
Framework for Cybersecurity Centers to Mass Scan Networks

Waiel M. Eid1,2, Samer Atawneh1 and Mousa Al-Akhras1,3,*

1College of Computing and Informatics, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
2National Cybersecurity Authority, Riyadh, Saudi Arabia

3Computer Information Systems Department, King Abdullah II School for Information Technology, University of Jordan,
Amman, 11942, Jordan

�Corresponding Author: Mousa Al-Akhras. Email: m.akhras@seu.edu.sa; mousa.akhras@ju.edu.jo
Received: 17 August 2020; Accepted: 22 September 2020

Abstract: The huge number of devices available in cyberspace and the increasing
number of security vulnerabilities discovered daily have added many difficulties
in keeping track of security vulnerabilities, especially when not using special
security tools and software. Mass scanning of the Internet has opened a broad
range of possibilities for security tools that help cybersecurity centers detect
weaknesses and vulnerabilities in cyberspace. However, one critical issue faced
by national cybersecurity centers is the collection of information about IP
addresses and subnet ranges. To develop a data collection mechanism for such
information and maintain this information with continuous updates, a scanning
system is needed. Therefore, this research creates a novel mass scanning frame-
work that collects the information needed for any security investigation of cyber-
space as well as preserving the obtained information for any future research
analysis by the Saudi National Cybersecurity Center (NCSC), now part of the
National Cybersecurity Authority (NCA). In the proposed framework, multiple
instances of the scan are distributed across hosts acting as virtual scan engines,
and network ranges are split among the hosts to schedule daily or weekly scan-
ning for a wide range of IP addresses among a possible 65,535 ports per IP. In
comparison with other benchmarking tools such as Nmap scanner, our proposed
framework leads to faster scanning of cyberspace and greatly reduces scanning
time to 30% of Nmap’s scanning time.

Keywords: Network mass scan; Nmap; cybersecurity; national cybersecurity
authority; National Cybersecurity Center (NCSC)

1 Introduction

With the vast number of devices available in cyberspace and the increasing number of security
vulnerabilities discovered daily, it is hard to keep track of security vulnerabilities without the use of
specialized tools and software. National cybersecurity centers around the world—for example, the Saudi
National Cybersecurity Authority (NCA)—aim to protect national cyberspace by constantly monitoring
targeted attacks and keeping up with security changes and threats [1]. For these cybersecurity centers to

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2020.013678

Article

echT PressScience

mailto:m.akhras@seu.edu.sa
mailto:mousa.akhras@ju.edu.jo
http://dx.doi.org/10.32604/iasc.2020.013678
http://dx.doi.org/10.32604/iasc.2020.013678


be proactive in protecting countries’ cyberspace, they must oversee mass networks and know what
vulnerabilities exist and what services are available. Nationwide cyberspace is considered a mass network
based on the number of hosts and terminals that utilize a nation’s network. Therefore, cybersecurity
centers require customized frameworks and tools to help them achieve their goals.

Network scanning is the probing process of any network host, where a host is any computer or device
connected to a network. The scanning process is performed based on an understanding of how TCP/IP
protocol works to determine the information required for network security [2]. This information includes
the services running on the scanned hosts, the IP address assigned to the host, and any other related
information that can be collected from the host that helps the probing process. A standard scan is
performed by doing a full TCP connection handshake or half-open SYN scanning [3]. However, this
scanning method takes a longer time to provide results. One well-known open-source application used for
port and network scanning is Network Mapper (Nmap), developed by Gordon Lyon in 1997 [4]. Since
then, the Nmap tool has seen wide use in network security scans [5]. With the limitations of Internet
bandwidth in its early stages, the idea of scanning the Internet seemed impossible; the time needed to
scan the Internet is very long to be feasibly useful.

One issue faced by cybersecurity centers is the collection of information from specific IP addresses or
subnet ranges that belong to a particular cyberspace, such as the owner of the IP address, open ports, or the
services running on the cyberspace. Building a data collection method for the necessary information and
maintaining this information by regularly updating it require a scanning tool to perform the necessary
actions. Therefore, this research creates a framework that would include the tools necessary to provide
the information required to scan the national cyberspace. These tools apply mass scanning on IP ranges
reserved for a specific cyberspace. Mass scanning tools can enable multiple scanners to simultaneously
investigate all ports available in the IP range given by the user, including identifying running services
while avoiding redundancy among hosts during data collection. However, challenges might be
encountered while creating the required framework. One challenge when scanning many subnets is that it
is a time-consuming process: A scan of one normal IP can take up to five minutes; a whole subnet can
take more than 20 hours using regular scanning methods. The proposed framework provides
cybersecurity centers with a fast and fully functional scanner to scan any given IP ranges. The framework
can collect the information needed for any required security investigation as well as preserving the
obtained information in a structured database for future use/research. Users’ anonymity will be
maintained for research purposes.

The rest of this paper is organized as follows: Section 2 presents the necessary background and
reviews the current network mass scanning literature. The methodology and the implementation details
of the proposed framework are given in Section 3. The framework, experimental results, and challenges
faced are presented in Section 4. Finally, Section 5 concludes the work and suggests possible avenues
of future work.

2 Background and Literature Review

This section presents current networking and Internet scanning issues and reviews the available mass
scanning approaches.

2.1 Network Scanning

Network scanning is the process of probing devices connected to the Internet. In recent years, several
studies regarding the scanning of Internet cyberspace have been conducted. In 2010, Dereck Leonard and
Dmitri Loguinov searched for a way to implement an Internet scanner service tool. They developed a
way to maximize the politeness (i.e., to lessen complaints resulting from scanning the IPs) of a remote

1320 IASC, 2020, vol.26, no.6



network to scan the Internet in minutes or hours instead of weeks or months [6]. Their research resulted in a
tool called IRLScanner, which is a high-performance, source-IP scalable tool for service discovery on the
Internet based on the measurement conducted [7]. IRLScanner’s custom network driver can transmit SYN
packets at 5.25 Mb/s using a modern quad-core CPU, assuming 3.5 Gbps of network bandwidth is
available. IRLScanner can cover the entire BGP space in 6.7 minutes from a single server. Fig. 1
describes the implementation of the IRLScanner tool [6].

2.2 Mass Scanning Methods

In 2013, Durumeric et al. [8] developed a modular open-source tool called ZMap to perform fast
Internet-wide scanning. ZMap is capable of scanning the entire Internet for one port on a single probe
in around 45 minutes using a gigabit Ethernet connection. This tool was built based on the only
available network tool and widely used Nmap network scanning [9]. However, the tool framework was
constructed based on an asynchronous connection with a customized TCP request. ZMap eliminates the
local pre-connection state. It scans widely dispersed targets as fast as the network allows and probes
optimized network stacks to bypass inefficiencies by generating Ethernet frames. Fig. 2 shows the
ZMap tool framework.

In the ZMap framework, the packet generation and response interpretation modules support multiple
probe types, such as TCP SYN scans and ICMP echo scans. The output handler module allows users to
output or act on scan results in application-specific ways. This framework allows sending and receiving
components to run asynchronously. It also enables a single source machine to comprehensively scan
every host in a public IPv4 address space for a particular open TCP port in less than 45 minutes using a
1 Gbps Ethernet link [8]. The ZMap tool has seen extensive usage in monitoring security applications

Figure 1: IRLScanner implementation [6]

Figure 2: ZMap framework [8]

IASC, 2020, vol.26, no.6 1321



and tracking availability and protocol adoption, and can be used to enumerate vulnerable host lists and
discover unannounced services [8].

In 2014, Robert Graham developed MassScan [10]. The MassScan tool is an open-source Internet
modular scan developed based on asynchronous transmission. The fundamental difference between
MassScan and other scanners is in the way that MassScan randomizes targets by scanning one port at a
time. The main principle is to have a single index variable that starts at zero and is incremented by one
for every probe. In addition, MassScan uses a custom TCP/IP stack (mainly for the port scan) [11]. The
tool can scan the entire IPv4 Internet in less than 6 minutes for the range of known ports (65,535 ports),
but it requires a 10 gigabit Ethernet adapter and a connection with similar bandwidth. In addition,
MassScan can fetch the information from scanning ports, such as banner checking. The tool can support
SCTP scanning and UDP Nmap payloads, and can also parse Nmap options and produce formats similar
to Nmap [9,11]. MassScan also relies on a single port at a time instead of one host at a time. The
MassScan tool can do spoof scanning, as it can set the scan on one IP and receive the scan results on a
different IP. The tool also has the ability to split the scan among multiple machines [11].

In 2015, Durumeric et al. [12] noticed growth in Internet-wide scanning, which drove security research
based on scanning techniques and tools. Based on this, Durumeric et al. built a search engine backed by data
from extensive Internet data collection and made it available to the public. The resultant search engine, given
the name Censys, supports researchers in answering security-related questions [12]. The Censys search
engine collects the data through scheduled host discovery scans using ZMap. It performs a full scan and
stores the data required by the search engine in a custom database engine. After that, the collected data is
available to researchers through a web application program interface (API) using Google’s data
interchange format [13] and big data query system, as shown in Fig. 3. The resultant work produced a
custom scanning tool called ZGrap. The ZGrap scanner supports the application handshakes of HTTP,
HTTP Proxy, HTTPS, SMTP(S), IMAP(S), POP3(S), FTP, CWMP, SSH, and Modbus, as well as
StartTLS, Heartbleed, SSLv3, and specific cipher suite checks [12].

In 2016, Jicha et al. [14] identified the devices that run through IPv4 address space. They determined the
type and vulnerability level of each device, with a focus on supervisory control and data acquisition
(SCADA) devices. The researchers produced a tool they called Amap by combining a connectionless
scan and connection-oriented scanners to reduce the time needed for the scan and assure its accuracy
[15]. Nmap was used for connection-oriented scans, and ZMap for mass or connectionless scans [14].

In 2017, Rohrmann et al. [16] conducted a large-scale port scanning through the Tor network. The
attempt was to achieve anonymization over the scan to avoid detection by the host. The drawback of the
tool was that it was not scalable to scan the entire IPv4 range on multiple ports [16]. However, port
scanning was possible for specific ports while anonymous. The scan was performed using multiple
instances of Nmap tool over a purpose-built virtual machine. In 2019, another attempt by Shi et al. [17]

Figure 3: Censys system architecture [12]

1322 IASC, 2020, vol.26, no.6



was conducted to scan a large-scale network to build a penetration-testing framework based on network
fingerprint. Although the focus was on penetration testing, they needed a way to get results for a large-
scale network. Their framework needed a way to do a stateless scanning of the mass network which was
achieved using ZMap and Mass scan tool.

In summary, the literature shows that the development of mass scanning is growing where different
scanning tools and methods are available for scanning the cyber/Internet space. The available mass
scanning methods and tools help security industries in data gathering and monitor the information
security in cyberspace.

The need for mass scanning can be fulfilled using the framework proposed in this paper. The goal is to
offer a mechanism for scanning nationwide cyberspace, as commonly needed in national cybersecurity
centers for national security needs. Multiple instances of the scan are distributed across hosts, which can
be virtual, and network ranges are split among the hosts to schedule IP scanning for a wide range on the
65,535 ports per IP in a daily or weekly matter as needed. The National Cybersecurity Centre (NCSC) in
the Kingdom of Saudi Arabia—An organization that has become part of the Saudi National Cybersecurity
Authority (NCA)—and similar national cybersecurity centers in the world may offer services such as
scanning cyberspace for the state for many considerations regarding national security. According to our
best knowledge, there is no similar study or published implementation regarding the use of mass
scanning. We implement and test a software tool to offer mass scanning services within the Kingdom of
Saudi Arabia.

3 The Proposed Framework

This section presents the proposed framework, which uses mass scanning tools to scan massive ranges of
IPs to collect information that would help cybersecurity centers in achieving their national security needs.
Extensive research in implementing mass scanning of the Internet with different frameworks has been
applied. These implementations led us to create multiple security applications with specific goals. This
paper aims to build a framework that satisfies the needs for the NCSC security research. The proposed
framework must achieve the following main capabilities:

� The ability to identify all active hosts within the Saudi cyberspace, which is estimated to be around
5 million hosts.

� Port scanning is required for all available ports (65,535 ports).

� The ability to perform scans periodically, where scanning speed is critical (e.g., weekly, monthly, or
by request).

� The ability to run multiple scanning engines and pull results back to a centralized management console.

� The ability to grab banners during scanning in order to identify running services.

� The ability to scan TCP and UDP ports.

� A standardized scanning output for scanning purposes derived from multiple agents that enable
collecting different results.

� The ability to save and browse the previous scan history.

� Results stored in a big-data ready database, enabling fast queries.

� A visualization process for the scanned results.

The above capabilities are based on daily operations related to national cybersecurity centers. Speed and
ability to expand the functionality of the framework are key elements. The design should follow a modular
approach to achieve these characteristics. The needed capabilities specify the need for a scanner that can
identify active hosts and perform port scanning. Additionally, the framework should be able to run

IASC, 2020, vol.26, no.6 1323



multiple scanned instances. However, there is no specification regarding whether the instances of the scan
must run on the same machine or on multiple machines. In addition to scanning functionality, other types
of information are required to be fetched, such that the requirements can only specify the exact port
banner. The possibility of obtaining other types of information is offered when using a modular build
approach. The output of the scan needs to be standardized and formatted in a specific format that can be
stored in the database. The expected volume of output varies based on the number of agents; hence, the
design must consider a huge number of results, which are streamlined from many agents. The data
storage should also be able to keep all received results. Some of these requirements can be delivered by
open-source applications, which can be customized or grouped to create the required framework.

3.1 Design Phase

This section describes the system architecture in terms of components that constitute the framework.

3.1.1 Framework Architecture
The proposed framework scans cyberspace by distributing instances of the scan across multiple hosts.

Distributed Environment
We followed a modular approach to design the framework’s architecture. This structure allows us to

expand the framework in the future by adding further features as needed. The proposed design divides the
framework’s architecture into three main components: the main manager (edge manager), scan engine,
and a backend database. The design of the framework follows a multilayered architecture in order to
achieve the most effective security. Therefore, the main framework components operate in a
distributed environment. The system architecture components, delineated in Fig. 4, are presented in
the following subsections.

Main Manager (Edge Manager)
The user interacts with the framework through the edge manager interface, which acts as the main

interface. The edge manager acts as a middleware between the other components of the application,
linking all the components together. The edge manager sets the required actions to other components and
processes the output from other components. The main functions of the edge manager are to accept scan
requests from the user, manage the scan engines, receive results, and organize their storage in the

Figure 4: Overall framework architecture

1324 IASC, 2020, vol.26, no.6



database. The edge manager possesses a logical tool for determining how to achieve the scanning process and
searches only for the required tools that should be run. This logic tool also understands when to execute the
required actions in the scanning process. Additionally, the main manager processes the output provided to
users, then formats it for storage in the backend database. Fig. 5 highlights the relationships among the
framework objects and shows the roles of the edge manager relative to other objects.

Scan Engine
The scan engine controls process of probing the targeted hosts over the Internet. The scan engine is

required to be online and have sufficient bandwidth for running the mass scan of the provided IPs. A user
submits the request from the edge manager, and the scan engine performs the required scan in order to
collect any existing information it can obtain about the targeted hosts during the probing process. At this
stage, a main prerequisite specified in the requirements is to check whether the status of the targeted host
is “alive.” After that, the port scans are applied and the information about them is collected. While
scanning and probing the targeted host, the scan engine updates the edge manager with the status of the
scan instantly, enabling the edge manager to show the status and the results obtained across different scan
engines. The scan engine should also be able to probe multiple targets at the same time and collect
information for each host separately. At this stage, the scan engine should run multiple scanned jobs and
differentiate between the jobs and their results. It should also report each task’s status and results to the
edge manager. All operations should be performed asynchronously to achieve the maximum speed in
running the jobs out of the scan engine.

Figure 5: Edge framework design

IASC, 2020, vol.26, no.6 1325



Backend Database
Scan results are saved in the backend database for future use by the cybersecurity center and in

anonymously for data-mining research. In this stage, the collected information are stored asynchronously
as received from the multiple scan engine through the edge manager. Therefore, the backend database
handles persistent data input (streams of input) with different structures or records and dynamically
processes it. Further, the backend database supports API in order to store the data. The backend database
should also be able to provide historical results when queried by a user, while the query should not affect
storing the streamed results. Moreover, supporting a large data structure (data that is too varied, fast-
changing or enormous for conventional technologies) is essential for future research developments.

3.1.2 Framework Process Flow
Asmentioned earlier, the overall framework design follows a layered structure (see Fig. 4). The framework

is created based on a multilayer architecture in which the edge manger runs on a server located in the
demilitarized zone (DMZ). In fact, the framework requires being available on the Internet to receive the
results from the scan engines when they are initiated. The results return on various ports to support the
asynchronous connection, which is kept in the DMZ farm. Consequently, the firewall that controls access to
the zones for network security purposes separates the DMZ farm, user farm, and systems farm.

The scan engine is hosted on a virtual private server (VPS) farm that is available through any cloud
service provider, such as Amazon Web Services [18] or Digital Ocean [19]. The edge manager
communicates with the scan engine through a secure connection using Secure Shell (SSH), which is used
to secure the communication between the two components (manager and scanners). The results obtained
from the scan engine are also transmitted through the SSH connection. The backend (i.e., the database) is
hosted at the server farm, where it does not have any access from or to the Internet. The edge manager
pushes the results through a secure API connection (usually through HTTPS) to store the results in the
database. The pushed data are at a dynamic length and are represented and sent in JavaScript Object
Notation (JSON) format.

Fig. 6 illustrates the connection flow among the framework components in the Internet space. In fact, this
architecture starts from the user side by sending a request to the edge manager to initialize the scan request.
The edge manager performs the scan process and initializes the SSH connection to the VPS farm to request
the scanning of the targeted host. The scan engine in the VPS farm begins to probe the targeted hosts in the
subnets and receives the obtained results, which are accordingly redirected to the edge manger. Once the scan
is conducted, the connection with the scan engine is terminated. The edge manager pushes any received result
from the scan engine during the scanning process and towards the backend database so that it stores it
effectively and displays the results for the user through the graphic user interface (GUI) interface.

3.2 Implementation

This section presents the fundamental processes and techniques used to create the proposed framework.
The framework offers mass scanning functionalities using benchmark tools and technologies. The approach
to be followed for implementing the framework is to utilize open-source technologies that can assist in
building the framework to enhance the framework capabilities and reduce the development time. The
development focuses on three modules: The edge manager, the scan engine, and the backend database. The
following subsections present the technologies and tools used for implementing the proposed framework.

3.2.1 Technologies Used (Masscan and Elastic Stack)
The technologies used for developing the proposed framework are Masscan and Elastic Stack, which are

discussed below.

1326 IASC, 2020, vol.26, no.6



Masscan
The scan engine relies on using the Masscan tool as the main IP port scanner. As indicated in the

literature, the Masscan is an open-source port-scanner tool that provides similar results to those of the
Nmap tool. This tool is chosen as a feature scanner because it relies on using asynchronous transmission,
which implies that separate transmit threads and receive threads are largely independent of each other
[11]. Therefore, the tool helps with speeding up the scanning results. Additionally, such a tool focuses on
port scanning rather than host scanning, which implies that it takes the ports and scans the ranges for
hosts with the ports open. The tool can also support scanning a wide number of ports. Another reason for
using Masscan is that it enables one to have the output in multiple formats. This assists in customizing
the format of the obtained results according to users’ needs. Moreover, this tool provides the ability to
control the transmission rate by allowing users to control the bandwidth within a limited bandwidth
environment, if needed [11].

ELK Stack (Elastic Stack)
Elastic Stack is an integrated solution that contains three open-source products consisting of the

Elasticsearch, Logstash, and Kibana [20]. It functions as an end-to-end stack that delivers actionable
insights in real-time systems from almost any type of structured and unstructured data source.
Elasticsearch is an open-source, readily scalable, broadly distributed, and enterprise-grade search engine
that is accessible through an elaborated and extensive API. It can perform extremely fast searches to
support user data discovery applications [21]. Elasticsearch analytics provides mathematical
transformations on data, including enhanced aggregation processes.

Logstash is an open-source tool for log data intakes, processing, and the output of various systems. This
tool collects and parses the data, then stores them in an indexed way to be retrieved more quickly.
Additionally, it can ingest data from multiple sources simultaneously. Moreover, it can parse and
dynamically transform the received data to a structured form.

Kibana is an open-source real-time data visualizer for Elasticsearch, as well as an exploration platform.
Such a visualizer is particularly designed for a large volume of streams; its aim is to visualize the logs in a
time-stamped way [21]. Kibana integrates with the Elasticsearch search engine to represent the aggregated
data into a graphical representation for various analytics purposes.

Figure 6: Connection flow among framework components

IASC, 2020, vol.26, no.6 1327



3.2.2 Backend Implementation
To implement the proposed framework, we used the Go programming language [22], which represents a

simple open-source programming language that assists developers in making an easy and reliable software.
The main features of the Go language comprise automatic performance, efficient memory management, and
concurrency primitives [23]. Go’s functions can run in parallel due to its modelling types of threads, which
are called Goroutines. Compared with other languages, Goroutines are considered to be lightweight. The
synchronization method used among Goroutines represents a channel of communications. The channel is
primitive and provides a way for two concurrently executing functions to synchronize and communicate
by passing the value of a specific element type, including the send operation, in a single channel.

3.2.3 Frontend Implementation
The frontend of the implementation represents a web-based system, which uses HTML5 to support the

latest technologies, including Javascript. Because Javascript supports asynchronous API calls, including
methods for handling the data that it receives, it was used for the Vue.JS framework as a means of
implementing the frontend. Several reasons exist for using the web-based frontend according to [24].
These include the following:

� Web-based frontend systems are easier to develop and customize.

� It is cross platform, where systems can easily be ported to any virtual platform with a web browser.

� It is easier to expand as the program grows.

� It can operate on any device (desktop, mobile, or tablet) based on a responsive design.

3.2.4 Utilized Frameworks
The proposed framework uses Vue.JS and AdminLTE frameworks, which helps with the

implementation and speeds up the development process. These frameworks are chosen with the ability to
be integrated with each other as one product, as well as to provide the required functionality. The
frameworks are presented in the following paragraphs.

Vue.JS
Vue.JS is a progressive framework that helps with building the user interface. In fact, this framework is

designed to be adaptable to and focused on the view layer that is easy to be integrated with other libraries and
projects [25]. Vue.JS framework is applied due to its rendering performance, API simplicity, size, and
learning curve compared with other related frameworks. Additionally, the framework supports
components that can be added to the framework for the purpose of increasing its functionality.

AdminLTE
AdminLTE is an open-source template for control panels. It uses HTML5 and CSS3, and it supports

responsive design, which makes it fast and lightweight. Furthermore, it supports most of the major browsers
by accepting a plugin software to enhance its features [26]. Our proposed framework uses AdminLTE to
provide a unified interface across the media and to provide a unified user experience by using responsive
design. AdminLTE is combined with Vue.JS to provide the frontend control panel for the proposed
framework. Vue.JS acts as the data parser when the data are passed from the edge manger, and it renders
the data in the AdminLTE template to obtain the final result. Fig. 7 illustrates the flow of data that is
received from the edge manager to the Vue.JS framework, which parses the data and passes it to the
AdminLTE template. The AdminLTE framework renders the data and the AdminLTE template to display
the result to the end user in HTML5 format, which is updated when data from the edge manager are
requested directly. In fact, this request does not require rendering the AdminLTE template again through the
Vue.JS scripts. AdminLTE and Vue.JS are merged in a fully responsive admin template called Copilot [27].

1328 IASC, 2020, vol.26, no.6



3.2.5 Edge Manager Modules
The edge manager compromises four main modules as depicted in Fig. 8. These modules are as follows:

1. The Controllers module represents the main control of the program, which controls the execution of
the scan jobs and keeps prioritizing the execution of the job.

2. The Job module contains the scanner definition and the interfaces for each involved job while
keeping track of the state of the scanner.

3. The Model module manages the scan servers, keeps track of each server’s status, and executes tasks
through them. It also provides the statuses of the connections and sessions.

4. The Handler module contains the API web services that handle the requests coming from the
GUI interface.

Each module has a set of classes that identify the purpose of the module. The three main classes are the
Server class, the Scanner class, and the Job class.

Server Class
The Server class is located under the Model module and contains the information related to the server

(VPS server) by which the edge manager will connect to perform the scanning request. The server
information consists of the username, password, and IP address. Additionally, it has status information
consisting of the currently running jobs on the server, the network status (bandwidth), and the connection
client (SSH client). Fig. 9 shows the Server class properties. Both RunningJobs and NetworkStats
attributes form a single access value.

Figure 7: Illustration of data flow from edge manager to Vue.JS framework

Figure 8: Edge manager modules

IASC, 2020, vol.26, no.6 1329



Scanner Class
The Scanner class is located under the Jobs module and contains information related to the scan itself.

The Scanner class collects the timestamp, the process identification number, and the status of the running
scans. The Scanner class is a special form of the Job class and is made available to implement it. Fig. 10
shows the Scanner class and its relation to the Job class.

Job Class
The Job class represents the actual job request. Whenever a request comes toward the edge manager, a

job record is created. The edge manager determines the number of jobs that are required to run the request as
it divides the request into multiple jobs based on the following criteria: If the scanned subnet is bigger than
/24, the subnet is divided into multiple/24 subnets, where each subnet creates a job request for it. The idea
behind splitting the subnets refers to the efficient speed in scanning a range of the same subnet (/24), which
usually belongs to the same entity.

3.2.6 Edge Scanner for NCA
The developed framework combines the edge manager and the GUI interface by which the user gains

access to perform the scanning request. This produces a scanning tool, given the name Edge Scanner, for the
NCA at Saudi Arabia. The user performs an interfacing process through the web GUI. The flow of the traffic
begins with the web GUI once a user provides the subnet that should be scanned. The web GUI sends the
request to the edge manager, which divides the subnet into 24 subnets when needed, where each subnet is
deemed a scanning job. The edge manager assigns the required resources to run the scanning job (VPS
server) and adds the job into the queue such that this job awaits the user’s command to start the scanning

Figure 9: Server class properties

Figure 10: Scanner and Job classes in Job module

1330 IASC, 2020, vol.26, no.6



process. Once the user’s command is received, the edge manager connects to the resource server through
SSH and executes the search job. While the resource server executes the jobs, the results and the status of
the jobs are sent in real time to the edge manger. The edge manager sends the job updates to the GUI
interface so that it can be displayed to the user. In addition, the edge manager sends the results of the
scan to the backend database through the backend APIs. Fig. 11 illustrates the components of the Edge
Scanner and shows how they work to perform the required task.

4 Experimental Analysis and Results

The methodology of the developed framework and its architecture, as well as the fundamental processes
and techniques used to implement the proposed framework, are presented in Section 3. This section presents
various challenges that emerged during the development of the framework. Moreover, several issues also
emerged during the testing phase, which have been managed by using the most effective solutions.
Finally, the results of the test were validated by confirming the approval of accuracy for the obtained results.

4.1 Challenges

During a mass scan on an IP range, the host or service provider faces a high risk of being reported when
it comes to various unauthorized network-scanning activities. In fact, this action may result in legal and
financial complications. During the development of the framework, an approach to testing the scanning
build was taken into account. While applying the actual scanning and probing on a range of IPs, host
owners could contact the service provider used in the test to complain about the probing activity of the
developed system. To avoid such issues, the NCSC, which is now a part of the NCA, provides an IP
range that acquires an owner’s approval to perform multiple network scanning processes and probe their
live hosts.

4.2 Results Validation

For the purpose of assuring the accuracy of the Edge Scanner implementation, the results should be
validated. According to the NCSC, the results must be at least 90% accurate when being recognized.
Validating the results involves taking a sample of the results of any random IPs from the framework scan.
Another full connection scan is performed on the IPs using the Nmap scanner. The results from the Nmap
are used as the baseline for the validation. A comparison between the results of both scans (the developed

Figure 11: Edge Scanner components

IASC, 2020, vol.26, no.6 1331



framework and Nmap) is performed, and two outcomes should not differ by more than 10%. Exceeding a
10% threshold is considered to be unacceptable according to the NCSC standard.

4.3 Results Evaluation

The developed Edge Scanner was tested to assure its validity. Due to the legality challenges mentioned
in Section 4.1, the test was performed on the subnet 176.xxx.yyy.0/20 (IPs masked for security reasons),
which targets around 4096 possible hosts. This subnet assures that a certain number of ports are open on
a certain number of IPs. The edge manager splits the subnet into multiple subnets of base /24 and starts
the scan on each subnet. Tab. 1 shows the results of the scan process and the number of ports detected on
each subnet.

The findings from the proposed Edge Scanner demonstrate six ports open on the entire subnet. These
results are consistent with the devices on the network because the six ports are not commonly open and
are open only based on requests originating from these subnets. This implies that the host should not
have a port open unless necessary for particular management purposes. The entire scanning operation that
was conducted with the framework (scanning 4096 hosts) took around eight minutes.

The same subnet was scanned by using the benchmark Nmap scanner for validation purposes, where
similar results were obtained. However, the process took longer (around three hours). The reason behind
this delay has to do with the full sync scanning connection, which ensures that the ports are open. In

Table 1: Samples of scan results

Subnet No. Hosts Proposed edge scanner Nmap scanner

No. Ports Time No. Ports Time

176.xxx.yyy.0/24 256 0 00:01:02 0 03:02:46

176.xxx.yyy+1.0/24 256 0 00:01:02 0

176.xxx.yyy+2.0/24 256 0 00:01:00 0

176.xxx.yyy+3.0/24 256 0 00:00:58 0

176.xxx.yyy+4.0/24 256 2 00:01:07 2

176.xxx.yyy+5.0/24 256 2 00:01:12 2

176.xxx.yyy+6.0/24 256 2 00:01:09 2

176.xxx.yyy+7.0/24 256 0 00:01:02 0

176.xxx.yyy+8.0/24 256 0 00:01:03 0

176.xxx.yyy+9.0/24 256 0 00:01:02 0

176.xxx.yyy+10.0/24 256 0 00:01:02 0

176.xxx.yyy+11.0/24 256 0 00:01:02 0

176.xxx.yyy+12.0/24 256 0 00:01:02 0

176.xxx.yyy+13.0/24 256 0 00:01:04 0

176.xxx.yyy+14.0/24 256 0 00:01:02 0

176.xxx.yyy+15.0/24 256 0 00:01:02 0

Total 4096 6 6

Scanning time average 00:01:03

1332 IASC, 2020, vol.26, no.6



addition, various tests were conducted on different subnets, and similar results to those of the Nmap scan
were obtained. This concludes that the proposed framework not only can work per the NCSC acceptance
standards but also can provide full functions and be applied to scan networks via cybersecurity centers,
including the NCSC.

5 Conclusions and Future Work

The scanning framework proposed in this paper contributed to the efficient collection of the information
needed to investigate cyberspace. The findings revealed that the framework led to faster scanning for
cyberspace and greatly reduced the scanning time compared with other benchmarking tools. The main
contributions of this research are as follows: (1) Developing a full functional framework that establishes a
national cybersecurity database of IPs, ports, and services; (2) Reducing the time needed to collect data
when cyberspace is scanned through multiple VPSs; and (3) Allowing cybersecurity centers to become
proactive in detecting possible threats that target cyberspace.

One possible enhancement over the developed framework is to create a modular threat assessment,
which can provide additional information about possible threats to the IP address within the database.
Additionally, it is possible to automate the creation of the VPS through the API provider to automate the
creation of scan servers, as well as the distribution of the IPs in it. Consequently, this automation
provides a wide coverage and speeds up the scanning process. Another possible enhancement is to
generalize the framework by including machine learning to assist cybersecurity centers in detecting
various possible attacks. At the same time, it is important to understand the risks and to assist in the
necessary security measures to protect against possible cyber terrorist attacks. This would include alerts
regarding a pattern of possible ongoing attacks.

Acknowledgement: The APC was funded by the Deanship of Scientific Research, Saudi Electronic
University.

Funding Statement: The authors received no specific funding for this study.

Conflict of Interest: All authors declare that they have no conflict of interest.

References
[1] N. C. Authority, “NCSC: National cyber security centre.” 2020. Available: https://nca.gov.sa/en/pages/ncsc.html.

[2] R. Ritchey, B. O’Berry and S. Noel, “Representing TCP/IP connectivity for topological analysis of network
security,” in IEEE Proc. 18th Annual Computer Security Applications Conf., pp. 25–31, 2002.

[3] C. Roger, Port Scanning Techniques and the Defense Against Them, Bethesda, MD: SANS Institute, 2001.

[4] G. Lyon, “Nmap: The art of port scanning.” 2020. [Online]. Available: https://nmap.org/nmap_doc.html.

[5] G. Kaur and N. Kaur, “Penetration testing-reconnaissance with NMAP tool,” International Journal of Advanced
Research in Computer Science, vol. 8, no. 3, pp. 844–846, 2017.

[6] D. Leonard and D. Loguinov, “Demystifying service discovery: Implementing an internet-wide scanner,” in Proc.
of the 10th ACM SIGCOMM Conf. on Internet Measurement, pp. 109–122, 2010.

[7] E. Shakshuki, D. Benoit and A. Trudel, “World’s first web census,” International Journal of Web Information
Systems, vol. 3, no. 4, pp. 378–389, 2007.

[8] Z. Durumeric, E. Wustrow and J. A. Halderman, “ZMap: Fast internet-wide scanning and its security
applications,” in Presented as Part of the 22nd {USENIX} Security Symposium ({USENIX} Security 13),
pp. 605–620, 2013.

[9] G. F. Lyon, “Nmap network scanning: the official Nmap project guide to network discovery and security
scanning,” Insecure, 2009.

IASC, 2020, vol.26, no.6 1333

https://nca.gov.sa/en/pages/ncsc.html
https://nmap.org/nmap_doc.html


[10] R. Graham, “TCP port scanner, spews SYN packets asynchronously, scanning entire Internet in under 5 minutes.”
2020. [Online]. Available: https://github.com/robertdavidgraham/masscan.

[11] R. Graham, P. McMillan and D. Tentler, “Mass scanning the internet.” 2020. [Online]. Available: https://www.
defcon.org/images/defcon-22/dc-22-presentations/Graham-McMillan-Tentler/DEFCON-22-Graham-McMillan-
Tentler-Masscaning-the-Internet.pdf.

[12] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey and J. A. Halderman, “A search engine backed by Internet-wide
scanning,” in Proc. of the 22nd ACM SIGSAC Conf. on Computer and Communications Security, pp. 542–553,
2015.

[13] K. Varda, “Protocol buffers: Google’s data interchange format.” 2020. [Online]. Available: https://github.com/
google/protobuf.

[14] R. Jicha, M. W. Patton and H. Chen, “Identifying devices across the IPv4 address space,” in 2016 IEEE Conf. on
Intelligence and Security Informatics: IEEE, pp. 199–201, 2016.

[15] W. A. H. Ghanem and B. Belaton, “Improving accuracy of applications fingerprinting on local networks using
NMAP-AMAP-ETTERCAP as a hybrid framework,” in 2013 IEEE Int. Conf. on Control System, Computing
and Engineering: IEEE, pp. 403–407, 2013.

[16] R. R. Rohrmann, V. J. Ercolani and M. W. Patton, “Large scale port scanning through tor using parallel Nmap
scans to scan large portions of the IPv4 range,” in 2017 IEEE Int. Conf. on Intelligence and Security
Informatics: IEEE, pp. 185–187, 2017.

[17] P. Shi, F. Qin, R. Cheng and K. Zhu, “The penetration testing framework for large-scale network based on network
fingerprint,” in 2019 Int. Conf. on Communications, Information System and Computer Engineering (CISCE):
IEEE, pp. 378–381, 2019.

[18] Amazon AWS, 2020. [Online]. Available: https://aws.amazon.com/.

[19] Digital Ocean, 2020. [Online]. Available: https://www.digitalocean.com/.

[20] Elastic.co, “The elastic stack: open source search & analytics.” 2020. [Online]. Available: https://www.elastic.co/.

[21] J. Vanderzyden, “Welcome to the ELK stack: Elasticsearch, logstash and kibana.” 2020. [Online]. Available:
https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana/.

[22] Golang, 2020. [Online]. Available: https://www.golang.org/.

[23] S. Hawthorne, “A language comparison between parallel programming features of Go and C,” 2014. [Online].
Available: http://www.sjsu.edu/people/robert.chun/courses/cs159/s3/S.pdf.

[24] Core Solution, “The benefits of web-based applications.” Accessed May 1, 2020. Available: https://coresolutions.
ca/blogs/core-web/the-benefits-of-web-based-applications.

[25] Vue.js, “Introduction - What is Vue.js?.” 2020. [Online]. Available: https://vuejs.org/v2/guide.

[26] AdminLTE, “AdminLTE bootstrap admin dashboard template.” 2020. [Online]. Available: https://www.adminlte.io/.

[27] GitHub, “misterGF/CoPilot.” 2020. [Online]. Available: https://www.github.com/misterGF/CoPilot.

1334 IASC, 2020, vol.26, no.6

https://github.com/robertdavidgraham/masscan
https://www.defcon.org/images/defcon-22/dc-22-presentations/Graham-McMillan-Tentler/DEFCON-22-Graham-McMillan-Tentler-Masscaning-the-Internet.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Graham-McMillan-Tentler/DEFCON-22-Graham-McMillan-Tentler-Masscaning-the-Internet.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Graham-McMillan-Tentler/DEFCON-22-Graham-McMillan-Tentler-Masscaning-the-Internet.pdf
https://github.com/google/protobuf
https://github.com/google/protobuf
https://aws.amazon.com/
https://www.digitalocean.com/
https://www.elastic.co/
https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana/
https://www.golang.org/
http://www.sjsu.edu/people/robert.chun/courses/cs159/s3/S.pdf
https://coresolutions.ca/blogs/core-web/the-benefits-of-web-based-applications
https://coresolutions.ca/blogs/core-web/the-benefits-of-web-based-applications
https://vuejs.org/v2/guide
https://www.adminlte.io/
https://www.github.com/misterGF/CoPilot

	Framework for Cybersecurity Centers to Mass Scan Networks
	Introduction
	Background and Literature Review
	The Proposed Framework
	Experimental Analysis and Results
	Conclusions and Future Work
	flink6
	References


