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Abstract: Robotic grasping is an important issue in the field of robot control. In
order to solve the problem of optimal grasping pose of the robotic arm, based on
the Generative Grasping Convolutional Neural Network (GG-CNN), a new con-
volutional neural network called Hybrid Generative Grasping Convolutional
Neural Network (HGG-CNN) is proposed by combining three small network
structures called Inception Block, Dense Block and SELayer. This new type of
convolutional neural network structure can improve the accuracy rate of grasping
pose based on the GG-CNN network, thereby improving the success rate of grasp-
ing. In addition, the HGG-CNN convolutional neural network structure can also
overcome the problem that the original GG-CNN network structure has in yield-
ing a recognition rate of less than 70% for complex artificial irregular objects.
After experimental tests, the HGG-CNN convolutional neural network can
improve the average grasping pose accuracy of the original GG-CNN network
from 83.83% to 92.48%. For irregular objects with complex man-made shapes
such as spoons, the recognition rate of grasping pose can also be increased from
21.38% to 55.33%.

Keywords: Convolutional neural network; optimal grasping pose generation;
robotic grasping

1 Introduction

In recent years, manipulator has played an important role in many aspects of human life, such as
cooperative control, autonomous obstacle avoidance, and assisted grasping. As the basic ability of a
manipulator is to work cooperatively with human beings, grasping is the fundamental guarantee for
completing various subsequent complex autonomous tasks. Among them, grasping unknown and
irregular objects with various shapes and positions is an important part of the current research in the field
of manipulator control, and the rapid and stable generation of objects’ grasping pose with visual
information is the main focus. At present, there are many methods to quickly and stably generate the
optimal grasping pose of the manipulator at home and abroad. However, these methods still have many
problems that can be optimized [1-6].
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Recently, a revolution of deep learning in the field of computer vision has been witnessed. Deep learning
directly learns the internal connection and depth information of the image from the image element level data
and has achieved unprecedented performance in many scene-comprehension tasks, especially in object
detection, object segmentation and classification. For decades, thanks to the development of parallel
computing devices and large data sets, and to the performance of online resource accessibility and its
advantages in modeling, the deep learning model represented by Convolutional Neural Network (CNN)
has achieved rapid development and has been successfully applied in many computer vision (CV,
computer-vision) cases, such as face recognition, pedestrian re-recognition, scene text detection, and
targets tracking and automatic driving, etc. [7].

Based on vision and deep learning, the generation of robotic grasping pose is combined with both,
pattern recognition and image processing technology. By analyzing and processing the image acquired by
the acquisition equipment, the position extraction and azimuth estimation of the target are completed.
This overcomes the defects of traditional manual feature extraction methods, such as high artificial feature
requirements, sensitive factors such as the shape, size and angle of the target object, weak generalization
ability, and the inability of a stable application in varied scenes. Therefore, the deep learning-based
optimal grasping pose generation method of manipulator not only has important academic research value,
but also has a very broad market application prospect.

2 Related Work (Status Quo)

At present, researchers have come up with many methods to detect the grasping pose of objects. For the
traditional algorithm, Pas et al. [2] successively proposed two detection methods based on geometric
constraints, whose main idea is to define some geometric conditions on the object to support the
subsequent calculation of the optimal grasping pose (please add the reference number). Peng et al. [4]
used the manipulator and the grasping object to perform geometric level fitting and studied the grasping
pose on the voxelized 3D-object. These models are stable, but because such methods focus on using
models, they often cannot be generalized to new grasping objects; and in some cases, modeling is
difficult and cannot be transferred well to the real world.

In addition, the new intelligent control algorithm is gaining popularity in the recognition of the optimal
grasping pose of the manipulator. In recent years, deep learning methods based on convolution networks,
such as region convolution neural networks (RCNN) [&], have also indirectly promoted the research on
robotic grasping. Wu et al. [5—9] introduced a pose interpretation neural network based entirely on synthetic
pose data, and designed a grabbing pose estimation method by using the mixed hierarchy feature. Kumra
et al. [10] used RGB-D image training convolutional network to predict the optimal grasping pose in image
plane. Guo et al. [11-15] designed an end-to-end network to predict the possible fetching points of the
target object and used a reference rectangle to represent the fetching position in the image.

With the increase of computing resources, the way robots learn to grasp from human experience or data
sets has become an emerging research direction. Jiang et al. [16] established Cornell’s crawling data set
[17,18], using sparse coding and support vector machine to obtain the object’s grasping frame. Since
2015, deep learning methods have shown an explosive growth in the field of grasping pose detection.
Grabbing methods based on two-level and three-level [19-21] cascade detection networks, AlexNet
convolution network and residual network have been gradually applied to grasping pose detection.
Mabhler et al. [22] used the robust GWS (Grasp Wrench Space) method to analyze the grasping quality of
1500 3D-model parallel grippers, and trained GQ-CNN (Grasp Quality Convolutional Neural Network)
for the quality evaluation of grasping poses. Zhong et al. [23] used multi-mode feature deep learning to
construct a stacked deep network to achieve optimal judgment of robotic grasping pose. Du et al. [24]
optimized the grasping detection time by narrowing the grasping search area and reducing the rotation
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times of the search window. In addition, Morrison et al. [25] proposed to generate a grasping convolution
neural network (GG-CNN), which can obtain the grasping pose on a pixel level [17-19].

Although these methods are simple and efficient, there have still some problems such as the accuracy of
pose generation needs to be improved, the generalization ability is not strong, and so on. This paper mainly
proposes a vision-based optimal grasping pose generation algorithm HGG-CNN obtained by improving GG-
CNN, which optimizes the recognition rate of GG-CNN algorithm, improves the generalization ability of
optimal grasping pose of the manipulator, and enables the manipulator to be applied to a wide range of
fields in the industry [20-22].

3 Description of the Generation Process of Grasping Pose

Similar to other literature work [26—30], this paper is a generation process of grabbing poses of unknown
objects perpendicular to the plane under the given scene depth image.

Similarly, in this paper, a grasping pose perpendicular to the plane g = (p, ¢, ,q) is defined by its
Cartesian coordinates p = (x,y,z), the angle of rotation ¢ around the z-axis, and the width of the gripper
o required to successfully grasp the object. Among them, the extra parameter—the width of the gripper
o can make the grasping pose have better prediction performance than the general grasping pose defined
only by the two parameters of position and rotation [24,25].

The input image required by the algorithm for calculation is a grab set I = R7*" consisting of 2.5 D
depth images with the width of W and the height of H. By performing deep learning on the grab set, the
final grasping pose is output.

g=(s,¢,0,9) (1

In Eq. (1), s = (u, v) is the pixel coordinate of the center point defined by the grasping pose g in the input
image, ¢ is the rotation angle of the camera reference system relative to the input image reference system
defined by the grasping pose g, w is calculation of the width of the gripper for the deep learning
algorithm through a given convolutional neural network, such as GG-CNN [1].

Through the transformation in the following formula, the grasping pose g defined in the camera
coordinate system can be converted into the grasping pose g defined in the world coordinate system.

g = tre(tcr(g)) (2)

In Eq. (2), tgc defines the transformation from the image coordinate system to the world (robot)
coordinate system, and #¢; defines the transformation of the grasping pose g from the two-dimensional to
the three-dimensional in the camera coordinate system. Both of these transformations are based on the
inherent parameters of the camera that captured the image and calibration parameters between the known
robot coordinate system and camera coordinate system.

The algorithm defines a set of grabbing poses in the camera coordinate system as grabbing pose
map [26-33].

G=(®,W,Q) € RV 3)

In Eq. (3), ®, W and Q all belong to R”*" | and they both contain the value @, & and ¢ at every central
pixel s.

In addition, the algorithm does not calculate the grabbing pose after sampling, but directly performs deep
learning operations on each picture separately to calculate the corresponding grabbing pose g. In order to
achieve this function, GG-CNN defines a function M (/) = G for mapping the output captured image in



1520 TASC, 2020, vol.26, no.6

the camera coordinate system from the input depth image. From Eq. (2), the best visible grasping pose g* in
the camera coordinate system is calculated.

4 Neural Network Construction
4.1 GG-CNN Convolutional Neural Network

The deep learning network in this paper is improved on the basis of GG-CNN convolutional neural
network [1]. GG-CNN convolutional neural network [1] uses a relatively small neural network to solve
the problem of grasp sampling by directly generating grasping poses for every pixel in the image.

Similar to other deep learning networks, GG-CNN convolutional neural network [1] proposes to use
neural networks to fit complex functions M : I — G, where M) represents neural network with weight 0.

In the GG-CNN convolutional neural network [1], My(I) = (Qp, Py, Wy) =~ M(I). The network uses
the L2 loss function L to learn from the training set /7 and corresponding output G by Eq. (4).

0= arggninL(GT,Mg(IT)) 4)

The algorithm is executed at the Cartesian point p and estimates various parameters of the set of grasping
poses corresponding to every pixel s to generate a grasping pose image G. Each grabbing pose image G
consists of a group pictures of O, ® and . Among them, Q is an image describing the quality of the
grasping pose generated at any point (u,v) . The value range of every pixel in the figure is in the interval
[0, 1], and the closer the value is to 1, the better the quality of the grasping pose and the more likely it is
to succeed in grasping; ® is an image describing the angle of the grasping pose at each point. Since the

T T
—,=|, W is an
32
image describing the width of the gripper used to grasp at each point. Taking into account the invariance

of the depth, the value range of the width is [0, 150] pixels, and the depth camera parameters and
measured depth can be used later to convert it into measurement data that can be used realistically.

grasping pose is symmetrical about the arc j:g, the range of the angle belongs to [—

The network structure of GG-CNN convolutional neural network [1] is a fully convolutional topology
structure, the schematic diagram is shown in Fig. 1 below.
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Figure 1: GG-CNN network topology structure

The use of GG-CNN convolutional neural network [1] can directly estimate the grasping pose Gy from
the input depth image /, and it performs well in computer vision tasks such as image segmentation and
contour detection that require transmission between image domains. The GG-CNN convolutional neural
network [1] calculated the function My(I) = (Qp, Po, Wy), in which, I, Qy, Py and W) all represent the
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300 x 300 image. The two images output by the network represent the unit vector component of 2@, where
@ 1 sin(2®y)
0= Earctan 7008(2(%).
GG-CNN convolutional neural network [1] contains 62420 parameters, which makes it much smaller
than CNNs used to grasp candidate classifications in other works with hundreds of thousands or millions
of parameters, and the calculation speed is also fast much more.

4.2 Inception Block

In order to increase the accuracy of the grapping pose of the convolutional neural network, this paper
introduces the Inception Block network structure to increase the width of the network. Inception Block is
a sparse network structure, but can produce dense data, which can not only increase the performance of
the neural network, but also ensure the efficiency of the use of computing resources. This structure stacks
the convolutions (1 x 1, 3 x 3, 5 x 5) and pooling operations (3 x 3) commonly used in CNN (the same
size after convolution and pooling, and the channels are added together), which increases the width of the
network on one hand, and increases the adaptability of the network to scale on the other hand. The
schematic diagram of its network structure is shown in Fig. 2 below.
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Figure 2: Inception block network structure

The network in the convolution layer of the Inception Block network can extract every detail
information of the input, and the 5 x 5 filter can also cover most of the input of the receiving layer. It can
also perform a pooling operation to reduce the size of the space and reduce overfitting. Above these
layers, a ReLU activation operation is performed after each convolutional layer to increase the nonlinear
characteristics of the network. The main purpose of the 1 x 1 convolutional layer is to reduce the
dimension, which is also used to modify the linear activation (ReLU). For the data of upper layer of
100 x 100 x 128, after adding the convolutional layer 1 x 1 to perform dimensionality reduction, the
amount of convolution parameters can be reduced by about 4 times.

4.3 Dense Block

In order to alleviate the problem of gradient disappearance and explosion, and ensure the maximum
information flow in the network, this paper introduces the Dense Block network structure [15], so that
each layer is connected to all layers before it is changed. Dense Block is composed of L Dense Layer,
and between every layer is Dense Connectivity. Each layer of Dense Layer is completed in four steps:
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normalization, activation, convolution, and Dropout. The schematic diagram of its network structure is
shown in Fig. 3 below.

Dense
Layer 4

Figure 3: Dense block network structure

Among them, the output x; of the L Dense Layer can be calculated by the following Eq. (5)
x; = Hy([xo,x1, -+, x-1]) )

In the formula, H; is the calculation function of the layer. The input is the stitching xj to x;_, that is, the
stitching of the original output x( of the model and the output of each layer in the channel dimension.

4.4 SELayer

In order to solve the loss caused by the different importance of the channels in the feature map during the
convolution pooling process, this paper introduces the SELayer network structure [12], so that the difference
in the importance of different channels in the feature map can be reflected, and the problem can be treated
specifically. The schematic diagram of its network structure is shown in Fig. 4 below.

Global
Pooling

Sigmoid

Feature
Map

Figure 4: SELayer network structure

In the figure, firstly, the input feature map is globally pooled. By the operation of global pooling, the
width and height of the feature map can be reduced to 1, and then the first fully connected layer reduces
the channel dimension, the second fully-connected layer raises the dimension of the channel again. The
advantage is that it adds more nonlinear processing and fits the complex correlation between the
channels. Then it connects another sigmod layer, and finally performs the full multiplication operation
with the feature map. The reason why full multiplication is not matrix multiplication is because it can get
feature maps of different channels with different importance.

4.5 HGG-CNN

The HGG-CNN convolutional network structure is obtained by the integration of Inception Block [34],
Dense Block [15], and SELayer [12]. Similar to the structure of the GG-CNN convolutional network, the
HGG-CNN convolutional neural network also calculates the function My (1) = (Qp, Po, W), where 1, Qy,
®y and W) all represent the 300 x 300 image. The two images output by the network represent the unit
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1 in(2P
vector component of 2®j, where @y =§arctan%,

convolutional network structure is shown in Fig. 5 below.

The schematic diagram of HGG-CNN
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Figure 5: HGG-CNN network structure

In the figure, the input image / is normalized first and then enters the sub-module of Inception Block,
which will improve the accuracy of HGG-CNN'’s pose recognition; the output of the Inception sub-module
enters the sub-module of Dense Block after a normalization operation, this module can avoid the problem of
gradient disappearance and gradient explosion; then it enters the sub-module of SElayer after another
normalization. This module will give different weights to different channels. Finally, after one
normalization operation, four deconvolution operations are performed, and finally four output images are
calculated by the same method of GG-CNN. The HGG-CNN convolutional neural network contains a
total of 8,806,986 parameters.

5 Experiment Preparation (Device)
5.1 Hardware Device

The convolutional network structures before and after improvements, such as GG-CNN, HGG-CNN,
etc., are calculated on a computer running Windows 10 1809 Professional Edition. The computer is
equipped with an Intel Core 17-9750H processor at 4.5 GHz and an NVIDIA GeForce GTX 1660Ti
graphics card. The code is mainly written in Python.

5.2 Data Set

In order to train our network, we grab a dataset from Cornell [27] to create a new dataset. The Cornell
grasping dataset contains 885 RGB-D images of real objects, 5110 human-marked forward and 2909 reverse-
grasping. Compared with some recent synthetic data sets [28,31], this is a relatively small grasping data set,
but the data in the Cornell grasping set is more suitable for representing the pixel grasp contained in each
image provided as multiple crawl marks. For example, document [28] adds random trimming, scaling and
rotation to the image based on the Cornell grasping data set, creating a set of 8840 depth images and
related grasping pose images Gy, containing 51100 effective grasping example.
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The Cornell grasping dataset uses a pixel coordinate system aligned to the jaw position and rotation
angle to map pixel coordinates to rectangles [32]. In order to convert this rectangular mapping method to
the image-based mapping representation G in this paper, we use the central third of each grab rectangle
as the image marker, which corresponds to the position of the center of the grabber. We use this image
tag to update our training image. We only consider forward grasping to train our network and assume that
any other location is not an effective grasping pose. There are four parameters in the output of the data
set: grasping quality Q, rotation angle ®, jaw width ® and depth input.

Q: This article takes each true forward grasping pose from the Cornell grasping dataset as a binary
marker and sets the value of the corresponding position Q to 1. All other pixel positions are set to 0.

®: This article calculates the rotation angle range of each grasping pose rectangle within the angle range

[— g , g} and sets the corresponding area ®7. If the original rotation angle of the grasping pose is used, this

article will encode the rotation angle as a partial vector on the two unit circles [33], record the value in the

range [—1, 1] and delete any data that does not continuously occur in the angle + g, making subnets easier to
. . . . . T .

learn. Because the mapping of the grasping pose is symmetrical in the angle :l:z, this paper uses two

component sin(2®7) and cos(2Pr),which will output the only data 7 € [— g,g] that is symmetrical in

the angle + g

W: Similarly, we calculate the pixel width of each grasping pose rectangle, the maximum value of the
width data is 150, which is the width of the gripper, and set the corresponding part Wr. During training, we

1
scale the value Wy by 150 to make it within the range [0, 1]. The width of the physical gripper can be further
calculated by camera parameters and measured depth.

Depth: The Cornell grasping dataset is captured with a real camera. It already contains real sensor noise,
so no noise is needed. Depth images use OpenCV [34] to delete invalid values. In this paper, the average
value of each depth image is subtracted, and its value is concentrated near 0 to provide depth invariance.

In this paper, 80% of the data set is used as the training data set, which is used to train the network, while
retaining 20% of the data set as the evaluation data set. In this paper, gradient descent is used in training, and
the batch size parameter is 1000; Adam optimizer is used to train the test data set for 150 rounds.

In order to compare the accuracy of grasping pose recognition for different convolutional network
structures, this paper evaluates each detected true positive grasping pose in the 20% evaluation data set
containing 1710 enhanced images and calculates the corresponding IOU to compare the relative
performance between different networks.

6 Experiment

In order to evaluate the performance of the HGG-CNN convolutional network structure and the GG-
CNN convolutional network structure, we conducted 150 rounds of deep learning training to train each
network. The trained network includes the original GG-CNN convolutional neural network [1] structure,
the Inception GG-CNN network structure that separately introduces into the Inception Block network
structure, the Dense GG-CNN network structure that separately introduces into the Dense Block network
structure, and the HGG-CNN without SE network structure that introduces Inception Block and Dense
Block network structure but without introducing SELayer network structure, and HGG-CNN with SE
convolution network structure with three network structures of Inception Block, Dense Block and
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SELayer at the same time. In the experiment, these network structures were trained for a total of 150 rounds.
In order to compare the experimental results with other experimental results, our goal is to reproduce similar
experiments as much as possible. We use the training grasping set defined in the previous article to train the
deep learning network for repeatable experiments.

The timing values of the pose generation accuracy IOU and the loss function Loss during the training
process of each convolutional network structure are shown in Figs. 6 and 7:
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As can be seen from the figure, the recognition accuracy of the improved network structure Inception
GG-CNN, Dense GG-CNN, HGG-CNN without SE and HGG-CNN with SE are higher than the original
GG-CNN model, among them, the HGG-CNN convolutional network model is significantly better than
other network structures, and the accuracy of pose generation IOU is expected to increase by about 10%.
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In addition, the loss of HGG-CNN convolutional network structure Loss is also significantly reduced
compared to the original GG-CNN convolutional network structure, which is expected to be around 0.07.

In order to accurately evaluate the improvement of the pose generation accuracy of the HGG-CNN
convolutional network structure compared to the original GG-CNN convolutional network structure, this
paper uses the trained model to generate a grasping pose for the test data set and calculate its pose generating
accuracy rate [OU, the experimental data of the test set pose generation accuracy rate is shown in Tab. 1 below.

Table 1: Accuracy results of test set pose generation

Model Toothbrush ~ Umbrella ~ Razor Toothpaste ~ Bowl Shell
GG-CNN 0.6486 0.7617 0.6447 0.6815 0.5900  0.8317
InceptionGG-CNN 0.6909 0.7665 0.6503 0.7973 0.6062  0.6033
DenseGG-CNN 0.7809 0.7683 0.6528 0.7696 0.6193  0.6292
HGG-CNN without SE ~ 0.7091 0.7612 0.7101 0.7917 0.7160  0.3633
HGG-CNN 0.8002 0.7687 0.7537 0.7982 0.7934  0.7681
Model Bottle Lock Lollipop  Light bulb Spoon Average
GG-CNN 0.8226 0.6820 0.7060 0.6837 0.2138  0.8383
InceptionGG-CNN 0.7889 0.6959 0.7818 0.7049 0.2929  0.8947
DenseGG-CNN 0.8016 0.7146 0.6223 0.5482 0.4519  0.9210
HGG-CNN without SE ~ 0.7782 0.7096 0.6159 0.6002 0.5515  0.9098
HGG-CNN 0.8154 0.7485 0.7830 0.7147 0.5633  0.9248

It can be seen from Tab. 1 that the original GG-CNN convolutional network structure has a higher
accuracy rate compared to the generation of grasping poses for simple natural objects with simple
geometric shapes such as shells and bottles, and the IOU values are all greater than 80%; but for complex
artificial irregular objects such as toothbrushes, light bulbs, spoons, etc., the accuracy rate of the grasping
pose generation is low, and the IOU value is below 70%. Among them, the accuracy rate of the grasping
pose generation of the spoon is the worst. The value is only 21.38%. In the improved four convolutional
network structures, they all can play the effect of optimizing the intersection and IOU, but the
optimization effect of the HGG-CNN convolutional network structure is higher than the other three,
whether simple natural objects or complex man-made objects can be accurately identified, and the
accuracy of pose generation is more than 75%. Both of them have the highest accuracy rate of the bottle's
grasping pose. The HGG-CNN’s accuracy rate of the bottle’s grasping pose is 81.54%. In addition, the
new HGG-CNN convolutional network structure improves the accuracy of grasping pose generation from
the original GG-CNN convolutional network structure from 83.83% to 92.48%, with an increase of 10.32%.

In order to reflect the improvement of the accuracy of the HGG-CNN convolutional network structure
compared to the GG-CNN convolutional network structure, the article selects two objects, a toothbrush and a
spoon, and uses two network structures to generate the grab pose respectively. The generated color RGB
image of the captured pose, the depth image of the depth, the captured pose quality image O and the
captured angle image ® are shown in Fig. 8 below.
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In the figure above, the left side is the grasping scheme of toothbrush and spoon generated by the GG-
CNN convolutional network structure, and the right side is the grasping scheme of toothbrush and spoon
generated by the HGG-CNN convolutional network structure. For toothbrushes, the IOU of the HGG-
CNN network structure generation grasping scheme is 15.16% higher than that of the GG-CNN network
structure generation grasping scheme, and for the spoon, it is increased by 34.95%.
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7 Conclusion

This paper improves on the basis of the GG-CNN convolutional neural network [1] and proposes a new
convolutional neural network that generates a grasping pose—HGG-CNN, which is similar to GG-CNN and
directly generates grab gestures from depth images on a pixel-level basis instead of sampling and classifying
individual grab candidates as in other deep learning techniques. Experiments show that when the parameter
of Batch size is 1000, the Adam optimizer is used, and the training round is 150 times. HGG-CNN can
improve the average pose recognition accuracy rate IOU from 83.83% to 92.48%, an increase of 10.32%.
after 150 rounds of training. It can be seen that the new HGG-CNN convolutional neural network
organically combines the advantages of the three sub-networks of Inception Block, Dense Block and
SElayer, and improves the problem that the original GG-CNN network has low recognition accuracy
during the generation of the grasping pose of the manipulator and effectively improves the accuracy of
grasping pose recognition.
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