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Abstract: Current works on spam detection in product reviews tend to ignore the
temporal relevance among reviews in the user or product entity, resulting in poor
detection performance. To address this issue, the present paper proposes a spam
detection method that jointly learns comprehensive temporal features from both
behavioral and text features in user and product entities. We first extract the behavior-
al features of a single review, then employ a convolutional neural network (CNN) to
learn the text features of this review. We next combine the behavioral features with
the text features of each review and train a Long-Short-Term Memory (LSTM) mod-
el to learn the temporal features of every review in the user and product entities.
Finally, we train a classifier using all of the learned temporal features in order to pre-
dict whether a particular review is spam. Experimental results demonstrate that the
proposed method can effectively extract the temporal features from historical activ-
ities, and can further jointly analyze the activity trajectories from multiple entities.
Thus, the proposed method significantly improves the spam detection accuracy.
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1 Introduction

Due to the development of mobile communication technology and the widespread use of smartphones, it
is now normal for people to share their reviews of products or the services they have purchased. As a result,
many customers therefore consider the user ratings of a product before making a purchasing decision. For
merchants, the quality of online evaluation is consequently closely related with their profit level [1]. It
has therefore become common practice for online retailers to hire professional spammers to leave bad
reviews or ratings for their competitors’ products. According to one survey1, about 25% of the reviews
on Yelp.com are fake reviews of this kind.

1
http://www.bbc.com/news/technology-24299742
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With this in mind, researchers have conducted extensive studies in the challenging field of spam
detection. Many of them take advantage of the machine learning’s effectiveness, which have been widely
used in dealing with optimization problems [2–5]. Some works in the literature have studied how to find
clues to characterize spam and extract effective text features and behavioral features. Once the reviews
are represented by these features, statistical models can then be applied. In addition, researchers mostly
conduct grammatical and semantic analysis through the use of text features, which are among the most
widely used feature types. Adopting a grammatical analysis perspective, some researchers have extracted
part-of-speech tags [6], multi-grammatical features [7], and a wide range of other lexical and syntactic
features [8] in order to infer the intent and purpose of the text. Moreover, semantic analysis-based
methods perform abstract representation and feature extraction of a review, and further use these features
to distinguish normal reviews from fake ones. These types of methods tend to follow research directions
such as sentiment analysis [9], semantic representation learning [10,11] semantic similarity [12,13], etc.

Previous studies have shown that many fake reviews cannot even be identified by humans due to the highly
imperceptible nature of fake reviews. Thus, the use of text features does not perform well on real data; however,
the behaviors of the spammers contain a large number of clues that reveal suspicious patterns. As a result, many
researchers have explored the extraction of behavioral features from the historical traces left by the reviewers.
These traces include registration time, posting a review, giving a score for a product, etc. From these traces,
certain behavioral features can be extracted: these include the maximum number of reviews posted by the
reviewer in a day, the proportion of positive reviews among all reviews made by the user, the rank of these
reviews among all reviews of the product, the average product score, etc. The work in [14] shows that users’
behavioral features are more effective for this purpose than reviews’ text features.

Unfortunately, behavioral features extraction is more reliant on expert knowledge, and is not always
supported by rich trace information. The use of behavioral features can thus only improve spam detection
performance to a certain extent. Therefore, many researchers choose to employ both text features and
behavioral features when performing spam detection tasks, and consequently achieve better results. For
example, the work in [14] proposed several new effective behavioral features and combined them with
binary grammatical features on the Yelp dataset to improve the spam detection performance.

The aforementioned works, using either text features or behavioral features, tackle the spam detection
problem as a binary (i.e., either fake review or normal review) classification problem. A classifier is trained
on features extracted from current published reviews in order to predict whether a new review is fake or
normal. However, most of these works do not consider the temporal features of the reviews; these are
features related to the time interval between the related reviews of the same entity. Here, ‘related reviews’
are reviews posted by the same user, or for the same product, within a certain period of time. If the
opinion in these related reviews changes abnormally, these reviews may contain fake opinions.
Accordingly, the leveraging of temporal features may significantly contribute to spam detection.
Moreover, existing studies also extract features from the relationships between users and reviews, or
between products and reviews, independently. It would be preferable to adopt a holistic approach that
considers the relationship among users, reviews and products to extract behavioral and text features.

Accordingly, in this paper, we propose a multi-entity temporal feature-based spam detection model
(MTFSD). After obtaining the text and behavioral features of reviews, MTFSD uses LSTM to
automatically learn temporal features for each review by considering the latest reviews for the user entity
or product entity. Finally, MTFSD merges these learned features to mine the relationships between
different entities so as to distinguish between normal and fake reviews. Experimental results show that
MTFSD achieves better spam detection performance compares with other methods.

In summary, the main contributions of this paper include the following:

� The proposed method effectively learns the dynamic temporal features via LSTM. These temporal
features can effectively capture the relevance among the related reviews and the internal
characteristics of a review.
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� The proposed method provides an effective way to learn comprehensive fusion features from the
perspective of multiple entities in order to detect fake reviews. These comprehensive fusion
features enable significantly better fake review detection performance.

2 Related Work

With the development of the internet technology and social networks, network and information security
have attracted widespread attention [15–20]. The research on spam detection in reviews began in 2008 with
the work of Jindal et al. [21]. These authors collected millions of product reviews from Amazon.com. After
analyzing these reviews, they divided fake reviews into three types: untruthful reviews, reviews of the brand
more generally and not the product specifically, and non-reviews. Moreover, due to the lack of labels in the
data, they marked duplicate reviews as fake reviews, then adopted three kinds of features: review-centered,
reviewer-centered, and product-centered. Finally, they used a logistic regression model to achieve fake
review detection. Since then, a number of researchers have devoted significant effort to the development
and exploration of extracting effective text and behavioral features.

The study of text features can be divided into two categories: Those based on grammatical analysis and
those based on semantic analysis. From the grammatical analysis perspective, text features are primarily
extracted from the word frequency statistics of words or phrases, which are typically processed using a
bag-of-word (BOW) model or an N-gram model. The BOW model regards the content of each review as
a ‘bag’ and assumes that each word in the bag is independent, while the word order, grammar and syntax
in the text are ignored; the reviews are then classified according to the words contained in the bag. For its
part, N-gram uses a window of size n to slide on the text content, forming a word fragment sequence of
length n. Each of these word segments is called a ‘gram’. Subsequently, the frequencies of all grams are
counted and filtered in order to obtain the vector feature space of the text. Unigram, bigram, and trigram
methods are commonly used in bag-of-words features [7,22]. However, the detection effect of bag-of-
word features differs across different datasets [6,23].

To overcome the disadvantages associated with BOW features, subsequent works have focused on
extracting text features from the part-of-speech feature analysis, which is achieved by tagging the part-of-
speech of the text and counting the frequency of occurrence. While various part-of-speech features were
employed in some early works [6–8,23], these were not systematically analyzed until the work of Li et al.
[9] in 2014. Li and colleagues found that fake reviews fabricated by domain experts tend to contain more
nouns, adjectives and qualifiers than real reviews, along with fewer verbs and adverbs than real reviews.
Thus, through further analysis of these differences in language usage, deceptive opinion spam can be
more precisely identified.

Not only in spam detection tasks, but also in most other text classification tasks, grammatical analysis is
a simple and powerful tool; however, it also relies heavily on expert knowledge. Moreover, the performance
of grammatical analysis is largely dependent on the datasets being employed, whose semantics cannot be
intuitively understood with the aid of grammatical analysis. The work in [24] studied a frame-based deep
semantic analysis of spam, which was concerned with the different distributions of the semantic
frameworks of fake reviews as well as normal ones. Furthermore, the work in [25] noticed that both the
extraction of grammatical features and the use of semantic frameworks for spam analysis lack a global
perspective from which to effectively represent semantic information throughout the reviews. This work
employs a CNN model to automatically learn text features for spam detection purposes, an approach that
outperforms both RNNs and traditional hand-crafted linguistic features.

Behavioral information can also provide clues for use in identifying review spam. Through data
screening, the work in [26] extracted several behavioral features that indicate abnormal reviewer activity,
such as overall score bias and early time bias. The work in [27] further noticed the relationship between
ratings and review posting time. By considering the reviews posted in different periods, their average
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ratings, and the overall proportion of unique reviews, this work concluded that the ratings of normal reviews
are unrelated to time, while the number of extreme ratings tends to increase explosively over a short period.
Moreover, the work in [23] experimentally demonstrated that the text-feature-based approach adopted in [6]
is not very effective on the Yelp dataset. Furthermore, the work in [28] conducted extensive statistical
analysis to propose a series of effective behavioral features, subsequently proving experimentally that the
behavioral features of reviews are more effective than text features.

Most of the above works analyze users (who write reviews), reviews, and products separately. The work
in [29] proposed several behavioral features from the graph structure perspective, exploring the direct
network connection utility between users and products, and successfully applied this approach in online
applications. Based on the previous studies, the work in [30] analyzed the behavior patterns of spam in
both the time and spatial dimensions, and consequently achieved better spam detection results.

However, not all reviews contain rich behavioral information; in fact, this phenomenon is relatively
common in the datasets. Therefore, the fusion of text features and behavioral features to detect fake
reviews has become the trend among most researchers. For example, the work in [31] comprehensively
utilized the text features, behavioral features, metadata, and graph structure information of the reviews,
then applied a Markov random field model to detect spam.

3 The Proposed Method

3.1 Framework Overview

In this subsection, we first define three important entities in a review system: namely, the review, user
and product.

� Review entity: The review entity refers to the review text posted by a user regarding a product. It
includes attributes such as review content, posting time, publisher, evaluation object, etc.

� User entity: The user entity contains all users along with their posted reviews. As with the review
entity, these reviews also have many attributes, but these pertain instead to the reviewers (users).

� Product entity: The product entity includes all objects (e.g., hotel, restaurant, movie, etc.) in the
review system that can be given reviews or ratings, along with all reviews these products have
obtained. All reviews are connected to their corresponding reviewed objects.

Examining the definitions of these three entities, it can be seen that an individual review will be
associated with these three entities from different perspectives. In the user and product entity, a review
will have strong relevance to other reviews posted within the same time period. Regarding the review
entity, the text and behavior of a review will contain clues that indicate whether or not the review is fake.
However, reviews in the review entity are independent of each other while their relevance is commonly
ignored. Regarding the user and product entities, the relevance of reviews and the behavior of users and
products may reflect spam patterns, which are able to be captured by temporal features. Therefore,
extracting temporal features of both text and behavior from the user and product entity is a subject we
deem worthy of significant attention. Here, we use the LSTM model to automatically learn deeper
temporal features from the extracted CNN-based text features and hand-crafted behavioral features of
reviews in the user and product entities. Finally, we integrate the features derived from different entities
and input these features into a classifier in order to determine whether or not the reviews are fake.

The framework of the proposed method is outlined in Fig. 1. This method comprises five main steps,
which are as follows:

Initialization:

It is widely understood that users mostly write reviews subjectively; therefore, reviews are affected not
only by the product itself, but also by the users’ opinions and emotions. To effectively learn the temporal
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features of a review in the user and product entity, other reviews in the same entity should be employed in
order to capture their relevance with the learned review.

In fact, for the review in the review entity to be detected, we opt to consider only the most recent reviews
made by the same user. Examining a user’s most recent reviews rather than all the reviews can not only
facilitate analysis of the user’s recent status, but also avoids any influence being exerted from the user's
status too long ago on the current review.

On the other hand, reviews for the same product in a given period always tend to cluster around a similar
type of opinion (positive or negative). When a product is attacked by a spammer, the reviews it receives
during the period of attack will fluctuate significantly. Therefore, the proposed method takes the latest
several reviews into account in order to learn the temporal features of a review in the product entity.

As to the analysis above, the proposed method initially organizes the reviews in the user and product
entity according to the time at which they were posted. As a result, each review within the same entity
can be assigned a definite location.

In the user entity, the latest k reviews posted by user u before posting review r (the review to be analyzed)
can be expressed as follows:

ur ¼ ruk ; ruðk�1Þ; � � � ; ru2; ru1; r
� �

(1)

In the product entity, moreover, the latest m reviews received by product p before review r can be
expressed as follows:

pr ¼ rpm; rpðm�1Þ; � � � ; rp2; rp1; r
� �

(2)

For convenience, we add r into ur and pr, and conceive of ur as the user-related review set of review r,
while pr is the product-related review set of review r. Moreover, the reviews in ur and pr are referred to as the
user-related and product-related reviews of review r.

Feature Extraction:

For each single review in the review, user, and product entity, we next perform feature extraction from
two aspects (text and behavior) to facilitate the subsequent operations.

In previous studies, behavioral features have been considered more indicative than text features of
whether a review was real or fake. With the help of previous works and expert knowledge, the proposed
method extracts the behavioral features of a single review from the three entities; this process is described
in more detail in the next subsection, Behavioral Feature Extraction.

Existing studies have demonstrated that CNN can be effectively applied to text classification tasks
[32,33]. Thus, in order to effectively capture the text characteristics of a single review, we employ CNN
to learn the feature representation from the content of the review [34,35]; to a certain extent, this can be
used to differentiate a normal review text from a fake one. The subsection 3.3xsd provides a more
detailed description of the text feature extraction process utilized in the proposed method.

Feature Fusion:

To comprehensively represent a single review as a vector for use in distinguishing fake reviews from
normal ones, it is necessary to integrate all the extracted features for each review. Different feature types
reflect different aspects of review characteristics, as outlined in [36].

Generally speaking, a review includes the review text along with other attributes such as author, product,
rating, etc. Thus, the feature representation of a given review should include not only the text features
extracted from the review text, but also the behavioral features extracted from other attributes.
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Accordingly, we concatenate the CNN-based text features and behavioral features of each review to
form the joint feature representation used for subsequent operations.

Temporal Feature Learning:

The reviews in the user entity are often written for different products. Their statistical characteristics always
reflect changes in the user’s personal sentiment and writing style. By contrast, those in the product entity are
mostly written by different users, and are closely related to the real-time status of the product.

In the user and product entity, each review will most likely be influenced by the previous reviews in its
user-related review set and product-related review set, which can be regarded as the states of these entities at
different times. In addition, the closer together the posting/obtaining times for reviews in the same entity, the
more relevant they are to each other. As existing researches [37–41] show that LSTM can effectively capture
the relevant input data at different time points by combing historical information, the proposed method
employs LSTM to learn the temporal features for each review in the user or product entity.

By considering the feature vector of each review as a moment on the time axis, each entity is represented
can be a time series comprising several moments. Thus, with the help of LSTM, the temporal feature
representation of a review in entities at a deeper level can be automatically learned from the fused
features of its user-related and product-related reviews.

Classification:

Through Feature Extraction, the review to be detected in the review entity is represented as a joint feature
vector made up of its behavioral feature and text feature. Moreover, after the Temporal Feature Learning step is
complete, the review to be detected is represented as two learned temporal feature vectors (for both the user and
the product entity). Finally, the three feature vectors of reviews from different entities are merged and input into
a classifier, which facilitates determining whether or not it is a fake review.
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Figure 1: The framework of the proposed model
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3.2 Behavioral Feature Extraction

Regarding the attributes of a review in the review entity, researchers have analyzed a large body of data and
consequently identified many clues that could indicate the presence of a fake reviews. For example, the first
review on a product usually attracts the most attention, as people tend to pay attention to the top reviews
with the highest ratings. Accordingly, spammers often try to ensure that their reviews are placed as high on
the list as possible. Thus, how high a given review is on the list can represent a clue as to whether this
review is fake.

Five behavioral features obtained from the attributes of reviews in the review entity are employed in the
proposed method: namely, the order of the review (Rank), the absolute value of the score deviation rate (RD),
the extremeness of the score (EXT), the score deviation rate with threshold (DEV), and whether the review is
a singleton (ISR). Further details are presented in Tab. 1.

In addition to the behavioral information contained in reviews, spammers also tend to leave some traces
of their corresponding behavior trajectories when they post fake reviews to attack other products. For
example, according to the statistics in [23], 75% of spammers will write more than five reviews per day
on average, while 90% of normal users typically write no more than one review per day. These pieces of
behavioral information can be statistically analyzed at the user and product levels. Accordingly, some
more behavioral features can be extracted from the reviews in the user and product entity.

The following six features based on user behaviors listed in Tab. 2 are adopted in the proposed method:
the maximum number of reviews posted within a day (uMNR), the ratio of positive evaluation (uPR), the
ratio of negative evaluation (uNR), the distribution entropy of user evaluation scores (uERD), the average
deviation rate (uavgRD), and the overall burstiness (uBST). Moreover, five features are also extracted
from the attributes of reviews in the product entity, which are listed in the Tab. 3. These features, which
are similar to those in the user entity, are as follows: the maximum number of reviews posted within a
day (pMNR), the ratio of positive evaluation (pPR), the ratio of negative evaluation (pNR), the average
deviation rate (pavgRD) and the distribution entropy of the average valuation score obtained (pERD).

In summary, for each review r, five review-based behavioral features, six user-based behavioral features,
and five product-based behavioral features are extracted using the methods described above to form a
complete behavior feature vector. If we denote the value of the j-th behavioral feature as oj, the behavior
feature vector of r can be expressed as q(r), where:

Table 1: Behavioral feature in review entity

Features Meaning

Rank The order of the review [21].

RD The absolute value of score deviation rate [42].

EXT Extremes of score. 1, if the score is 4,5; 0 otherwise.

DEV
Score deviation rate with threshold of b1 [28], xDEVðiÞ ¼ 1; if

jri � avgðrÞj
4

.b1
0; otherwise

(
, ri

indicates the rating of review, avgðrÞ indicates the average score of all reviews, b1 is learned by
recursive minimum entropy partition.

ISR If the user posts only one review, xISR= 0; 1 otherwise [31].
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qðrÞ ¼ o1; o2; � � � ; oj; � � � ; o16
� �

(3)

3.3 CNN Based Text Feature Learning

The acquisition of text features depends on the text content of the review itself. For each review, the
proposed method uses CNN to learn the features of the global semantic information from the review’s
text content. This learning process is illustrated in Fig. 2. First, each word in the review text is
represented as a dense vector of fixed dimensions using a distributed word representation model, thereby
converting each piece of review text into a vector matrix. Next, after multi-kernel convolution, pooling,
and full-connection operations are implemented, the text feature output of each review is finally obtained.

Suppose that the review r to be analyzed contains n words in its text content; that is
r ¼ w1;w2; � � � ;wnf g. Each word wj is represented by a word representation language model) which can
be word2vect [43], ELMo [44], glove [45], etc., creating a vector eðwiÞ of dimension d, after which the
text of r is then converted into a vector matrix EðrÞ 2 Rn�d. We then use three convolution kernels with
window sizes of 3� d, 4� d, and 5� d to perform the convolution operations. The number of each
type of convolution kernel is set to 100. The process of one convolution for each kernel is described
as follows:

ci ¼ Wc � Ei:iþh�1ðrÞ þ bc (4)

where h is the length of the convolution window and i represents the i-th row of the matrix EðrÞ, whileWc is
the weight to be learned. The convolution window slides on EðrÞ; each sliding interval is set to 1, such that
n� hþ 1 features will be obtained. After maximum pooling:

Table 2: Behavioral features in the user entity

Features Meaning

uMNR Maximum number of reviews that a user posted within a day [23].

uPR The ratio of positive reviews (4–5 star) in all reviews posted by this user [23].

uNR The ratio of negative reviews (1–2 star) in all reviews posted by this user [23].

uERD Distribution entropy of user evaluation scores [31].

uavgRD Average deviation rate [23].

uBST
Burstiness [23], xBST ðiÞ ¼

0; if LðiÞ � FðiÞ > s

1� LðiÞ � FðiÞ
s

; otherwise

(
, where LðiÞ � FðiÞ describes days

between last and first review, and s = 29 (day).

Table 3: Behavioral features in the product entity

Features Meaning

pMNR Maximum number of reviews that a product received within a day [23].

pPR The ratio of positive reviews (4–5 star) in all of the product’s reviews [23].

pNR Ratio of negative reviews (1–2 star) in all of the product’s reviews [23].

pavgRD Average deviation rate [23].

pERD Distribution entropy of the average evaluation score obtained [31].
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ĉ ¼ max cið Þ; i 2 n� hþ 1ð Þ (5)

Each convolution kernel with a fixed h will be assigned an Eigenvalue ĉ, and Ĉ will be learned for three
windows of different sizes. These features are then fully connected to obtain a feature vector TeðrÞ of
dimension l.

Te rð Þ ¼ ReLu WĈ � Ĉ þ bĈ
� �

(6)

where ReLu is the activation function.

3.4 LSTM-Based Temporal Entity Feature Extraction

Most reviews written by spammers are based on templates or existing reviews and the slightly modified.
These highly similar reviews are posted continuously. By contrast, in the case of non-spammers, reviews are
usually written with reference to the features of a specific product, and the differences among these normal
reviews tend to be large. When a merchant hires spammers to either post positive reviews for their own
products or to leave malicious fake reviews for competitors’ products, the spammers will leave traces in
the process that provide clues for the detection of fake reviews. This paper analyzes the historical traces
of reviews from two aspects, namely users and products, and automatically learns the temporal features
from reviews in the user and product entity through LSTM.

By performing feature extraction and feature fusion, the extracted text feature vector TeðrÞ and
behavioral feature vector qðrÞ are fused to a joint feature representation xr of the review r, which is
expressed as follows:

xr ¼ Te rð Þ � q rð Þ (7)

Similarly, for each review in the user-related review set ur and the product-related review set pr of review
r, a joint feature representation is obtained. For the review rSi, S 2 fu; pg, in Sr, after combining its text
feature vector Te rSið Þ with its behavioral feature vector , its joint feature representation xSi can be
expressed as follows:

Feature map 3

Feature map 2
Feature map 1

Word Embedding Multi-kernel Convolutional Pooling Full connection

I
like
this

hotel
because

it
is

very
clean
and
tidy

Figure 2: CNN-based feature learning of a single review
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xSi ¼ Te rSið Þ � q rSið Þ (8)

Consequently, Sr can be converted to the following joint feature representation v Srð Þ:
v Srð Þ ¼ xS1; xS2; � � � ; xSz½ � (9)

where z is the number of reviews contained in Sr. If S ¼ u, i.e., Sr denotes ur, then z ¼ k þ 1; otherwise,
z ¼ mþ 1. Generally speaking, the number of reviews corresponding to the same product as the review
r is much larger than the number of reviews corresponding to the same user as the review r. Therefore,
when learning temporal features on a product entity, the number of reviews in association analysis is
greater than the number obtained when extracting temporal features on a user entity, which is usually
expressed as m > k.

The z reviews contained in Sr are sorted according to their time of occurrence. Each review is considered
as a moment, which is represented by xSi. v Srð Þ is a time series that is input into an LSTM model for the
learning of temporal features. An LSTM is a type of Recurrent Neural Network (RNN) [46]; thus, it
inherits the features of most RNN models, and further solves the Vanishing Gradient problem caused by
the gradual reduction of the gradient back-propagation process. These models are widely applied in the
time series analysis context. Each neuron of LSTM contains three gates: a forgetting gate, an input gate
and an output gate. If the input at time i is xSi, the forgetting gate fi will decide to either discard or retain
the information by using the following equation:

fi ¼ r Wf � hi�1; xið Þ þ bf
� �

(10)

here, the input gate Ii is used to update the state of neurons:

Ii ¼ r WI � hi�1; xið Þ þ bIð Þ (11)

moreover, the current neuron state Ci can be expressed as:

Ci ¼ fi � Ci�1 þ Ii � tanh WC � hi�1; xið Þ þ bCð Þ (12)

additionally, the output gate Oi is used to determine the value of the next hidden state:

Oi ¼ r WO � hi�1; xið Þ þ bOð Þ (13)

finally, the neuron outputs hi:

hi ¼ Oi � tanh Cið Þ (14)

where Wf , WI , WC and WO are the weights that can be learned, bf , bI , bC and bO represent the bias, hi�1

represents the output of the previous moment, Ci�1 denotes the state of neuron at the last moment, tanh is
the activation function, and r represents the sigmoid function.

As a result, by employing LSTM and the input of v urð Þ and v prð Þ, we can learn a temporal feature vector
V urð Þ and V prð Þ from the user and product entity at a deeper level in time series.

3.5 Multi-Entity Feature Fusion and Classification

Through the above operations, four types of features—namely the text features Te rð Þ, the behavioral
features q rð Þ, the user-based temporal features V urð Þ, and the product-based temporal features V prð Þ are
obtained for given a review r. After these are cascaded, a new comprehensive feature vector F rð Þ is
formed, such that:
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F rð Þ ¼ Te rð Þ � q rð Þ � V urð Þ � V prð Þ (15)

Finally, a classification model is constructed using softmax for F rð Þ, enabling the final classification
result y to be obtained:

y ¼ softmax WF � F rð Þ þ bFð Þ (16)

where y is the probability distribution of the detected review being fake or normal, while WF and bF are the
model parameters obtained during training.

4 Experiments and Analysis

4.1 Datasets and Evaluation Metrics

4.1.1 Datasets
To verify the effectiveness of the proposed method, we select the Yelp dataset for our experiments. The

Yelp dataset is a publicly available commercial website dataset that offers a good balance between
commercial authenticity and ground truth, and has thus been widely used in the works of many
predecessors. In this paper, we focus on hotels in the Yelp dataset for our experiments.

The Yelp Hotel dataset contains 6,883,290 reviews for 3,680,118 hotels from 66,599 reviewers. Of these,
5,679 reviews are labeled. Among the labeled reviews, 803 are fake reviews, while 4,876 are normal. Each
review contains written time (date), content (reviewContent), the ID of the reviewer (reviewerID), the rating
provided by the reviewer (rating), the hotel ID (hotelID), and the label (flagged), along with some other
attributes. Moreover, the dataset records the username, registered address, registration time, and the number
of reviews posted by each user. Relevant information about the hotel (such as its name, registration date,
registered address, price, telephone, and other information) is also recorded.

We mainly use the attribute date, reviewContent, reviewerID, rating, hotelID, and flagged elements of a
given review to extract features. Here, date and rating are employed to extract the behavior information of a
single review. Moreover, the combination of reviewerID and date can be used to construct the reviewer’s
historical behavior trajectory, which in turn serves as the basis for extracting the temporal feature from
the user entity. Similarly, hotelID associates reviews to different hotels and also incorporates the attribute
date, making it possible to extract temporal features from the product entity.

4.1.2 Evaluation Metrics
We use Precision (P), Recall (R), F1-Score (F1) and Accuracy (A) as the metrics for evaluating the spam

detection performance. These are defined as follows:

P ¼ TP

TP þ FP
(17)

R ¼ TP

TP þ FN
(18)

F1 ¼ 2 � P � R
P þ R

(19)

A ¼ TP þ TN

TP þ FN þ FP þ TN
(20)

Here, TP denotes the number of fake reviews correctly detected as fake reviews by the spam detection
model; FN is the number of fake reviews incorrectly identified as normal reviews; FP represents the number
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of normal reviews incorrectly identified as fake reviews; finally, TN indicates the number of normal reviews
that are correctly identified as normal reviews.

4.2 Parameter Settings and Experimental Environment

We use a pre-trained word2vec model, which is the model introduced in [47], to obtain the word
embeddings for the words contained in the reviews. word2vec takes a text corpus as input and produces a
low-dimensional vector for each distinct word in the corpus. In our experiments, each word is mapped
into a 300-dimensional vector, with the corpus GoogleNews used as the training set of the word2vec model.

In the process of learning various features, the number of convolution filters is set to 100, moreover, the
number of feature dimensions finally output by the convolutional layer l is 30, the number of units in LSTM
is set to 10,m is set to 10, while k is equal to 3. A learning rate of 0.00001 is set using the Adam optimizer, the
number of epochs is set to 100, and we configure the focal_loss loss function with values of a ¼ 0:25, c ¼ 2.
These parameters are set based on empirical experience.

We developed the proposed method by using the TensorFlow framework with three important libraries
Numpy 1.18.5, Keras2.3.1 and Tensorflow-gpu1.14.0 in the Python programming. The implemented model
is trained on a computer with windows operating system. Moreover, the computer has 32G memory,
RTX2080 Super GPU and Intel Core i7-9700k Processor.

4.3 Comparison of Detection Performance

To validate the effectiveness of the proposed MTFSD, we compare the performance of four similar fake
review detection methods with that of our method.

SPEAGLE+, proposed by Rayana et al. [31], is a graph-based semi-supervised method with the labeling
ratio set to 80%.

MK, proposed by Mukherjee et al. [14], has two variants: one based on behavioral features (MK_BF)
and one based on the combination of behavioral and text features (MK_BF+Bigram). The parameters are set
in a manner consistent with the original work.

W_BF+Bigram, proposed by Wang et al. [11], uses the tensor decomposition method to extract
behavioral features, and further adds the bigram text features of the reviews as representations of the reviews.

Tab. 4 presents the detection results of different methods. As can be seen from the results, our proposed
MTFSD, using text + behavioral + temporal features, achieves the best precision, F1 score and accuracy results
among all methods. These experimental results therefore validate the effectiveness of our proposed method.

Table 4: Detection results of different spam detection methods

Method P R F1 A

SPEAGLEþ(80%) 26.5% 56.0% 36.0% 80.4%

MK_BF 41.4% 74.6% 55.6% 82.4%

MK_BF + Bigram 46.5% 82.5% 59.4% 84.9%

W_BF + Bigram 48.2% 85.0% 61.5% 85.9%

MTFSD 70.0% 58.3% 63.6% 91.8%
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4.4 Validity Analysis of Temporal Feature and Multi-Entity Feature Fusion

In addition to the above comparison experiments, we conduct further experiments to validate the impact
of the different types of features we employ, particularly the temporal features and multi-entity fused features.

We first construct a spam detection model Te + Be, which uses only Te rð Þ and q rð Þ for classification; this
means that this model detects spam based only on the text features and behavioral features extracted from the
review of interest.

Secondly, an MU detection model is constructed by combining Te rð Þ, q rð Þ, v urð Þ and v prð Þ for review
classification purposes. In Eq. (9), when S ¼ u, then v Srð Þ ¼ v urð Þ, while S ¼ p, then v Srð Þ ¼ v prð Þ. v urð Þ is
the joint feature representation from the review r and its user-related reviews, while v prð Þ refers to the joint
feature representation from the review r and its product-related reviews. As the features employed by MU
model are from three entities (i.e., review, user and product), the MU model aims to capture the relevance
of these different entities in order to improve the detection accuracy of the Te + Be model.

Compared to MU model, the proposed MTFSD uses LSTM on v urð Þ and v prð Þ temporal feature
extraction, then performs multi-entity feature fusion. In short, MTFSD is a model that integrates Te rð Þ,
q rð Þ, V urð Þ and V prð Þ.

The spam detection results of the three models described above are listed in Tab. 5. As can be seen from
the table, compared with Te + Be, MU achieves a certain degree of improvement in terms of detection recall,
accuracy and F1 value by adding joint feature representation from related reviews. However, this model
simply cascades the text and behavioral features of related reviews, and consequently does not capture
their relevance. For its part, the proposed MTFSD learns temporal features from the related reviews using
LSTM, and consequently achieves even higher recall, accuracy and F1 value. Accordingly, the results in
Tab. 5 reveal that the temporal feature extraction and multi-entity feature fusion proposed in this paper
represent effective methods of improving the fake review detection performance.

5 Conclusion

In this paper, an LSTM-based spam detection model is proposed that can effectively extract the temporal
features of different entities and conduct fusion analysis of these features. The model obtains the temporal
embedding representation of multiple entities by learning the correlation features from the perspective of
users and products based on posting time, then uses a classifier to complete the spam detection task.
Experimental results demonstrate that out proposed method effectively improves the accuracy of spam
detection. At present, the extraction of behavioral features relies solely on expert knowledge; this
suggests that it would be fruitful to apply machine learning techniques in order to automate the feature
extraction process in future work.
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