Cavity on the Basis of a Two-Component Nonhomogeneous
Mathematical Model

Khadija A. Al-Hassani1, M. S. Alam2 and M. M. Rahman1,*

1Department of Mathematics, College of Science, Sultan Qaboos University, Muscat, Oman
2Department of Mathematics, Jagannath University, Dhaka, Bangladesh
*Corresponding Author: M. M. Rahman. Email: mansurdu@yahoo.com; mansur@squ.edu.om

Received: 08 August 2020 Accepted: 24 December 2020

ABSTRACT

Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.
Numerical simulations are presented about the unsteady behavior of mixed convection of Fe3O4-water, Fe3O4-
kerosene, Fe3O4-ethylene glycol, and Fe3O4-engine oil nanofluids inside a lid-driven triangular cavity. In particular,
a two-component non-homogeneous nanofluid model is used. The bottom wall of the enclosure is insulated,
whereas the inclined wall is kept a constant (cold) temperature and various temperature laws are assumed for
the vertical wall, namely: � ¼ 1(Case 1), � ¼ Yð1� YÞ(Case 2), and � ¼ sinð2�YÞ(Case 3). A tilted magnetic field
of uniform strength is also present in the fluid domain. From a numerical point of view, the problem is addressed
using the Galerkin weighted residual finite element method. The role played by different parameters is assessed, dis-
cussed critically and interpreted from a physical standpoint. We find that a higher aspect ratio can produce an
increase in the average Nusselt number. Moreover, the Fe3O4-EO and Fe3O4-H2O nanofluids provide the highest
and smallest rate of heat transfer, respectively, for all the considered (three variants of) thermal boundary conditions.
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Nomenclature
A: dimensional amplitude of the wave (m)
AR: aspect ratio
B0: magnetic field strength (kgs-2A-1)
cp: specific heat at constant pressure (Jkg-1K-1)
C: nanoparticle volume fraction
DB: Brownian diffusion coefficient (m2s-1)
DT : thermophoretic diffusion coefficient (m2s-1)
g: gravitational acceleration (ms-1)
H : height of the cavity (m)
Ha: Hartmann number
k: thermal conductivity (Wm-1K-1)
K: wave number
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L: length of the cavity (m)
Le: Lewis number
Nb: Brownian motion parameter
Nr: buoyancy ratio parameter
Nt: thermophoresis parameter
Nu: Nusselt number
p: dimensional pressure (Pa)
P: dimensionless pressure
Pr: Prandtl number
Ri : Richardson number
T : temperature (K)
u; v: dimensional velocity components (ms-1)
U ;V : dimensionless velocity components
x; y: dimensional coordinates (m)
X ; Y : dimensionless coordinates

Greek symbols
a: thermal diffusivity (m2s-1)
b: coefficient of thermal expansion (K-1)
c: magnetic inclination angle (degree)
r: electric conductivity (Wm-1K-1)
h: dimensionless temperature
f: normalized nanoparticle volume fraction
w: stream function (m2s-1)
l: dynamic viscosity (Pas)
q: density (kgm-3)
qcp
� �

: heat capacity (JK-1m-3)

Subscripts
ave: average
c: condition at cold wall
f: base fluid
h: condition at heated wall
p: solid nanoparticle

1 Introduction

The overheating limits the lifespan of the usage of electronic pieces of equipment (for example,
computer processor) while operating. It is a big challenge for the industries which produce such
sophisticated types of equipment. In a recent study, Bayomy et al. [1] reported that the efficiency rate
of electronic devices decreases exponentially due to heat generation within them. The traditional fluids
(water, mineral oils, and ethylene glycol) most of the time used for industrial cooling applications limit
their use as efficient heat transfer agent. For the growing need in modern technology (chemical
production, power station, a computer processor, and micro-electronics), researchers developed
nanofluid [2], which efficiently transmit heat. Nanofluid exhibits higher thermal conductivity hence
enhanced heat transfer compared to the conventional fluids [3–13] even in the presence of a small
amount (1%–5% volume fraction) of nanoparticles.
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The heat transfer enhancement inside cavities has become a paramount issue in the industrial and energy
sectors. Many researchers studied nanofluids experimentally, analytically as well as numerically for heat
enhancement in cavities. In this respect, Khanafer et al. [14] studied the heat transfer enhancement in a
differentially heated square cavity. They found that the suspended nanoparticles considerably increase the
heat transfer rate. Oztop et al. [15] conducted a numerical study considering the natural convection flow
inside the partially heated rectangular enclosure filled with nanofluids. They found that the mean Nusselt
number increases with the increase of the nanoparticles volume fraction. They further reported that the
low aspect ratio of the geometry significantly enhances the heat transfer rate in nanofluids compared to
the corresponding heat transfer for a high aspect ratio.

Magnetohydrodynamics (MHD) convective flow has widespread applications in science and
engineering such as extraction of geothermal energy, oil recovery from the petroleum reservoirs, thermal
insulation, cooling of nuclear reactors, crystal growth, and plasma confinement [16–18]. In light of the
various applications of MHD and nanofluids, Al Kalbani et al. [19,20] investigated the buoyancy induced
heat transfer flow inside a tilted square cavity filled with nanofluids in the presence of an oriented
magnetic field. Their results confirm that the nanoparticle volume fraction, shape, and size significantly
intensified the heat transfer rate inside a crater. The applied magnetic field and its direction also played a
vital role in heat enhancement. Al Balushi et al. [21,22] further investigated the free convection heat
transfer flow of nanofluids inside square cavities utilizing nanofluids under the action of an applied
inclined magnetic field to the flow domain. They used a nonhomogeneous dynamic model for nanofluid
modeling. They found that heat enhancement in nanofluids depends on the nanoparticle loading, magnetic
field’s direction and strength, and the location of the heater that supplies heat to the flow field.

The thermal discharge in lid-driven enclosures has direct applications in many engineering fields such as
in rheology for lubrication mechanisms, cooling of electronic devices, constructing buildings roofs and attics,
processing food, and cooling nuclear reactors (see [23]). Flack et al. [24,25] studied experimentally as well as
numerically the convective heat transfer in triangular enclosures. Later on, many researchers conducted
research and reported results on triangular-cavities [26–31]. All of these studies involved heat transfer in
regular fluids. Due to the growing need for nanofluid research in triangular cavities, Ghasemi et al. [32]
studied numerically; the steady natural convection flow of CuO-water nanofluid inside a fixed-walls right
triangular enclosure. They reported that the Brownian motion of nanoparticles takes part in enhancing the
thermal performance of nanofluids in a cavity. Ghasemi et al. [33] further studied steady mixed
convection in a lid-driven triangular enclosure filled with Al2O3-water nanofluid. They confirmed that
enhancement in heat transfer within the cavity is due to the addition of nanoparticles, and it depends on
the direction of the sliding wall motion. Rahman et al. [34] conducted a numerical study on
hydromagnetic free convection flow of nanofluids inside an isosceles-triangular cavity. In their
simulation, they used the two-component nonhomogeneous mathematical model and different thermal
conditions. The results show that the variable thermal boundary conditions have significant effects on the
flow and thermal fields. Rahman [35] studied the hydromagnetic natural convection flow and heat transfer
within an equilateral triangular enclosure. In his work, he used water-based as well as kerosene-based
ferrofluids in the presence of a sloping magnetic field. The results indicate that increased magnetic field
strength diminishes the heat transfer rate, whereas it enhances with the increment of the magnetic field
inclination angle. Rahman [36] further studied steady heat transfer in Fe3O4-water nanofluid inside a
triangular cavity with fixed walls under a sloping magnetic field. They conclude that a higher degree of
heat transfer is accomplished by reducing the dimension of nanoparticles and increasing the strength of
the buoyancy force. Azam et al. [37–41] published a series of papers on unsteady heat and mass transfer
flow of nanofluids in different geometries with the various flow and thermal conditions proposed by the
Buongiorno mathematical model. In a recent study, Uddin et al. [42] explored heat transportation in
copper oxide-water nanofluid inside different triangular cavities. Their results show that heat
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enhancement in nanofluids strongly depends on the shape of the triangular shape cavity and the applied
buoyancy force.

Despite significant research studies on various cavities reported in the literature, there is a substantial
lack of information regarding the problem of time-dependent hydromagnetic fluid flow and heat transfer
enhancement in the lid-driven right triangular-cavity filled with nanofluids. Therefore, the present paper
aims to investigate numerically unsteady mixed convection flow and heat transfer in a lid-driven right-
triangular cavity filled with different types of nanofluids in the presence of an oriented magnetic field
varying aspect ratio of the enclosure taking into account the Buongiorno mathematical model. We used
the Galerkin weighted residual-based finite element method for numerical simulation. Finally, we depicted
the mean rate of heat transfer in terms of Nusselt number in varying different model parameters. The
organization of the remainder of the paper is as follows: In Section 2, we formulate the problem
physically as well as mathematically. Section 3 explains the method of solution in detail. The numerical
outcomes we discuss from physical and engineering viewpoints in Section 4. In the end, in Section 5, we
conclude our study.

2 Problem Formulation

2.1 Physical Modeling
We consider an unsteady, laminar, incompressible two-dimensional mixed convection flow inside a

right-angle triangular cavity that is filled with Fe3O4-water nanofluid as shown in Fig. 1, where x and y
are the Cartesian coordinates. Here, L is the bottom wall length, and H is the height of the vertical wall.
We assumed that the vertical wall temperature is Th while the inclined wall (hypotenuse) is Tc (where
Th > Tc). The bottom-wall is insulated; thus, no heat can escape along the transverse direction of it.
Initially, we considered that nanofluid concentration is CC , but for t > 0, it is assumed as Ch in the entire
domain so that Ch > CC. The vertical wall is allowed to move with constant speed V0 in its plane while
the remaining walls have no speed. Here the gravity acts in the vertical direction, along the y-axis. We
included the thermophoresis and Brownian diffusion effects in the mathematical model in the absence of
any chemical reaction and thermal radiation. The base fluid and the nanoparticles are in thermal
equilibrium, and hence no slip occurs between them. Surfactant or surface charge technology disperses
the nanoparticles within the nanofluid. The Boussinesq approximation tackled the density variation in the
buoyancy force.

Figure 1: Schematic view of the physical model with boundary conditions
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The cavity is permeated by a uniform magnetic field B ¼ Bxiþ Byj of constant magnitude

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
, where i and j are the unit vectors along the coordinate axes. Also, the direction of the

magnetic field makes an angle c with the positive x-axis. We may use this type of cavity filled with
nanofluid to model a solar thermal collector.

2.2 Mathematical Modeling
Within the framework of the above-noted assumptions, the governing conservation equations for

this model are expressed in dimensional form as follows [9,34–36]:

@u

@x
þ @v

@y
¼ 0 (1)

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ � 1

qf

@p

@x
þ tfr2uþ rf B2

0

qf
ðv sin c cos c� usin2cÞ (2)

@v

@t
þ u

@v

@x
þ v

@v
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¼ � 1

qf

@p
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0

qf
u sin c cos c� vcos2c
� �

þ 1

qf
1� Ccð Þ T � Tcð Þqf bf g � C � Ccð Þ qp � qf

� �
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� � (3)
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þ
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� �
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� �
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DT
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@x
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� �2
" #

(4)

@C

@t
þ u

@C

@x
þ v

@C

@y
¼ DBr2C þ DT

Tc
r2T (5)

where r2 ¼ @2

@x2
þ @2

@y2
and the descriptions of the physical variables are mentioned in the nomenclature.

2.3 Initial and Boundary Conditions
The appropriate initial and boundary conditions for the above-stated model are as follows:

1) For t � 0:

u ¼ v ¼ 0; T ¼ Tc; C ¼ Cc; p ¼ 0; 0 � x � L; 0 � y � H (6)

2) For t > 0:

ðaÞ On the vertical wall ðx ¼ 0; 0 � y � HÞ: u ¼ 0; v ¼ V0; T ¼ Th; C ¼ Ch (7)

ðbÞ On the bottom wall ðo � x � L; y ¼ 0Þ: u ¼ 0; v ¼ 0;
@T

@y
¼ 0; C ¼ Ch (8)

ðcÞ On the inclined wall ðx
L
þ y

H
¼ 1Þ: u ¼ 0; v ¼ 0; T ¼ Tc;C ¼ Ch (9)

2.4 Introduction of Non-Dimensional Variables
The governing differential Eqs. (1)–(5) representing conservation laws are rarely solved using

dimensional variables. The common practice is to write these dimensional equations in a non-dimensional
form using dimensionless quantities obtained through proper characteristics scales. Writing the
conservation equations in non-dimensional forms results in dimensionless numbers that are very useful
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for performing parametric studies of engineering problems. Again, the use of non-dimensional variables has
several advantages. It allows reducing the number of appropriate parameters for the problem considered,
revealing the relative magnitude of the various terms in the conservation equation that are less important.
This process simplifies the equation to be solved and leaves only the terms of a similar order of
magnitude, which results in better numerical accuracy. Besides, the generated solution will apply to all
dynamically similar-problems. A dimensional variable is transformed into a non-dimensional one by
dividing the variable by a quantity (composed of one or more physical properties) having the same
dimension as the original variable. Thus the non-dimensional forms of the governing conservation Eqs.
(1)–(5) together with the initial and boundary conditions (6)–(9) are obtained by employing the following
dimensionless parameters:

X ¼ x

L
;Y ¼ y

L
;U ¼ u

V0
;V ¼ v

V0
; s ¼ tV0

L
;

P ¼ p

V 2
0 qf

; h ¼ T � Tc
Th � Tc

;f ¼ C � Cc

Ch � Cc

(10)

Substituting (10) into (1)–(5), we obtain the dimensionless equations as follows:

@U

@X
þ @V

@Y
¼ 0 (11)

@U

@s
þ U

@U

@X
þ V

@U

@Y
¼ � @P

@X
þ 1

Re
ð@

2U

@X 2
þ @2U

@Y 2
Þ þ Ha2

Re
ðV sin c cos c� Usin2cÞ (12)

@V
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þ U

@V

@X
þ V

@V

@Y
¼ � @P

@Y
þ 1

Re

@2V

@X 2
þ @2V

@Y 2

� �

þ Ha2

Re
U sin c cos c� Vcos2c
� �þ Ri h� Nrf½ �

(13)
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þ U
@h
@X

þ V
@h
@Y

¼ 1

RePr

@2h
@X 2

þ @2h
@Y 2

� �

þ Nb

RePr

@f
@X

@h
@X

þ @f
@Y

@h
@Y

� �
þ Nt

RePr

@h
@X

� �2

þ @h
@Y

� �2
" # (14)

@f
@s

þ U
@f
@X

þ V
@f
@Y

¼ 1

RePrLe

@2f
@X 2

þ @2f
@Y 2

� �
þ Nt

NbRePrLe

@2h
@X 2

þ @2h
@Y 2

� �
(15)

The non-dimensional boundary conditions become

1. For s � 0:

U ¼ V ¼ 0; h ¼ 0; f ¼ 0; P ¼ 0; 0 � X ; 0 � Y ; X þ Y

AR
� 1 (16)

2. For s > 0:

ðaÞ On the vertical wall ðX ¼ 0; 0 � Y � ARÞ: U ¼ 0;V ¼ 1; h ¼ 1; f ¼ 1 (17)
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ðbÞ On the bottom wall ð0 � X � 1;Y ¼ 0Þ: U ¼ 0;V ¼ 0;
@h
@Y

¼ 0; f ¼ 1 (18)

ðcÞ On the inclined wall ðX þ Y

AR
¼ 1Þ: U ¼ 0;V ¼ 0; h ¼ 0; f ¼ 1 (19)

The parameters appeared in (11)–(19) are defined by

AR ¼ H

L
is the aspect ratio of the triangular enclosure, Pr ¼ tf

af
is the Prandtl number, Ha ¼ B0L

ffiffiffiffiffi
rf
l

r
is

the Hartmann number, Re ¼ V0L

tf
is the Reynolds number, Le ¼ af

DB
is the Lewis number,

Gr ¼ gbf L
3ð1� CcÞDT

tf
is the Grashof number, Ri ¼ Gr

Re2
is the Richardson number,

Nr ¼ DC qp � qf
� �

DTbf qf 1� Ccð Þ is the buoyancy ratio parameter, Nt ¼
qcp
� �

pDTDT

qcp
� �

f Tcaf
is the thermophoresis

parameter, and Nb ¼
qcp
� �

pDBDC

qcp
� �

f af
is the Brownian diffusion parameter.

The dimensionless Eqs. (11)–(15) determine the physical parameters that affect the solutions. The role of
these parameters on the flow and thermal fields are discussed in the results and discussion section.

2.5 Average Nusselt Number
The significant physical quantity in this model is the calculation of the average Nusselt number Nuave

along the left heated wall. The Nusselt number Nu is the ratio of convective to conductive heat transfer
across the boundary, and the local Nusselt number is defined by

NuL ¼ hH

jfDT
(20)

where DT ¼ Th � Tc, H is the height of the triangle (the vertical heated wall), jf is the thermal conductivity
of the base fluid. The convective heat transfer coefficient of the nanofluid flow h is defined by

h ¼ �jf
@

@x
ðT � TcÞ (21)

Using the dimensionless variables defined in Eq. (10), the heat transfer coefficient of nanofluid at the left
heated wall turns into

h ¼ � jfDT
L

@h
@X

� �
X¼0

(22)

Hence, the local Nusselt number for nanofluid at the left heated wall can be expressed as

NuL ¼ �AR
@h
@X

� �
X¼0

(23)

The average Nusselt number is expressed as follows:

Nuave ¼ �
Z AR

0

@h
@X

� �
X¼0

dY (24)
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3 Numerical Procedure

We applied the Galerkin weighted residual-based finite element method (FEM) to solve the governing
dimensionless Eqs. (11)–(15) and boundary conditions (17)–(19). A finite element method is a numerical tool
that approximates the solution of boundary value problems of partial differential equations. The finite
element method exhibits high accuracy of calculation and easily handles complex geometries in
engineering problems. In FEM, we construct approximation functions using the weighted-integral
technique to find a solution of differential equations. We accomplished this by dividing the whole domain
into a set of small sub-domains called finite elements. These elements can be of different types. In 2D
problems, we usually use either triangular or quadrilateral shape elements. Besides, in 3D, the most
commonly used elements’ shape is tetrahedral or hexahedral. Here, we used six node triangular shape
elements for developing the finite element equations. All six nodes are connected with velocities,
temperature, and concentration fields, while only the corner nodes are associated with pressure. In the
finite element method, the approximate solutions are expressed in terms of the shape (or interpolation)
functions, which can be linear or quadratic depending on the number of nodes per element. Also, in 2D
problems, the x, y- coordinates (global coordinate) are mapped into n, g coordinates (or local
coordinates), and the shape functions are defined as functions of n and g. Such local coordinates n; gð Þ
are useful in the numerical evaluation of the integration. Now in terms of local coordinates, the quadratic
shape functions for the velocities, temperature, and concentration are as follows:

Q1ðn; gÞ ¼ 1

2
nþ gð Þ nþ gþ 1ð Þ;Q2ðn; gÞ ¼ � nþ 1ð Þ nþ gð Þ

Q3ðn; gÞ ¼ 1

2
n nþ 1ð Þ;Q4ðn; gÞ ¼ nþ 1ð Þ gþ 1ð Þ

Q5ðn; gÞ ¼ 1

2
g gþ 1ð Þ;Q6ðn; gÞ ¼ � gþ 1ð Þ nþ gð Þ

9>>>>=
>>>>;

(25)

where

Qiðn; gÞ ¼ 1 at node i
0 at every other node

	
(26)

and

X6
i¼1

Qiðn; gÞ ¼ 1 for all n; η in � 1 � n � 1 and � 1 � η � 1 (27)

Also, the linear shape functions for the pressure are as follows:

L1ðn; gÞ ¼ � 1

2
nþ gð Þ; L2ðn; gÞ ¼ 1

2
1þ nð Þ; L3ðn; gÞ ¼ 1

2
1þ gð Þ



(28)

with the property

Liðn; gÞ ¼ 1 at node i
0 at every other node

	
(29)

and

X3
i¼1

Liðn; gÞ ¼ 1 for all n; g in� 1 � n � 1 and � 1 � g � 1 (30)
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Again, for the triangular shape element, the coordinates x, y can be represented in terms of nodal
coordinates using the same shape functions and this is known as isoparametric representation. Thus, for
isoparametric representation, the transformation between x; yð Þ and n; gð Þ is accomplished by a coordinate
transformation of the form

x ¼
X6
i¼1

xiQiðn; gÞ; y ¼
X6
i¼1

yiQiðn; gÞ (31)

In the 2D problem discussed here, each node is permitted to displace along with the two directions, x and
y: Thus, each node has two degrees of freedom. As a result, the number of unknown variables for velocities,
temperature, concentration, and pressure is 27 per element, and hence there are 27 degrees of freedom. Thus,
in terms of the above-defined shape functions, the approximate solutions of U ; V ; h; f and P can be
expressed as follows:

UðX;Y; sÞ ¼ P6
i¼1

UiðsÞQiðn; gÞ; V ðX;Y; sÞ ¼
P6
i¼1

ViðsÞQiðn; gÞ; hðX; Y; sÞ ¼
P6
i¼1

hiðsÞQiðn; gÞ;

fðX;Y; sÞ ¼ P6
i¼1

fiðsÞQiðn; gÞ; PðX; Y Þ ¼
P3
i¼1

PiLiðn; gÞ

9>>=
>>; (32)

where Ui; Vi; hi; fi and Pi are the corresponding nodal values of the unknown functions.

In the Galerkin weighted residual-based finite element method, the weight functions that we choose
are the same as the shape functions that have been used in the approximate solutions (32). Thus
employing the Galerkin weighted residual approach on Eqs. (11)–(15) and also using the Gauss’s
divergence theorem on the second derivative terms that contain in Eqs. (12)–(15), we get finally, the
following finite element equations:Z
�e

Qi
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þ @V
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� �
d�e ¼ 0 (33)
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Z
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@f
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þ V
@f
@Y

� �
d�e þ 1

RePrLe

Z
�e

ð@Qi

@X

@f
@X
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@f
@Y

Þd�e

þ Nt
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RePrLe

Z
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(37)

Here, �e is the typical triangular element area, �e is the boundary of the element �e, ds is the arc length
of an infinitesimal line element along the boundary �e, n ¼ nx; ny

� �
is the unit outward normal vector on the

boundary �e, Sx and Sy are the outflows from the boundary along the x and y- directions respectively.
qw ¼ rh:n denotes the heat flux normal to the boundary of the element and q2w ¼ rh:nþrf:n is the
sum of heat and mass fluxes which are normal to the boundary of the element �e.

We used a three-point Gaussian quadrature formula to evaluate the integrals in the residual Eqs. (33)–
(37). Using the Newton-Raphson method, non-linear residual Eqs. (33)–(37) are solved to determine the
coefficients of the expansions in Eq. (32). The details of this technique are well documented in the
textbook by Reddy et al. [43]. The readers can also consult the work of Uddin et al. [44]. We set
�rþ1 � �r
�� �� � 10�5, where � is the general dependent variable ðU ; V ; h; fÞ, and r is the number of
iteration in order to calculate the error and to determine the convergence of the solution. We tabulated the
thermophysical properties of the base fluids and nanoparticles in Tab. 1.

3.1 Test for Grid Independence
The scrutiny of grid sensitivity on a converged solution is essential for the correct usage of the finite

element method. Here, we examined five non-uniform grids named coarse, normal, fine, finer, and extra-
fine. Each of them has 297, 668, 1075, 1643, and 7435 number of elements within the resolution field.
We have calculated the average Nusselt number (Nuave) for the afore-said mesh elements and tabulated in
Tab. 2 for understanding grid fineness. From Tab. 2, we notice that the values of the average Nusselt
number for 1643 and 7435 mesh elements remain almost the same. It indicates that either 1643 or
7435 mesh elements are sufficient to obtain a grid-independent solution. To save run time and memory,
we used 1643 mesh elements for numerical computation.

Table 1: Thermo-physical properties of the base fluids and nanoparticles (see [15])

Thermophysical properties H2O EO Ke EG Fe3O4

Cp(Jkg
-1K-1) 4179 1880.3 2090 2382.1 670

q(kgm-3) 997.1 888.23 780 1117.48 5180

j(Wm-1K-1) 0.613 0.145 0.149 0.2492 80.4

l(Pas) 0.001003 0.8451 0.00164 0.022 –

b� 10�5(K-1) 21 70 99 57 20.6

a� 10�7(m2s-1) 1.47 0.868 0.914 0.94868 231.17

Pr 6.8377 10959 23.004 210.2978 –

Table 2: Grid sensitivity check for Fe3O4-water nanofluid when Ri ¼ 104, Pr ¼ 6:8377, Nb ¼ 1:24� 10�5,
Nt ¼ 9:58� 10�7, Le ¼ 16795, Ha ¼ 25, c ¼ 15�, and AR ¼ 1

Number of nodes 175 374 588 884 3850

Number of elements 297 668 1075 1643 7435

Nuave 9.0643 9.7321 10.2874 10.3905 10.3906
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3.2 Code Validation
We tallied our simulated results with the work of Ghasemi et al. [33]. They studied a mixed convection

flow in a lid-driven right-angled triangular cavity in the absence of mass transfer. They have considered the
insulated horizontal wall, hot inclined wall, and uniformly moving cold vertical wall. In Tab. 3, we compared
our calculated average Nusselt number with Ghasemi et al. [33] varying Richardson number, Ri. The
comparisons show an excellent agreement among the data and inspire us to use the current code.

4 Numerical Results and Discussion

In this section, we mainly presented average Nusselt numbers computed for different values of the model
parameters. Due to the Brownian diffusion and thermophoresis, it is expected that there is a minimal
concentration difference say, DC ¼ 0:01 within the flow field. For Fe3O4 nanoparticle with diameter
dp ¼ 50 nm, and assuming reference temperature Tc ¼ 300K, temperature difference DT ¼ 10K, the
Brownian diffusion and thermophoresis coefficients are calculated as DB ¼ 8:7591� 10�12 and
DT ¼ 3:9597� 10�12 respectively (see [44,45]). The corresponding values for the other physical
parameters are Pr ¼ 6:8377, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, and Le ¼ 16795. It is good mention
that in nanofluid research using Buongiorno model, the values of the Brownian diffusion parameter Nb,
thermophoresis parameter, and Lewis number are very poorly determined in a significant number of
studies in the open literature (see [46]). In our simulation, we have used the realistic values of the
aforesaid-parameters, which make this study unique. For numerical computation, we considered Ri ¼ 104,
Pr ¼ 6:838, Ha ¼ 25, c ¼ 15�, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, and
AR ¼ 1 as default unless otherwise specified.

To explore the time progression of numerical solutions, we have calculated the streamlines of Fe3O4-
water nanofluid for different values of the dimensionless time s keeping other model parameter values
fixed. We have taken the snapshot of the unsteady solution at s ¼ 0:01, 0.1, 1, and 1.5 and depicted in
Fig. 2. This series of figures show the time progression of solutions from the transient state to a steady
state. We can see that when s � ss ¼ 1, there are no changes in the structure of streamlines, which means
that the solution reached a steady-state. As dimensionless time increases, the fluid flow intensity increases
and approaches a steady-state.

Fig. 3 shows the dimensionless time ss needed to reach the solution in a steady-state for different
Richardson number Ri. We detected that for increasing Richardson’s number the solution requires more
time to be in a steady-state. It is because increased Ri weakens inertia force over the buoyancy force as a
result of the external driving force, the nanofluid motion diminishes. Hence, the system required more
time to be in a steady-state.

Table 3: Comparison of average Nusselt numbers Nuave with those of Ghasemi et al. [33] when Ha ¼ 0;
Nr ¼ 0; Nb ¼ 0 and Nt ¼ 0 in the present model

Ri Ghasemi et al. [33] Present results % of Error

0.01 33.275 33.276 3:0� 10�3

0.1 29.356 29.357 3:4� 10�3

1 11.073 11.074 9:0� 10�3

10 11.073 11.074 9:0� 10�3

100 11.318 11.320 1:7� 10�2
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Figs. 4(a)–4(c), respectively, illustrate the average Nusselt number Nuave, i.e., the rate of heat transfer
from the hot surface (left vertical wall of the cavity) to the nanofluid for different values of the (a)
Richardson number Ri, (b) Hartmann number Ha as well as (c) magnetic field orientation angle c
concerning various dimensionless time ss. The variation in average Nusselt number against dimensionless
time shows the evolution of solution from the unsteady-state to the steady-state. The average Nusselt
number Nuave is very-large, near s ¼ 0:01, due to the sudden increase in temperature at the vertical wall.
The average Nusselt number decreases with time and approaches a steady-state after a certain-time
s � ss. Also, it can be seen that as the Richardson number increases, the average Nusselt number also
increases due to the natural convection. From these figures, we observe that higher values of the
Hartmann number, as well as the magnetic field inclination angle, forced the solution to reach a steady-
state earlier compared to the absence of the magnetic field within the flow domain. We also found that
the heat transfer rate decreases with the increase of the values of s, whereas when the Hartmann number
Ha, as well as the magnetic field inclination angle, increases, the rate of heat transfer decreases.

Fig. 5 shows the average Nusselt number for different Hartmann number Ha with various values of the
Richardson number Ri. As clearly seen, for Ri < 100, the heat is transferred inside the enclosure by
conduction and the convection mode of heat transfer starts when Ri > 100. When the Hartmann number
is zero (Ha ¼ 0) or when the effect of the magnetic field is absent, the average Nusselt number increases
sharply. In this case, the buoyancy force due to the natural convection effect is the only dominant force in

Figure 2: Streamlines for Fe3O4-water nanofluid for different dimensionless time ðsÞ when Ri ¼ 105,
Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, Ha ¼ 25, c ¼ 15� and
AR ¼ 1

Figure 3: Dimensionless time ss needed to reach the solution in steady state for different Ri when
Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, Ha ¼ 25, c ¼ 15�, AR ¼ 1
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the enclosure. When the Hartmann number increases, the Lorentz force becomes energetic and dominates
over the buoyancy force that causes a reduction the heat transfer for all considered values of Ri. It means
that a stronger magnetic field may delay the onset of convection. Thus, the rate of heat transfer can be
controlled by controlling the strength of the applied magnetic field.

The effects of the orientation of the magnetic field on the average Nusselt number are displayed in Fig. 6.
From this figure, we see that Nuave decreases with the increase of c when c < 20, but a further escalation in c
enhances the rate of heat transfer. Thus, we can say that the magnetic field inclination angle, as well as the
Hartmann number, significantly controls the heat transfer rate.
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One of the most critical characteristics of the problem is the change of the aspect ratio (AR) between the
height (the vertical-wall) and length (the horizontal wall) of the triangular enclosure. The diagrams in Fig. 7
show the effect of change in the aspect ratio for different Richardson numbers on the average Nusselt number
and resulting heat transfer. As the aspect ratio increases, the average Nusselt number decreases for AR < 1.
For AR � 1, the average Nusselt number increases with the increment of AR for all Ri.

We can see from Fig. 8 that changing the aspect ratio has a significant effect on the time required for the
solution to reach a steady-state with increasing Richardson number. It is observed from this figure that at the
lower value of aspect ratio and for increasing Richardson’s number, the solution needs less time to reach a
steady-state. Thus, we may conclude that changing the aspect ratio of the triangular enclosure helps the
solution reach a steady-state faster with increasing Ri:

Figure 5: Average Nusselt number for different value of Ha and Ri when Pr ¼ 6:838, Nb ¼ 1:24� 10�5,
Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, c ¼ 15�, AR ¼ 1

Figure 6: Average Nusselt number for different values of the magnatic field inclination angle c when Ri ¼ 104,
Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, Ha ¼ 25, and AR ¼ 1
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In our physical model, we have considered that the vertical wall of the triangular enclosure is uniformly
heated (h ¼ 1). But in reality, this configuration may change depending on the specific applications. Thus, it
is essential to study the present model taking into the effects of varying the thermal boundary conditions to a
non-uniformly heated wall such as h ¼ Y ð1� Y Þ and h ¼ sinð2pY Þ. Consideration of these conditions

Figure 7: Average Nusselt number for different Richardson number Ri and different aspect ratios AR when
Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, Ha ¼ 25, c ¼ 15�, s ¼ 2

Figure 8: Dimensionless time ss needed to reach the solution in steady state for different Richardson number
and different aspect ratios when Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001,
Le ¼ 16795, Ha ¼ 25, and c ¼ 15�
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further eliminates the discontinuity of the temperature at the top corner of the cavity, where there is a hot and
cold wall junction. To study these, we have taken into account the effects of different base fluids such as
Kerosene (KE), Ethylene Glycol (EG), and Engine Oil (EO) on the heat transfer mechanisms. Fig. 9
displayed the average Nusselt number for various thermal boundary conditions; Case 1: h ¼ 1, Case 2:
h ¼ Yð1� YÞ, and Case 3: h ¼ sinð2pYÞ and for different base fluids (H2O, Ke, EG, EO) considering
Fe3O4 nanoparticles when Ri ¼ 104, Ha ¼ 25, c ¼ 15�, AR ¼ 1, and s ¼ 2. From this figure, we observe
that Case1 gives the highest average Nusselt number comparing to the other two-cases for all types of
base fluids. On the other hand, the lowest average Nusselt number we recorded for Case 2. The Fe3O4-
EO nanofluid gives the higher rate of heat transfer, whereas, Fe3O4-H2O has the lowest rate of heat
transfer for all three cases of the thermal boundary conditions.

Fig. 10 demonstrates the average Nusselt number for various thermal boundary conditions: Case 1, Case
2, and Case 3 with different aspect ratios. As displayed before, Case 1 gives the highest average Nusselt
number comparing to the other two-cases for all values of AR. Besides, for all three cases of the thermal
boundary conditions, the average Nusselt number decreases with the increase of the aspect ratio. It
indicates that the various thermal boundary conditions at the heated wall do not have a significant
influence on the aspect ratio of the triangular enclosure.

The average Nusselt number for different aspect ratios with various types of base fluids (H2O, Ke, EG,
and EO) is displayed in Fig. 11. As stated before, the average Nusselt number decreases with the rise of the
aspect ratio for all four types of base fluids. Besides, as we observed in Fig. 9, Fe3O4-EO nanofluid gives the
highest rate of heat transfer, whereas Fe3O4-H2O has the lowest heat transfer. So changing the aspect ratio
leads to the same trend of heat transfer for different types of base fluids.

Figure 9: Average Nusselt number for various thermal boundary conditions with different base fluids; H2O,
Ke, EG and EO when Ri ¼ 104, Ha ¼ 25, c ¼ 15�, AR ¼ 1, and s ¼ 2. The actual value of the average
Nusselt number for EO is divided by 20 to fit within the diagram
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5 Conclusions

In this work, we numerically studied the problem of unsteady natural convection flow and heat transfer
in a lid-driven right-angle triangular shaped enclosure filled with Fe3O4 nanoparticles in four different types
of base fluids such as water, kerosene, ethylene glycol, and engine oil in the presence of an inclined magnetic
field. The model used for the binary nanofluid incorporates the effects of Brownian motion and
thermophoresis. The influence of changing the thermal boundary conditions of the enclosure was also

Figure 10: Average Nusselt number for various thermal boundary conditions with different aspect ratio
when Ra ¼ 104, Pr ¼ 6:838, Nb ¼ 1:24� 10�5, Nt ¼ 9:58� 10�7, Nr ¼ 0:001, Le ¼ 16795, Ha ¼ 25,
c ¼ 15�, and s ¼ 2

Figure 11: Average Nusselt number for different aspect ratios with various type of base fluids H2O, Ke, EG
and EO when Ra ¼ 104, Pr ¼ 6:838, Nr ¼ 0:001, Ha ¼ 25, and c ¼ 15�, and s ¼ 2. The actual value of the
average Nusselt number for EO is divided by 20 to fit within the diagram
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investigated, taken into account different aspect ratios of the cavity. Furthermore, we analyzed the time
evolution of the solution from unsteady to the steady-state. In the physical model, the effects of the
different model parameters such as Richardson number ðRiÞ; Hartmann number ðHaÞ; the inclination
angle (c) of the magnetic field, aspect ratio (AR), and various thermal boundary conditions on the
average Nusselt number were investigated in details and discussed their physical significance. From the
numerical simulations, we found that a strong magnetic field may suppress the convection mechanisms in
nanofluids, as a consequence rate of heat transfer decreases. The magnetic field orientation significantly
controls the rate of heat transfer in nanofluids. For the higher value of Ri, the heat transfer rate decreases
through lower-values of c; but increases through the large-value of c. The higher Ri confirms better heat
transfer through convection than conduction. The heat transfer rate of Fe3O4-EO nanofluid for a
uniformly heated wall case is 537.81%, whereas the corresponding rate for the Fe3O4-EG, Fe3O4-Ke and
Fe3O4-H2O nanofluids are 207.45%, 25.03%, and 10.25%, respectively. Again, the heat transfer rate of
Fe3O4-EO nanofluid for non-uniformly heated wall case (parabolic case) is 91.19%, whereas the
corresponding rates for the Fe3O4-EG, Fe3O4-Ke, and Fe3O4-H2O nanofluids are 34.08%, 3.99%, and
1.49%, respectively. Finally, the heat transfer rate of Fe3O4-EO nanofluid for a non-uniformly heated wall
case (sinusoidal case) is 347.51%,whereas the corresponding rates for the Fe3O4-EG, Fe3O4-Ke, and
Fe3O4-H2O nanofluids are 134.59%, 16.81%,and 8.15%, respectively. Thus, we can conclude that the
heat transfer rate strongly depends on the types of nanofluids as well as the types of boundary conditions.
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