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Abstract: There are two main problems that lead to unsatisfactory classification
performance for hyperspectral remote sensing images (HSIs). One issue is that
the HSI data used for training in deep learning is insufficient, therefore a deeper net-
work is unfavorable for spatial-spectral feature extraction. The other problem is that
as the depth of a deep neural network increases, the network becomes more prone
to overfitting. To address these problems, a dual-channel 3D-Multiscale DenseNet
(3DMSS) is proposed to boost the discriminative capability for HSI classification.
The proposed model has several distinct advantages. First, the model consists of
dual channels that can extract both spectral and spatial features, both of which
are used in HSI classification. Therefore, the classification accuracy can be
improved. Second, the 3D-Multiscale DenseNet is used to extract the spectral
and spatial features which make full use of the HSI cube. The discriminant features
for image classification are extracted and the spectral and spatial features are fused,
which can alleviate the problem of low accuracy caused by limited training sam-
ples. Third, the connections between different layers are established using a residual
dense block, and the feature maps of each layer are fully utilized to further alleviate
the vanishing gradient problem. Qualitative classification experiments are reported
that show the effectiveness of the proposed method. Compared with existing HSI
classification techniques, the proposed method is highly suitable for HSI classifica-
tion, especially for datasets with fewer training samples. The best overall accuracy
of 99.36%, 99.86%, and 99.99% were obtained for the Indian Pines, KSC, and SA
datasets, which showed an effective improvement of the classification accuracy.

Keywords: Deep neural network; residual dense network; spectral-spatial feature
extraction; 3D-Multiscale; hyperspectral image classification

1 Introduction

Hyperspectral image classification refers to the process of marking unlabeled pixels. For this,
classification algorithms can be divided into two categories: Algorithms based on spectral-spatial features
and algorithms based on deep learning.
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HSI classification algorithms based on spectral-spatial features refers to the use of both spectral and
spatial features. The introduction of spatial features in the classification process is due to the phenomena
of “different objects with the same spectrum” and “different spectra of the same objects”. In order to
alleviate this problem, many scholars begin to consider spatial features. A large number of researchers
have shown that combining spatial features can effectively improve the classification accuracy [1–3]. The
most representative classification algorithm based on spectral-spatial features is the Composite Kernel
(CK) classification algorithm. However, the traditional CK algorithm is prone to misclassification on the
boundary of HSI. Menon et al. improved the CK algorithm [2] and proposed a combined kernel HSI
classification algorithm based on the nearest neighbor domain. Tabalka et al. proposed an HSI
classification algorithm based on Markov random fields (MRF) and SVMs [4]. A probabilistic SVM [5]
is used to process the original HSI, and the probability of a pixel belonging to each category is obtained.
This algorithm has good accuracy for homogeneous regions, but the pixels in the edge regions and
isolated pixels are easily misclassified.

In recent years, many researchers have made great breakthroughs in the field of deep learning. Deep
learning is widely used in the field of computer vision. Zhang et al. [6] proposed a lightweight deep
network for traffic sign classification. Wang et al. [7] improved the traditional convolutional neural
network and proposed a new image classification model. Zhang et al. [8] extracted spatial and semantic
convolutional features for robust visual object tracking. Deep learning can also be used in the information
safety field, for example, it can be used in image information hiding [9] and packet inspection [10,11]. In
the field of intelligent medical treatment [12] and natural language processing [13], deep learning
algorithms have also achieved fruitful results.

Among the numerous algorithms based on deep learning, Convolutional Neural Networks (CNNs) [14]
are the most representative classification methods. CNNs have been widely used in HSI classification
[15,16]. Although CNN models have been used for HSI classification and achieved state-of-the-art
results, it is counterintuitive that the classification accuracy decreases with the increase of convolutional
layers after four or five stacked layers [17]. Inspired by the latest deep residual learning framework
proposed in [18], this issue can be addressed by adding shortcut connections between every other layer
and propagating the value of features. Residual Dense Networks can be regarded as an extension of
Convolutional Neural Networks with skip connections that facilitate the propagation of gradients and
perform robustly with very deep architecture.

In this paper, we proposed a deep 3D-Multiscale DenseNet (3DMSS) for HSI classification based on
spectral-spatial information. Our developments mainly consist of three aspects. First, the model consists
of dual channels which can extract both the spectral and spatial features, improving the classification
accuracy. Second, the discriminant spectral-spatial features for image classification are extracted and the
spectral and spatial features are fused, alleviating the problem of low accuracy caused by limited training
samples. Third, the connections between different layers are established using a residual dense block, and
the feature maps of each layer are fully utilized to further alleviate the vanishing gradient problem.

2 Related Work

2.1 Deep CNN

A CNN is usually composed of several convolutional layers, pooling layers, and fully connected layers
which result in a deep network architecture. Therefore, a CNN is able to deal with more complex
classification and recognition problems and achieve excellent results.

Specifically, the training sample set is assumed to be X ¼ fxð1Þ; xð2Þ; � � � ; xðmÞ; � � � ; xðMÞg and its
corresponding labeled sample set. For each convolutional layer l, all feature maps are summed by the
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convolution operation of the previous layer’s feature map with a convolutional kernel. The calculation of the
feature map is shown in Eq. (1):

xðl;sÞ ¼ f ð
XNl�1

t¼1

xðl�1;tÞ � kðl;s;tÞ þ bðl;sÞÞ (1)

where xðl;sÞ is the sth feature map of the lth layer, Nl�1 is the number of the previous layer’s feature map, and
kðl;s;tÞ bðl;sÞ are the convolutional kernel and corresponding bias terms, respectively.

The input feature map is down-sampled by the pooling layer to realize scale-invariance. The number of
feature maps is unchanged. The down-sampling operation is shown in Eq. (2):

xðl;sÞ ¼ gðbðl;sÞ � downðxðl�1;sÞÞ þ bðl;sÞÞ (2)

where downð�Þ is the pooling function, b is the multiplicative bias, and b is the additive bias. According to
this formula, each output feature map of the pooling layer is the down-sampling of its corresponding input
feature map.

The mean square error is the energy function of the whole network, as shown in Eq. (3):

J ðW ; bÞ ¼ 1

2M

XM
m¼1

yðmÞ � zðmÞ
�� ��2

2
(3)

where zðmÞ is the actual output.

In practice, the overall accuracy of the convolutional neural network is related to the depth of the
network. In general, the accuracy of the model is improved by increasing the network depth, but at a
certain point the overall accuracy will decrease if the network depth continues to increase. The main
reason is that the deeper the network, the more likely it is to encounter the vanishing gradient problem,
and it is easy to fall into a local minimum. Therefore, it is difficult to make full use of the feature
extraction ability of the deep network by directly stacking shallow layers into a deep network.

2.2 Deep Residual Networks

To address the gradient degeneration problem, He proposed the Residual Neural Network (ResNet) [19].
The residual block is the basic architecture of ResNet; a residual neural network is composed of several
residual blocks, as shown in Fig. 1:

Here, x represents the input data. For a network with no short connections, the output is FðxÞ; for a
residual block with short connections, the output is HðxÞ, where HðxÞ ¼ FðxÞ þ x. Experimental results
show that it is much easier to optimize the residual mapping FðxÞ than the original function mapping
HðxÞ in the residual block. HðxÞ can be understood as the sum of the residual mapping FðxÞ and the
identity mapping x in the network. Identity mapping neither increases the number of parameters nor

Figure 1: Structure of a residual block
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affects the complexity of the original network. In the figure, Conv represents the convolution operation, BN
represents batch normalization, and ReLU represents the activation function.

ResNet has one more shortcut connection than a traditional neural network. From the perspective of
feature flow, it enables features to be transferred directly to the next layer. When the layers of the neural
network are very deep, there are still lower features that enhance the higher features, so that the features
can be introduced deeper. From the perspective of backpropagation, when the output changes a small

amount, the gradient
@HðxÞ
@x

will be very small, which is extremely difficult for directly learning HðxÞ.
However, because the difference is calculated in ResNet training FðxÞ, which amplifies the slight change,

the gradient becomes
@HðxÞ
@x

� 1. The absolute value of the gradient becomes larger, the training process

continues, and the degradation problem is solved.

Recently, He et al. built a random depth architecture based on a 1202-layer ResNet [19]. However, they
found that randomly discarding the ResNet layer did not change the convergence in training. This
phenomenon indicates that ResNet does not make full use of the output feature by each convolutional
layer in the residual block, and also ignores the connection between any two convolutional layers.
Meanwhile, the mode of adding layers is not conducive to the transmission of features in the network.

2.3 Deep DenseNet

Huang et al. [20] proposed the DenseNet model. DenseNet is able to connect any two convolutional
layers in a dense cell, realizing feature reuse and feature transfer. DenseNet is based on a residual dense
block, which is composed of several convolutional layers and activation layers, and plays the role of
feature extraction. The output of each block will establish a short connection with the output of each
convolutional layer of the next block, realizing continuous feature transmission. The structure of a
residual network is shown in Fig. 2:

Assume that the input and output of the dth block are Fd�1 and Fd, respectively. The number of input and
output feature maps is G0. The output of the cth convolutional layer can be represented as in Eq. (4):

Fd;c ¼ Hf½Fd�1;Fd;1; � � � ;Fd;c�1�g (4)

where Hð�Þ is a nonlinear operation of the convolutional layer, including convolution and ReLU functions.
Let Fd;c output G feature maps representing the connection between the feature maps output by the previous
block and the feature graph output by the c� 1 convolutional layer before the block, containing
G0 þ ðc� 1Þ � G feature maps in total.

Since full connection is adopted between the input layer of the block and the convolutional layer, it is
necessary to compress the feature maps at the end of the block. Therefore, 1 × 1 convolution is adopted to
control the number of feature maps, which can be represented as in Eq. (5):

Figure 2: Illustration of a residual dense block
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Fd;LF ¼ Hd
LEFf½Fd�1;Fd;1; � � � ;Fd;c�g (5)

whereHd
LEF represents the 1� 1 convolution operation. The final output of the block is shown in Eq. (6):

Fd ¼ Fd�1 þ Fd;LF (6)

Local residual learning is calculated by adding the output and input of the block, which further preserves
a large amount of image detail and improves the feature extraction performance of the residual dense block.

3 Proposed Frameworks

First, we introduce how to apply 3D convolution for HSI. Second, we give a general introduction to the
3DMSS model proposed in this paper: the input of the model is the original HSI data and the output of the
model is the classification results of the corresponding pixel. Then, according to the process of 3DMSS, the
3D-multiscale spectral and spatial DenseNet channels, feature fusion, and classification are introduced in
detail. Finally, the training and optimization process of the model is introduced.

3.1 3D-Multiscale Convolutional Network

HSI is a 3D cube with rich spectral-spatial features. As a result, the 3D convolution operation [21] is
adopted to extract spectral and spatial features. The 3D convolution operation is shown in Fig. 3.

As we can see from this figure, the input data is a 3D image composed of spectral and spatial dimensions.
Therefore, the convolution kernel performs the convolution operation on both spectral and spatial
dimensions of the input 3D image. One pixel at a time is obtained in the 3D image by the convolutional
operation, and a new 3D feature map is obtained after the processing of the whole image. The calculation
is shown in Eq. (7).

xx;y;zi;j ¼ r
X
m

XPi�1

p¼0

XQi�1

q¼0

XRi�1

r¼0

Wp;q;r
i;j;m X xþp;yþq;zþr

ði�1Þ;m þ bij

 !
(7)

Here, xx;y;zi;j is the output value of the jth feature map at position ðx; y; zÞ of the ith layer. m is the set of
feature maps connected to the current feature graph at the ði� 1Þth layer,Wp;q;r

i;j;m is the weight of the position
ðp; q; rÞ of the 3D convolution kernel in the mth feature map, and bi;j is the bias. rð�Þ is the activation
function. Pi, Qi, Ri is the length, width, and height of the convolutional kernel, respectively.

HSI is characterized by large data volumes but with limited data for training. The features learned by the
convolution kernel with a fixed scale are not conducive to the training of the model. Therefore, a multi-scale
network is used to learn features at different scales, extract more discriminative features, and improve feature
extraction for small sample data. HSI classification by the 3D-multiscale network can alleviate the problem
of low accuracy caused by limited training samples.

Figure 3: Illustration of the 3D convolutional operation
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3.2 Overview of 3DMSS

HSI is three-dimensional data, including one-dimensional spectral data and two-dimensional spatial
data. Although HSI contains abundant spectral information, there are many bands with high correlation
between adjacent bands and data redundancy. Since spectral and spatial information play important roles
in HSI classification, spectral and spatial dimensions should be considered in feature extraction. HSI
features are extracted by using a 3D convolutional kernel [22,23]. Although these methods improve the
classification accuracy, they do not fully extract discriminative spectral-spatial features.

In order to predict the category of ground objects, we propose 3D-Multiscale Spectral-Spatial DenseNet.
A convolution kernel of 1� 1� 5 and 1� 1� 7 is chosen to extract spectral features, and a convolution
kernel of 3� 3� 1 and 5� 5� 1 is chosen to extract spatial features. In the network, spectral and
spatial features are extracted continuously, and more discriminative spectral-spatial features are used for
classification. The application of multi-scale networks can alleviate the problem of limited training
samples. In addition, the feature fusion module is embedded in the multi-scale network. The 3DMSS
approach shares feature information of different scales to enhance the information flow of the network,
which is conducive to the extraction of spectral-spatial features and improves the classification accuracy.
The model of the network is shown in Fig. 4.

3.3 Channel 1: 3D-Multiscale Spectral DenseNet

3D-Multiscale Spectral DenseNet is shown in Fig. 5. In the training process, for the purpose of
dimensionality reduction, the convolution operation is carried out using 24 convolutional kernels with a
step size of 2 for the original HSI. The 3D feature map after dimensionality reduction is used as the input
to the spectral feature extraction channel.

Figure 4: The architecture of 3DMSS
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In 3D-Multiscale Spectral DenseNet, the multi-scale features of the spectral domain are extracted by
using the K convolution kernels with of size p and q, respectively. This is shown in Eqs. (8) and (9):

M1 ¼ rðw1
1�1�p � On�1 þ b11�1�pÞ (8)

N1 ¼ rðw1�1�q � On�1 þ b11�1�qÞ (9)

where On�1 is the input feature map of the 3D-Multiscale Spectral DenseNet. � is the convolutional
operation, w is the weight of the convolution kernel, and b is the bias. The superscripts of w and b are the
number of convolutional layers and the subscripts are the size of the convolutional kernel. rð�Þ is the
activation function.

Shallow spectral features at two scales were extracted, andOn was obtained by fusing the K feature maps
(a total of 2� K feature maps) learned at each scale and the original input. This is shown in Eq. (10).

On ¼ On�1 þM1 þ N1 (10)

Then, K spectral convolutional kernels of different scales are used to carry out the multi-scale
convolution operation on On, as shown in Eqs. (11) and (12):

M2 ¼ rðw2
1�1�p � On þ b21�1�pÞ (11)

N2 ¼ rðw2
1�1�q � On þ b21�1�qÞ (12)

where the meanings of each variable are the same as in formula (8) and formula (9). The discriminant spectral
feature diagram O will be learned after the extraction of spectral features, as shown in Eq. (13).

Onþ1 ¼ On þ On�1 þM2 þ N2 (13)

3.4 Channel 2: 3D-Multiscale Spatial DenseNet

3D-Multiscale Spatial DenseNet is shown in Fig. 6. In the training process, to achieve the purposes of
the dimension reduction, the convolution operation is carried out by using 24 convolutions kernels with a
step size of 2 to the original HSI. The 3D feature map after dimension reduction is used as the input data
of spatial feature extraction channel.

Figure 5: 3D-Multiscale Spectral DenseNet
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In 3D-Multiscale Spatial DenseNet, the multi-scale features of spatial domain are extracted by using the
K

0
convolution kernels with sizes of p

0
and q

0
, respectively. As shown in Eqs. (14) and (15):

M
0
1 ¼ rðw1

p0�p0�1 � O
0
n�1 þ b1p0�p0�1Þ (14)

N
0
1 ¼ rðw1

q0�q0�1 � O
0
n�1 þ b1q0�q0�1Þ (15)

where, O
0
n�1 is the input feature map of the 3D-Multiscale Spectral DenseNet. “�” is the convolutional

operation. w is the weight of the convolution kernel. b is the bias. The superscript of w and b is the
number of convolutional layers, and the subscript is the size of the convolutional kernel. rð�Þ is the
activation function.

The shallow spatial features at two scales were extracted, and the O
0
n is obtained by fusing the K

0
feature

maps (a total of 2� K
0
feature maps) learned at each scale and the original input. As shown in Eq. (16):

O
0
n ¼ O

0
n�1 þM

0
1 þ N

0
1 (16)

Then, K
0
spatial convolution kernels of different scales are used to carry out multi-scale convolution

operation on O
0
n, as shown in Eqs. (17) and (18):

M
0
2 ¼ rðw2

5�5�1 � O
0
n þ b25�5�1Þ (17)

N
0
2 ¼ rðw2

3�3�1 � O
0
n þ b23�3�1Þ (18)

The meanings of each variable are the same as formula (14) and formula (15).

The discriminant spectral feature diagram O will be learned after the extraction of spectral features, as
shown in Eq. (19):

O
0
nþ1 ¼ O

0
n þ O

0
n�1 þM

0
2 þ N

0
2 (19)

3.5 Feature Fusion and Classification

As shown in Fig. 7, the results of spectral and spatial learning are concatenated as input followed by a
BN, RELU, and convolution layer block, which is the same as the process for Block 2.

Figure 6: 3D-Multiscale Spatial DenseNet
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At the end of the block, global average pooling layers are inserted. It was originally designed to replace
the traditional FC layer in CNNs. The global average pooling layer contains a much smaller number of
parameters than FC layers and can retain good localization ability for a network. It is important to
consider two main problems in HSI classification: the overfitting phenomenon caused by the large model
scale with limited training data, and the effective extraction of both spectral and spatial features. After the
FC layer, a softmax layer is used to obtain the final classification result.

4 Experimental Results and Discussion

We evaluated the performance of the proposed network on three publicly available HSI datasets. First,
the main components of 3DMSS are tested, including the number of kernels, the depth of the spectral kernel,
the size of the spatial kernel and the number of training samples. Then, the proposed classification model is
compared with mainstream approaches in terms of the overall accuracy (OA), average accuracy (AA), and
kappa coefficient (K). These are adopted to qualitatively evaluate the classification results.

4.1 Description of the Experimental Data Sets

Three datasets were used: Indian Pines (IN), Kennedy Space Center (KSC), and Salinas (SA). The
Indian Pines dataset contains 220 spectral channels and the spatial resolution is 20 m. Each band contains
145 × 145 pixels. The sample size is shown in Tab. 1. The KSC dataset contains 224 spectral channels
and 13 land cover categories; the sample size is shown in Tab. 2. The Salinas dataset contains
224 spectral channels, and the spatial resolution is 3.7 m. The sample size is shown in Tab. 3.

Figure 7: Feature fusion and classification

Table 1: Indian Pines data sample distribution

No. Class No. of Samples

1 Alfalfa 54

2 Corn-notill 1434

3 Corn-mintill 834

4 Corn 234

5 Grass/pasture 497

6 Grass/tree 747

7 Grass/pasture/mowed 26

8 Hay/Windrowed 489

9 Oats 20

10 Soybean-notill 968
(Continued)
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4.2 Experimental Setup for the Classification of Labeled Pixels

To set the parameters of 3DMSS, we determined the optimal parameters through a series of experiments,
which included the number of convolution kernels, the convolution kernels’ depth of spectral feature
channels, the convolution kernels’ size of spatial feature channels, and the number of training samples in
each batch.

4.2.1 Effect of the Number of Kernels
This experiment analyzes the effect of the number of convolution kernels on the classification results.

For the experimentation, the number of convolution kernels of each residual dense block on Channel 1
and Channel 2 was set to 6, 12, 24, 48, and 64, respectively. The classification accuracy for different
numbers of kernels was recorded.

Table 1 (continued).

No. Class No. of Samples

11 Soybean-mintill 2468

12 Soybean-clean 614

13 Wheat 212

14 Woods 1294

15 Buildings/grass/trees/drives 95

16 Stone/steel/towers 380

Total 10366

Table 2: KSC data sample distribution

No. Class No. of Samples

1 Scrub 530

2 Willow swamp 165

3 CP hammock 176

4 Slash pine 170

5 Oak/Broadleaf 110

6 Hardwood 161

7 Swap 80

8 Graminoid marsh 299

9 Spartina marsh 377

10 Cattail marsh 283

11 Salt marsh 296

12 Mud flats 341

13 Water 654

Total 3642
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Fig. 8 shows the experimental results. It can be seen that, under certain conditions, increasing the
number of convolution kernels can improve the classification accuracy. However, the classification
accuracy does not increase linearly with the increase of convolution kernels. With the increase of the
number of kernels, the classification accuracy rises first and then flattens out. The experimental results
show that the classification accuracy is highest when the number of kernels is 24. It can also be seen that
as the number of convolution kernels increases, the computational complexity of the model increases and
the time required for classification increases. Therefore, considering the classification accuracy and time
complexity, the number of convolution kernels in the convolutional layer is set to 24.

Figure 8: Classification results for each dataset for different kernels

Table 3: Indian Pines data sample distribution

No. Class No. of Samples

1 Brocoli_green_weeds_1 2009

2 Brocoli_green_weeds_2 3726

3 Fallow 1976

4 Fallow_rough_plow 1394

5 Fallow_smooth 2678

6 Stubble 3959

7 Celery 3579

8 Grapes_untrained 11271

9 Soil_vinyard_develop 6203

10 Corn_senesced_green_weeds 3278

11 Lettuce_romaine_4wk 1068

12 Lettuce_romaine_5wk 1927

13 Lettuce_romaine_6wk 916

14 Lettuce_romaine_7wk 1070

15 Vinyard_untrained 7268

16 Vinyard_vertical_trellis 1807

Total 54129
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4.2.2 Effect of Different Spectral Kernel Depths
Tab. 4 shows the classification accuracy results for different convolutional kernel depths for 3D-

Multiscale Spectral DenseNet. As can be seen from the table, the OA, AA, and Kappa coefficients
increased with the increase of convolution kernel depth. As the depth increases 1� 1� 7, the accuracy
increases slowly or stops increasing. Therefore, the selected convolutional kernel depths for the 3D-
Multiscale Spectral DenseNet were 1� 1� 5 and 1� 1� 7.

4.2.3 Effect of Different Spatial Kernel Size
Tab. 5 shows the classification accuracy results for different convolutional kernel sizes in 3D-Multiscale

Spatial DenseNet. As we can see from the table, the OA, AA, and Kappa coefficients increased with the
increase of convolution kernel size. As the size increases 5� 5, the accuracy increases slowly or stops
increasing. Therefore, convolutional kernel sizes 3� 3 and 5� 5 were selected based on the main
evaluation indexes.

4.3 Classification Results and Discussion

In order to verify the classification performance of 3DMSS proposed in this paper, we compared this
with five other classical HSI classification methods on the basis of the OA, AA, and Kappa coefficients.
These five methods include: A Support Vector Machine method [6], a Gabor-based method (GABOR)
[24], the Image Fusion and Recursive Filtering method [25], 3D-CNN [17], and MS3FE [26]. Tabs. 6–8
show the test results of each method for three datasets. Figs. 9–11 are the visual maps of the different
methods on the three datasets.

From Tabs. 6–8, it can be seen that the proposed method attains the best classification performance for
the three datasets. The OA for the three datasets is 99.36%, 99.86%, and 99.99%, respectively. Figs. 9–11 are
the visual maps of the different methods for the three datasets. It can be seen from the figures that the visual

Table 4: OA comparison for different spectral kernel depths

Kernels Depth IN SS KSC

OA AA Kappa OA AA Kappa OA AA Kappa

1� 1� 3 96.59 93.37 0.9623 97.29 96.98 0.9549 96.39 95.29 0.9478

1� 1� 5 98.79 95.36 0.9865 99.99 99.99 0.9998 99.86 99.80 0.9984

1� 1� 7 99.36 95.76 0.9927 99.35 99.18 09916 99.45 99.06 0.9883

1� 1� 9 97.28 94.13 0.9694 98.43 98.38 0.9799 97.26 96.72 0.9613

Table 5: OA comparison for different spatial kernel size

Kernels Depth IN SS KSC

OA AA Kappa OA AA Kappa OA AA Kappa

3� 3 99.36 95.76 0.9927 99.79 99.68 99.64 99.54 99.28 98.85

5� 5 99.11 95.63 0.9887 99.99 99.99 99.98 99.86 99.80 99.84

7� 7 98.24 94.17 0.9779 98.35 97.89 97.32 97.54 97.25 96.41

9� 9 95.32 92.44 0.9389 96.13 95.78 95.31 95.39 94.32 93.76
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maps for SVM, GABOR, and 3D-CNN have noise and fuzzy classification. The visual maps for RF and
MS3FE have clear classification boundaries, but there is still a small amount of noise. The visual maps
for 3DMSS are the clearest, and the classification result is the closest to the real object label.

Table 6: Testing of the different methods for the IN dataset

Class SVM GABOR IFRF 3D-CNN MS3FE 3DMSS

1 34.65 92.71 94.53 60.98 95.47 100

2 65.38 92.76 92.90 78.60 88.84 99.13

3 43.87 88.28 93.05 87.42 93.78 98.26

4 34.64 93.23 90.07 88.32 92.87 99.58

5 81.08 89.72 92.72 80.60 92.31 99.08

6 93.16 91.25 99.34 92.98 98.89 99.44

7 65.19 84.23 98.46 68.00 96.54 100

8 95.20 97.93 99.67 95.57 99.22 100

9 34.17 83.33 88.89 77.78 100 40.00

10 61.16 91.54 92.38 76.91 92.32 99.19

11 78.29 93.92 96.33 84.42 98.72 99.57

12 44.77 91.27 91.93 82.52 92.78 99.00

13 97.40 93.35 99.10 96.20 98.69 100

14 95.74 96.87 98.28 99.30 99.98 99.81

15 42.33 95.30 93.96 89.94 99.46 99.74

16 85.34 87.35 98.30 85.54 93.81 99.37

OA 65.77 91.44 94.99 84.13 95.85 99.36

AA 72.04 93.00 95.22 86.43 95.71 95.76

Kappa 0.6775 0.9203 0.9455 0.8450 0.9510 0.9927

Table 7: Testing of the different methods for the KSC dataset

Class SVM GABOR RF 3D-CNN MS3FE 3DMSS

1 81.91 81.45 83.93 91.50 94.10 99.92

2 74.59 38.45 67.30 100 93.24 98.71

3 82.99 71.32 99.51 85.59 98.70 99.83

4 40.21 38.86 77.87 60.34 97.62 99.06

5 40.36 75.26 97.15 100 86.49 99.82

6 51.16 43.15 86.67 94.26 99.82 100

7 78.53 86.63 99.32 100 100 100

8 73.97 69.39 95.12 85.89 93.57 100

9 81.14 84.34 89.73 73.80 94.63 100
(Continued)
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Analyzing the above experimental results, we can draw the following conclusions:

1. The higher the spatial resolution of HSI, the better the classification performance is achieved for the
larger convolutional kernel size. The spatial resolution of IN, KSC, and SA is 145 × 145, 512 × 614,
and 512 × 217, respectively. Since the resolution of IN is the smallest, IN achieves the best
classification accuracy for the convolution kernel size of 3 × 3. The spatial resolution of KSC and

Table 7 (continued).

Class SVM GABOR RF 3D-CNN MS3FE 3DMSS

10 79.12 62.61 94.43 99.48 88.85 100

11 91.49 88.25 99.27 93.23 96.32 100

12 86.90 58.50 91.45 83.23 96.98 100

13 99.91 71.28 100 100 100 100

OA 74.02 66.89 90.90 89.79 95.41 99.86

AA 80.58 69.54 91.62 89.90 95.71 99.80

Kappa 0.7840 0.6630 0.8909 0.8876 0.9523 0.9984

Table 8: Testing of the different methods for the SA dataset

Class SVM GABOR IFRF 3D-CNN MS3FE 3DMSS

1 96.81 94.58 100 78.68 97.97 100

2 91.91 95.08 97.87 75.50 97.40 100

3 88.71 94.14 99.99 97.09 99.63 100

4 99.28 96.43 98.94 99.85 99.45 99.91

5 95.97 88.24 95.93 97.07 97.61 99.98

6 99.74 99.55 99.60 99.85 99.81 100

7 99.51 94.22 99.02 99.72 99.94 100

8 61.09 65.82 87.62 29.83 92.50 99.96

9 97.85 97.39 99.99 95.05 98.31 1

10 76.73 90.64 98.40 92.33 92.21 99.98

11 91.55 92.25 96.61 1000 97.37 100

12 97.52 99.03 97.13 99.42 99.18 100

13 95.27 98.43 97.13 99.96 96.69 100

14 91.30 92.41 96.75 100 94.52 100

15 58.03 76.73 97.00 86.81 96.15 100

16 91.92 89.45 95.77 94.18 99.53 100

OA 89.57 91.53 97.36 90.15 97.39 99.99

AA 82.45 86.32 96.02 79.49 96.57 99.99

Kappa 0.8052 0.8483 0.9558 0.7746 0.9619 99.98

1454 IASC, 2020, vol.26, no.6



SA is greater than IN, so they achieve the best classification accuracy for the slightly larger
convolution kernel size 5 × 5.

2. The more spectral bands, the better the classification results for the deeper convolutional kernel. The
number of spectral bands for IN, KSC, and SA is 200, 176, and 184, respectively. IN has the most
spectral bands, so IN achieves the highest classification accuracy with a convolution kernel depth of
1 × 1 × 7. KSC and SA have fewer spectral bands, so they achieve the highest classification accuracy
with a convolution kernel depth of 1 × 1 × 5.

3. Deep learning methods are superior to statistical methods. Among the six compared methods, SVM,
Gabor, and RF are traditional classification methods based on statistics. 3D-CNN, MS3FE, and
3DMSS are deep learning methods, and all three use convolutional neural networks. It can be
seen from the experimental results that the classification performance for deep learning methods is
better than that for statistical methods.

4. Spectral-spatial features help to improve the classification accuracy. Since 3DMSS and MS3FE take
into account the spectral-spatial features of HSI, the OA obtained by these two classification methods
is significantly higher than that of other methods.

5. The classification results for the residual dense network are better than for other methods. Compared
with other classification methods, 3DMSS achieved the best classification results. This is because
3DMSS can extract HSI spectral-spatial features from different scales so that the features of
different channels can be shared, and the information flow can be enhanced. At the same time, in
order to improve the classification performance, the residual dense block is introduced into
3DMSS to overcome the vanishing gradient problem.

Figure 9: Experimental results for the different methods for the IN dataset
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5 Conclusion

In order to improve the classification performance for HSI, an end-to-end deep 3D-Multiscale Spatial-
Spectral DenseNet was proposed in this paper. The work was proposed to handle the problems associated
with HSI data such as multiple bands, data redundancy, and limited training samples. The discriminative
spectral-spatial features were extracted using 3D-multiscale methods; the features of different blocks can
be shared, and the information flow can be enhanced, which solves the problem of the lack of training
samples. At the same time, in order to improve the classification performance, residual dense blocks are
introduced into 3DMSS to address the vanishing gradient problem. Comparing the classification accuracy
with available HSI classification methods for three public HSI datasets, the proposed method shows very
promising results, and is highly effective. There is still plenty of scope to develop the proposed method,

Figure 10: Experimental results for the different methods for the SA dataset

Figure 11: Experimental results for the different methods for the SA dataset
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such as more successful strategies in multi-scale feature fusion and robust classification accuracy for the
boundary region. Also, a parallel and distributed fusion strategy, such as in [27,28], will be very helpful
in improving the computational efficiency in practice.
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