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Abstract: Machine Learning (ML) has revolutionized intelligent systems that
range from self-driving automobiles, search engines, business/market analysis,
fraud detection, network intrusion investigation, and medical diagnosis. Classifi-
cation lies at the core of Machine Learning and Multi-label Classification (MLC)
is the closest to real-life problems related to heuristics. It is a type of classification
problem where multiple labels or classes can be assigned to more than one
instance simultaneously. The level of complexity in MLC is increased by factors
such as data imbalance, high dimensionality, label correlations, and noise. Con-
ventional MLC techniques such as ensembles-based approaches, Multi-label
Stacking, Random k-label sets, and Hierarchy of Multi-label Classifiers struggle
to handle these issues and suffer from the increased complexity introduced by
these factors. The application of Soft Computing (SC) techniques in intelligent
systems has provided a new paradigm for complex real-life problems. These tech-
niques are more tolerant of the inherent imprecision and ambiguity in human
thinking. Based on SC techniques such as evolutionary computing and genetic
algorithms, intelligent classification systems can be developed that can recognize
complex patterns even in noisy datasets otherwise invisible to conventional sys-
tems. This study uses an evolutionary approach to handle the MLC noise issue by
proposing the Evolutionary Ensemble of Credal C4.5 (EECC). It uses the Credal
C4.5 classifier which is based on imprecise probability theory for handling noisy
datasets. It can perform effectively in diverse areas of multi-label classification.
Experiments on different datasets show that EECC outperforms other techniques
in the presence of noise and is noise-robust. Statistical tests show the significance
of EECC as compared to other techniques.

Keywords: Multi-label classification; genetic algorithm; ensemble; noisy datasets;
Credal C4.5

1 Introduction

Machine Learning has played a pivotal role in automating the classification process. The introduction of
Multi-Label Classification (MLC) paved the way for automated categorization of text documents and other
data into pre-defined categories. Initially, it could assign no more than one category to an instance, formally
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known as Single Label Classification (SLC). As text classification remained the dominant area for label
classification, single-label classification could not deal with its multi-dimensional nature [1]. Assigning
more than one labels to an instance is a complex problem but moving from SLC to MLC seemed to be a
natural solution for demanding applications like document classification, medical diagnosis,
bioinformatics [2,3], news analysis, movies/music categorization, web resources classification and
computer vision [4,5].

Multilabel Classification (MLC) in data mining is defined as a predictive task having a wide range of
real-world applications. There are numerous scenarios where more than one category or label may be
associated with an instance of a dataset. Let L = {λ1, λ1, λn} be the set of n different binary labels (with n
> 2) and D the set of y instances with each instance having x features. Thus we can define multi-label
classification as learning a mapping that exists between di ∈ D and a set of labels li � L. We can deduce
that the labels in set li are the ones having relevance to instance di and the rest having no relevance.

There are two high-level approaches to deal with problems of multilabel classification. The first and
least difficult of the two; transformation, change a multi-classification problem into a lot of particular
parallel grouping problems while the second; adaptation, utilizes complex algorithms or algorithm
ensembles. Different studies have been conducted and categorized as transformation, adaptation, and
ensemble-based approaches. Each approach is focused on solving an issue of multi-label classification.
However, the most challenging issues faced thus far have been label imbalance, label relationships,
high dimensionality, and noise.

Label imbalance in a dataset can be caused by an uneven number of instances per label [6]. The most
frequent labels take over the infrequent ones in the dataset resulting in a bias of prediction. If a classifier can’t
handle label imbalance it will most probably produce biased results. Proposed techniques to handle label
imbalance include random under-sampling and random over-sampling [6] and are based on LP
transformations. In an under-sampling loss of information may occur as essential labels may be removed.
Over-sampling attempts to balance the minority class instances in the dataset [7]. Another sampling
technique Synthetic Minority Oversampling Technique (SMOTE) generates synthetic minority class
instances by interpolating the minority class instances [8].

Label relationships or dependencies help in finding relevant categories [9]. Labels are inherently related
to or dependent on each other. A news article written on politics may also belong to finance or governance.
The likelihood of a song being labeled as “Pop” becomes stronger if it has been labeled as “Hip Hop” or
“RB” [10,11]. Capturing meaningful relationships among members of a social network generates new
trends increasing the predictive performance of the classifier [12]. Understandably label relationships are
important and ignoring or harnessing their power can directly affect the prediction power of a classifier.

The challenge of high-dimensionality is related to output space in multi-label classification [13]. The
output space increases exponentially as the number of labels increases and with that, the possible number
of combinations also increases.

Since data may come from various sources, there is a possibility of pollution or noise. Anything that is
polluting the actual data is noise. Encryption is also a source of noise [14]. When we query a search engine
for information extraction, there is a possibility of the query to be noisy and produce irrelevant results [15–
17]. Noise can be of two types; feature noise and label or class noise [18]. The presence of incorrect labels
is also referred to as label noise. Label noise is known for decreasing the prediction performance of the
classifier. If label noise can be reduced, only relevant labels participate in classification, and
performance is improved.

In this study, we propose an evolutionary ensemble-based approach that adopts the transformation
method, Label Power-set (LP), combined with Credal C4.5 as a base classifier that uses the idea of
imprecise probabilities to solve the problem of noise. We focus on finding its deficiencies, discuss them
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in detail, and suggest improvements based on empirical analysis of results. Finally, we propose an improved
algorithm that handles label imbalance, label relationships, and noise by conducting trials on existing and
new multi-label data. The key contributions of our study are as follows:

� Propose an Evolutionary Ensemble of Credal C4.5 (EECC) for multi-label classification that handles
noise in datasets to capture meaningful dependencies among labels.

� Propose a linear fitness function that helps to achieve better label combinations.

� Handling class imbalance by considering majority and minority labels.

The rest of the paper is organized as follows: Section 2 presents the literature review whereas. The
proposed approach is described in Section 3 and Section 4 discusses the proposed EECC algorithm.
Section 5 presents the experimental results of the proposed EECC approach, and Section 6 discusses the
results. Finally, Section 7 concludes the study.

2 Literature Review

This section elaborates methods proposed for multi-label classification problems. On a higher level these
can be divided into two approaches.

2.1 Transformation Methods

These methods, transform the multi-label problem into multiple single-label problems, include Support
Vector Machines (SVM), Neural Networks (NN), and Naïve Bayes (NB). Binary Relevance (BR) has been
widely used in MLC where a learning task is broken down into multiple binary problems. It produces one
binary dataset for each label. However, it assumes that the labels are independent and completely ignores
potential correlations among labels [19] while suffering from label imbalance.

Label Combination (LC) or Label Powerset (LP) makes a new class out of each possible combination of
labels, thus treating it as a single label multi-class problem. Building these multiple instances increases the
worst-case computational complexity as the number of labels increase, with a tendency to over-fit model on
the test data. It works well on the training data but is unable to show generalized effectiveness [5].

Pruned Set (PS) transformation focuses on class imbalance [2]. In this technique, by considering only
the important and most frequent combinations of label sets, the inherent complexity of LP is further
reduced. However, it does not guarantee to keep all the important information and thus increases the
probability of overfitting.

Classifier Chains (CC) [9] produce a chain of binary datasets that are merged with the feature space.
Each classifier receives input in the form of label predictions from the previous classifier forming a chain.
However, the selection and ordering of the chain directly impact the performance of the classifier as it is
propagated along the chain.

2.2 Adaptation Methods

Problem Adaptation methods are based on a particular single label classification algorithms, already
being used in machine learning. These are adapted, extended, and customized to suit Multi-label
classification, enabling them to directly handle multi-label data.

The most popular method, improved in various ways in several research works is MLkNN. It is based on
the k-Nearest Neighbors (kNN) method, traditionally used for single-label data. To predict an unseen
instance, it first finds k-nearest neighbors of that instance. Finally the maximum A Posteriori principle is
used to predict the label set for the new instance [20]. It is prone to introducing class-imbalance problems
and ignoring the relationships between labels, affecting its overall performance and accuracy [21].

IASC, 2020, vol.26, no.6 1235



The Ada-Boost algorithm is used to construct a strong classifier as a linear combination of simple weak
classifiers. Ada-Boost.MH targets Hamming Loss (HL) and Ada-Boost.MR targets the RL by ordering of
labels and keeping the correct ones at the top of ranking [22]. In addition to that the Ada-Boost. MH was
combined with other algorithms for creating decision trees and hence produce human-readable models
[23]. Problems may occur in the form of overfitting as the number of iterations continues to increase [22].

Decision Trees have been at the center of some traditional methods for classification of binary or multi-
class data. A popular algorithm C4.5 based on Decision Tree and an extension of its predecessor, the ID3
algorithm, applies heuristics to prune decision trees after construction [24]. When used in Multi-Class
classification it predicts exactly one class for an instance and not a set of classes. A new algorithm Multi-
label C4.5 has been adapted to be used for Multi-label classification. Here each leaf of a decision tree can
have multiple labels and the entropy definition is also modified to handle multiple labels.

Multi-label Decision Tree (ML-DT) is a first-order approach that assumes label independence for
calculating multi-label entropy. The use of the Decision Tree Model adds efficiency gains to ML-DT
giving it an advantage on its predecessors. ML-DT can be further improved by including a pruning
strategy or ensemble learning technique [25,26].

Predictive Clustering Technique (PCT) is also based on Decision Trees. The Rank SVM method, an
adaptation of SVM, proposed by Joachims [27] in 2002. Reference [28] shows improved performance over BR.

Support Vector Machines (SVMs) [29,30] are popular and thought to be a successful methodology for
classification problems. SVMs most often optimize accuracy on a given dataset. When training data is
unbalanced, accuracy is often a poor metric to use.

A higher order of algorithms makes the MLC task delve deep into correlations among labels by
considering the influence of each label on all other labels. This results in a higher order of correlations
among labels or random subsets of labels. The increased complexity also costs in terms of
computational power [31,32].

2.3 Ensemble Methods

There also exists a third kind of methodology for multi-label classification problems, called ensembles.
It is based on the notion that the collective knowledge of a group of people is better than a single expert. An
ensemble of weak classifiers offers a diverse approach to the classification problem. The more diverse the
individual classifiers are the better the results, as each classifier can have different biases.

Label Powerset/LC can model label correlations but introduces over-fitting on training data as by design
it can only model label sets found in the training data [3,33]. The ensembles are designed to collect
information from more than one generalizer or learners reducing the biases of different learners.

RAndom k-labELsets (RAkEL) is an ensemble of LP, it breaks down an initial set of labels into smaller,
random k subsets. Where the parameter k determines the size of the subsets. These subsets are called label-
sets [3]. It then employs LP to train a corresponding classifier. RAkEL gives an advantage over LP by
avoiding the computation-intensive operations as the label-sets are simpler. The correlations among the
labels are also preserved to some extent and the class imbalance is largely addressed for a high number of
labels. It can predict unseen label-sets but makes label combinations randomly, ignoring any meaningful
relationships, which might affect the overall accuracy of classification.

2.3.1 Evolutionary Approach in Building Ensembles
Different evolutionary approaches have been proposed for the automatic generation of ensembles of

diverse and competitive multi-label classifiers [11]. It takes into consideration some key challenges of
multi-label classification, like taking into account simple and complex relationships among the labels,
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imbalance of data, and complexity of the output space. In these evolutionary approaches, C4.5 is used which
does not handle noise efficiently.

2.3.2 Noise
In previous studies mostly noise-related problems are handled as binary classification problems and a

limited number of works have been done related to multi-label classification. As real-world dataset
contains abnormalities such as missing values, redundant labels, and outliers, these types of errors are
known as label noise [34] and cause problems during classification, producing an over-fitting model.
Different noise handling techniques have been proposed to solve these issues [35] and can be categorized
into two classes: Algorithms level approaches and Noise Robust Methods

2.3.3 Algorithm Level Approaches
Algorithm level approaches are applied as a pre-processing stage. They does not require any previous

technique to be applied [36].

2.3.4 Noise-Robust Methods
These methods learn without noise modeling or data cleaning even when some amount of noise

labeling is present. These methods use ensembles to handle noise, thus increasing the robustness of
base classifiers [37]. Boosting methods such as Ada-boost degrade performance when some level of
noise is present in the dataset.

In reference [38] the authors proposed to modify the C4.5 [39] with the Credal Decision Tree (CDT)
method. They called the new algorithm Credal C4.5. It uses the information gain ratio as splitting criteria.
This process is based on the precise probabilities therefore it considers the training data to be reliable.
However, this situation can be unstable when we are classifying noisy data [39,40]. The comparison of
different algorithms that use decision trees as a base classifier has been provided in Tab. 1.

3 Proposed Methodology

The proposed approach of EECC consists of four steps. In the first steps, k-label combinations of Multi-
Label CC4.5 (MLCC4.5) are generated randomly, where each set of labels consists of 3 labels. We have
chosen 3 as an optimal size as increasing it any further will increase the complexity. We have used Label
Powerset (LP) as a base classifier. The idea is to use each classifier to model the label relationships from
the entire output space. As the chosen label space, using the evolutionary technique is smaller, the

Table 1: Comparison of multi-label classification techniques in terms of classification problems

MLC methods Imbalance Relationships Output dimensions Noise References

BR [4]

CC ✓ [9]

LP ✓ [41]

PS ✓ ✓ ✓ [33]

EME ✓ ✓ [33]

HOMER ✓ ✓ ✓ [42]

RAKEL ✓ ✓ [43]

AdaBoost ✓ [44]
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imbalance ratio is lower. In the second step, the crossover operation is applied to the generated label sets. In
the third step, we apply mutation operations to the offspring generated from crossover operation, and in the
fourth step, we calculate the fitness of the individual. For each instance, the MLCC4.5 is trained on label sets
using LP and then on the given predictions for the label sets. The outputs of all the classifiers are used for the
final prediction of EECC. Before the final prediction, the evolutionary selection criteria are adopted which
includes the crossover and mutation operations. The final prediction is computed based on majority voting.

3.1 Individuals Representation

The population of each individual is already discussed at the beginning of Section 3. Each individual of
multi-label classifier and labels is encoded into a binary representation or an array with values 1 or 0. In each
individual, 1 represents the presence of the λl label. All the labels with a value of 1 mean they have been used
to train the MLCC4.5. This representation is depicted in step 1 of Fig. 1.

3.2 Individuals Initialization

The individuals need to be created at the beginning of the evolution process based on the frequency of
labels. Frequency represents the importance and complexity of label relationships. However, if this
assumption ignores minority labels it will reduce the performance. Thus initial population not only
contains frequently occurring labels but also contains infrequently occurring labels to ensure the presence
of both labels in the population.

3.3 Crossover Operation

The crossover operator swaps two individuals ind_1 and ind_2 to create a new individual. The idea
behind a crossover operator is to create new individuals while preserving previous individuals’
information. This is illustrated by Step 2 in Fig. 1. We have used a uniform crossover operator where a
random variable is generated from some probability distribution. The individual falling before that
position is picked from one ensemble and the other is picked from another ensemble and is swapped. In
this way, the new individual inherits the characteristics of both the parents.

3.4 Mutation Operation

The mutation operator swaps the bit values of the individual. For any individual it generates a random
number for any bit from that individual and swaps a 0 to 1 and 1 to 0. Fig. 1 shows the mutation operation
applied after the individual generated using the crossover operation.

3.5 Fitness Function

The fitness function proposed in this study is based on the fitness function proposed in [45]. It takes into
account two important measures; the performance of the classifier and the number of times each label falls in
the ensemble. This helps it in choosing the individuals with the highest performance that also considers all
the labels the same number of times regardless of their overall frequency in the dataset. The choice of
evaluation measures in MLC is significant to gauge the prediction results correctly. We must choose a
measure that also evaluates the label relationships in an ensemble. Example-based F Measure (ExF),
defined in Eq. (1) calculates the FMeasure for MLC. It indicates the percentage of samples that are
correctly identified. Using this measure helps to identify the individuals that give higher performance.
Coverage Ratio is used to find the number of times each label appears in the ensemble, it is defined in
Eq. (2). In the following equations ↓ and ↑ indicate if the measures are minimized or maximized
respectively. Our fitness function is a combination of these two measures as shown in Eq. (3).
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Figure 1: System diagram of the proposed methodology
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" ExF ¼ 1

P

XP

i¼1
i
Yi \ h xið Þ
Yi [ h xið Þ (1)

# Cr ¼ stdv vð Þ
stdv ðvwÞ (2)

" Fitness ¼ ExF þ 1 � Crð Þ (3)

4 Evolutionary Credal C4.5 Ensemble (EECC4.5)

The algorithm of the proposed EECC is shown in Algorithm 1. The multi-label dataset, population size,
individual numbers, and the number of generations are input parameters. The algorithm generates predictions
of a multi-label dataset in terms of different evaluation metrics. It initializes the population as discussed in
Section 3. After initializing the population, it applies crossover and mutation on the population to generate
new individuals, and tshen based on fitness value, the new generation evolves.

5 Results and Experiments

5.1 Experimental Details

For our experiments, we used hardware configuration of 8 GB RAM, SSD storage, and Intel Core i7, 7th
generation processor. Credal C4.5 is implemented in Python programming language. For the implementation
of the Parallel genetic algorithm, we will use the DEAP (Distributed Evolutionary Algorithms in Python)
library. For comparison of our technique with other transformation methods, we used MeKa (An
extension of WeKa library for Multi-label Classification) [5].

5.2 Experimental Settings

We have used a mutation probability of 0.33 [46] with uniform crossover operation and the number of
generations depends on the complexity of datasets. For datasets that contain a large number of labels, we
have used 300 generations and for small datasets, 30 generations are used.

Algorithm 1: Proposed Evolutionary multi-label classification ensemble

Input: MLDataset, Popsize, ind, gen
Output: Best Label combination with results
1: procedure MULTI-LABEL-ENSEMBLE(data[])
2: for each item in iterations do
3: Fitness = Compute_ Fitness(Item)
4: for each label i in data[] do
5: label_combination = Add_label(data[])
6: label_combinations = prepare_combination
7: Parents = gen_random_parents(label_combinations)
8: for each parent in parents[] do
9: co_childs = Cross_over(Parent1, Parent2)
10: mutation_childs = Mutation(Parent1, Parent2)
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5.3 Performance Measures

In the case of standard multi-class classification, we would use evaluation measures like Accuracy,
Precision, and Recall, etc., but in the case of multilabel classification, these measures are not sufficient.
For assessment of multilabel classification various performance measures have been suggested which are
discussed below:

5.3.1 Hamming Loss
This measure finds how many times the labels are misclassified, returns the mean values across the test

set. It compares the ground-truth labels with the predicted-labels.

# HL ¼ 1

P

XP

i¼1

Yi \ hxij j
hxij j (4)

where p is the number of labels and Yi is the predicted labels and Xi is the actual labels.

5.3.2 Coverage
This measure means the number of more labels on average should include covering all relevant labels. It

is defined as:

# Coverage ¼ 1

Q
ð1
m

X

i¼1

m½½maxyieY rank xiyið Þ =2 Yi� � 1Þ (5)

5.3.3 Subset Accuracy
Subset Accuracy (SA) is a strict measure to check the correct predictions. It is also known as the Exact

Match Ratio (EMR). It is represented as:

" SA ¼ 1

p

Xp

i¼1

I Yið Þ ¼ Xið Þ (6)

where p is the number of classes and Yi is the predicted labels and Xi is the actual labels.

5.3.4 Micro Average Precision
This method takes the average of all the precision scores of the predicted and represented as:

" MAP ¼ P1þ P2

2
(7)

P1 and P2 represent the precision of a single class whereas, precision is represented as:

Precision ¼ TP

TP þ FP
(8)

where TP stands for True Positives and FP for False Positives.

5.3.5 Micro Average Recall
This method takes the average of all the Recall scores of the predicted and represented as:

" MAR ¼ R1þ R2

2
(9)
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Here R1 and R2 represent the recall score of different classes where recall is represented as:

Recall ¼ TP

TP þ FN
(10)

where TP stands for True Positives and FN for False Negatives.

5.4 Experimental Results

We have performed experiments on various datasets using a 10-fold cross-validation technique. The
characteristics of datasets are shown in Tab. 2. It shows the name, number of samples, features, and
labels of the dataset. The type of the dataset, its domain, and the Imbalance Ratio is provided to show the
imbalance ratio between the labels.

We have performed experiments on different datasets and compared the approach with baseline
architecture. This comparison of different datasets with before and after the addition of noise is shown
here. We have also performed a comparison of different performance measures, before and after the
addition of 10% noise in labels.

The effect on Example-based F-Measure, before and after the addition of 10% noise is shown in Tab. 3.
The EECC does not show a significant change in the ExF score compared to the C4.5 ensemble, before the
addition of noise.

However after the addition of noise in labels the ExF score of C4.5 Genetic Ensemble decreases and that
of EECC increases.

The effect on Coverage Ratio, before and after the addition of 10% noise is shown in Tab. 4. The EECC
does not show a significant change in coverage score compared to C4.5 Genetic Ensemble, before the
addition of noise. However after the addition of noise in labels the Coverage score of C4.5 Genetic
Ensemble increases and that of EECC decreases showing that it is noise-robust and prunes the redundant
labels efficiently. In terms of Coverage Ratio, for the datasets, Medical, 3Sources Guardian1000,
BBC1000, Birds, Emotions, and Genbase, EECC has performed better in presence of label noise.

The Subset Accuracy (SA) is an important measure in multi-label classification which is a strict measure
to check the exact matching of labels. The comparison of our proposed approach with the C4.5 ensemble
shows that after the addition of noise our proposed approach shows a slight improvement in SA for the
Birds, Emotions, Genbase dataset. It means that by handling noise, meaningful label relationships are
taken into account. HL in Medical, Birds, and Emotions dataset is slightly improved as shown in Tab. 5.

Table 2: List of datasets used to perform experiments with their details

Dataset name Samples Features Labels AvgIR Domain

Medical 978 1449 45 89.501 Text

InterSource-3000 169 3000 6 1.766 Text

3Sources Guardian1000 302 1000 6 1.773 Text

BBC1000 1000 1000 6 1.718 Text

Birds 645 260 19 5.407 Audio

Emotions 593 72 6 1.478 Music

Genbase 662 1186 27 37.315 Biology
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Table 3: Results comparison of example-based F-measure score of our proposed EECC with C4.5 ensemble
with before and after the addition of noise

Dataset Algorithm Example-based F-measure

Noise 0% Noise 10%

3SourcesInter1000 Proposed EECC 0.1241 0.1065

C4.5 genetic ensemble 0.1320 0.1290

BBC1000 Proposed EECC 0.2031 0.1462

C4.5 genetic ensemble 0.2048 0.1238

Birds Proposed EECC 0.5196 0.4668

C4.5 genetic ensemble 0.5206 0.4668

Emotions Proposed EECC 0.5400 0.5421

C4.5 genetic ensemble 0.5467 0.5350

Genbase Proposed EECC 0.9852 0.9372

C4.5 genetic ensemble 0.9852 0.9372

GNegativePseAaC Proposed EECC 0.7059 0.6451

C4.5 genetic ensemble 0.7145 0.5558

Guardian1000 Proposed EECC 0.1942 0.1820

C4.5 genetic ensemble 0.1944 0.1722

Table 4: Results comparison of proposed EECC with C4.5 genetic ensemble of coverage on different noise
levels on multiple datasets

Dataset Algorithm Coverage

Noise 0% Noise 10%

Medical Proposed EECC 4.7231 5.4322

C4.5 genetic ensemble 4.5255 6.8513

InterSource-3000 Proposed EECC 2.7351 2.6091

C4.5 genetic ensemble 2.7879 2.6061

3Sources Guardian1000 Proposed EECC 2.4351 2.4533

C4.5 genetic ensemble 2.3333 2.5333

BBC1000 Proposed EECC 2.1963 2.2351

C4.5 genetic ensemble 2.1857 2.3000

Birds Proposed EECC 5.8410 5.4356

C4.5 genetic ensemble 5.7752 5.8713

Emotions Proposed EECC 2.4761 2.1647

C4.5 genetic ensemble 2.4761 2.5597

Genbase Proposed EECC 0.3561 0.4351

C4.5 genetic ensemble 0.3409 0.5152
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Similarly, the results of Micro Average F-Measure (MAF) and Micro Average Precision (MAP) is also
given in Tab. 6. The results show that before the addition of noise, the performance of the C4.5 Genetic
Ensemble is better as compared to EECC but after the addition of noise the performance decreases but
EECC performance remains better. We have set s = 1 value of EECC for all these experiments. The value
of s has a different effect on noise handling but mostly in literature s = 1 is suggested. The result of
different values of s on the sample dataset is given in Fig. 2.

Table 5: Results comparison of HL and SA of proposed EECC with C4.5 genetic ensemble in terms of 10%
addition of noise

Dataset Algorithm HL SA

Noise 0% Noise 10% Noise 0% Noise 10%

Medical Proposed EECC 0.0148 0.01432 0.6743 0.5676

C4.5 genetic ensemble 0.0100 0.0155 0.6531 0.5128

InterSource 3000 Proposed EECC 0.2668 0.2650 0.0900 0.0901

C4.5 genetic ensemble 0.2778 0.2677 0.0909 0.0606

3Sources Gaurdian1000 Proposed EECC 0.2061 0.2059 0.1683 0.1432

C4.5 Genetic Ensemble 0.1917 0.2389 0.1500 0.1167

BBC1000 Proposed EECC 0.2301 0.2208 0.0891 0.1268

C4.5 Genetic Ensemble 0.2214 0.2167 0.0857 0.1571

Birds Proposed EECC 0.0682 0.0688 0.3981 0.3876

C4.5 Genetic Ensemble 0.0673 0.0698 0.4109 0.3256

Emotions Proposed EECC 0.2357 0.2431 0.2701 0.1752

C4.5 Genetic Ensemble 0.2415 0.2670 0.2712 0.1849

Genbase Proposed EECC 0.0087 0.0056 0.9674 0.7864

C4.5 genetic ensemble 0.0014 0.0087 0.9697 0.7727

Table 6: Results comparison of MAS and micro- average F-measure of the proposed approach with C4.5
genetic ensemble in terms of 10% addition of noise

Dataset Algorithm Micro average precision Micro average F-measure

Noise 0% Noise 10% Noise 0% Noise 10%

Medical Proposed EECC 0.8021 0.8078 0.7547 0.773666

C4.5 genetic ensemble 0.8009 0.8108 0.8079 0.7258

InterSource-3000 Proposed EECC 0.2587 0.249 0.146 0.1463

C4.5 genetic ensemble 0.2593 0.0929 0.1468 0.0938

3Sources Guardian1000 Proposed EECC 0.4562 0.455 0.2481 0.2439

C4.5 genetic ensemble 0.44 0.294 0.2418 0.2456

BBC1000 Proposed EECC 0.2868 0.3451 0.1247 0.257

C4.5 genetic ensemble 0.2778 0.425 0.1238 0.272
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6 Discussion

For the assessment of our proposed technique, we have conducted experiments using different
performance measures such as Coverage, One Error, IS Error, MAS, MAP, and MAR. After the
addition of noise, the proposed EECC shows a slight improvement in performance in terms of these
measures. We have also observed from the results that for the datasets having a large number of labels
the improvement in performance is less as compared to datasets having a small number of labels. This
shows that complexity increases as the dataset size increases. We have also conducted experiments
using different transformation and adaptation methods with Credal C4.5 as a base classifier and
compared results with C4.5. The results show that in presence of noise, the Credal C4.5 performs better
as compared to C4.5. However, our study is related to evolutionary techniques. In the existing
literature, the value of s is also discussed. The standard value of s in Credal C4.5 is set to be 1 as
suggested by the literature [47]. It is a hyper-parameter belonging to Imprecise Dirichlet Model (IDM),
discussed above. This measure is used for the regularization of convergence speed of lower and upper
probability as sample size increases. In [47] the authors didn’t recommend the value of s but
recommend the value s = 1. We have performed experiments by setting different values of s on EECC
for Movies dataset. The Visualized results on different values of s are shown in Fig. 3. The results
show that when s = 1 it gives 97.7% Accuracy and then s = 1.5 and so on. The comparison of
proposed EECC with C4.5 Ensemble fitness values on 300 generations, before and after the addition of
10% noise for BBC1000 dataset. The blue line represents the fitness values before the addition of
noise, orange shows the fitness values of C4.5 classifier after addition of noise and grey one represents

Table 6 (continued).

Dataset Algorithm Micro average precision Micro average F-measure

Noise 0% Noise 10% Noise 0% Noise 10%

Birds Proposed EECC 0.3425 0.4468 0.3362 0.3652

C4.5 genetic ensemble 0.324 0.4957 0.3265 0.4

Emotions Proposed EECC 0.6346 0.6431 0.5342 0.6349

C4.5 genetic ensemble 0.6214 0.6373 0.535 0.6061

Genbase Proposed EECC 0.9892 0.9876 0.9846 0.9562

C4.5 genetic ensemble 0.994 0.9711 0.9852 0.9155

Figure 2: Comparison of performance evaluation of different values of s
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the fitness value after the addition of noise. This figure shows that after the addition of noise the fitness
values of the C4.5 classifier drastically reduces but the fitness values of EECC have a small loss as
compared to C4.5. We have also compared our proposed approach EECC with other state-of-art multi-
label classification techniques, before and after the addition of noise and compiled the results in a graph
shown in Fig. 3.

For the validation of our results, we have used different tests such as Fredman Rank Test, Average
Accuracy, and Neymani Test. The details about these tests are as under.

6.1 Average Accuracy

The average results show that after the addition of noise, the average accuracy value of Credal C4.5 is
greater than C4.5. This difference is notable when 10% of the noise is added.

6.2 Friedman’s Ranking

It is a non-parametric test used to measure the repeated analysis by variance. The results of before and
after the addition of 10% noise of Friedman’s rank test on accuracy results on all datasets are shown in Tab. 7.
According to the results, the C4.5 ensemble rank is lower than EECC. This shows that EECC shows good
classification results when noise is added as compared to C4.5 is given in Tab. 8. Different studies have been
conducted for handling noise in multi-label classification. These studies include building ensemble of Credal
C4.5 classifiers using the bagging technique but this technique combines the average of each model, whereas
our approach trains classifier on different combinations of labels and then combines them by using different
labels transformation techniques. In prior studies, transformation techniques are also found to be effective in
solving noise-related problems.

Figure 3: Comparison of various state-of-art multi-label classification techniques, before and after the
addition of noise, with EECC

Table 7: Comparison of average accuracy scores

Method Noise 0% 10%

C4.5 [40] 0.37 0.3

Proposed EECC 0.37 0.32
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7 Conclusion

In this paper, we proposed the EECC (Evolutionary Ensemble of Credal C4.5 Classifiers) for multi-label
classification, which handles noisy, imbalanced datasets without reducing the performance. We have used an
evolutionary approach to build the ensembles automatically, for label combinations. In our approach, the best
label combinations are obtained by evolution as compared to RAkEL or CC which make random
combinations of labels without considering any criteria. For the assessment of our proposed technique,
we have conducted experiments on standard publicly available multi-label datasets and evaluated key
performance measures.

We have compared our approach with existing evolutionary ensembles techniques that do not take
uniform label noise into account. Each of these techniques was observed and compared before and after
the addition of noise, to our proposed approach. Our proposed ensemble outperforms other techniques in
terms of Coverage, Subset Accuracy, and Hamming Loss for the majority of the datasets. In the future,
we plan to use multi-objective fitness functions to provide the best trade-offs between competing
objectives in multi-label classification.
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