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Abstract: To overcome the problem that a teleoperation system loses robustness
when the target moves outside the robot’s visual field or it is far away from the
desired position, and to improve the operability and controllability of a master-
slave teleoperation system, we present an image servo based haptic feedback
(ISBHF) control method for teleoperating. The ISBHF control method involves
extracting target feature points and constructing image servo based virtual force.
First, the image characteristics of the environment and targets are identified and
extracted by a 3D reconstruction method. A composite image Jacobian matrix
is used to construct virtual guidance force based on the target’s image error. Then,
the virtual force is provided for the operator through two joysticks which prevents
the target image from drifting out of the visual field of the camera. We conducted
experiments to confirm the validity and efficacy of the ISBHF control method. We
found that human manipulation may cause the target image to deviate from the
camera view, but the image servo based virtual force guides the operator to cali-
brate the target image back to the center view. The ISBHF control method can
easily guide the robot to track the target and prevent image feature points deviat-
ing from the camera view. Teleoperation can be improved by combination of the
robot visual sensory information and human haptic perception with the ISBHF
control method. The ISBHF control method is favorable for the robot to avoid
the blind operation of human and the collision with other obstacles.

Keywords: Visual servo; composite image; Jacobian matrix; virtual force;
haptic feedback

1 Introduction

Master slave teleoperation robots are well suited to high-temperature, high-pressure, or suffocating
environments, such as those in the deep sea, underground, and outer space [1,2]. Operators manipulate
such robots with the aid of feedback in the form of images, sound, and haptic information received from
the unpredictable and remote working environment without a comprehensive perception of the robot
operating area [2]. In vision-based teleoperation, which has been very widely adopted, operators
manipulate robot relying on their own senses through the images captured by the end-effector camera.
The installation of eye-in-hand camera would provide the operator with a direct visual sense of the robot
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position [3–6]. However, human perception tends to lack control of security and accuracy [1,2]; for instance,
the operator could consider an optimized routine, which is based on the current perspective view, although
he/she could find and adopt an alternative that would be the better routine immediately after. In addition,
targets tend to fall outside the visual view of the camera and prove difficult to recapture in the
continuously changing camera view [1,2,7]. The deviations and collisions that result from this control
method adversely affect the operating efficiency and safety of the robot. These are caused by the
operator’s limited senses, given that the display is the only information available.

We proposed a 3D vision based kinesthesic teaching control strategy [8,9]. It is based on the artificial
potential field method [10], whereby a virtual force potential field function is constructed based on the
position of obstacles and targets, to make predictions regarding trajectory planning. The method uses
position-based visual servo forces to manipulate a slave robot. It converts part of the vision information
into force sensations that allows operators to share control while manipulating the robot. However, it
needs the prediction of the target position, and the acquisition of target image data will be interrupted
with the target moving out of the camera’s visual field. When this situation occurs, the operator still has
to rely on his/her own senses.

The image based visual servo method establishes an image Jacobian matrix, which reflects the control
relationship between the image servo errors and the end-effector position variation, through the application of
robot vision control theory [6,10–12]. The method focuses on the target image errors and is able to restrict the
target image in the camera view. It does not need an estimate of the target position nor an accurate geometry
reconstruction for the working environment [9–11]. In addition, researchers can obtain an online estimate of
the image Jacobian matrix, which prevents the singularities and inevitable errors caused by camera
calibration or visual depth estimation [11–15]. However, the image based visual servo method can only
be applied in relatively small areas. If the target moves outside the robot’s field of view or is far away
from the desired position, the system will lose robustness.

Consequently, we present the ISBHF control method. It captures an image of a target in its initial
position and then establishes an image Jacobian matrix relationship between the image servo errors and
the robot position variation. Through the position servo based haptic force (PSBHS) control method, we
construct the image servo error based virtual force (virtual force), which includes virtual repulsive force
and virtual attractive force. The ISBHF control method can guarantee the target image to be restricted in
the center view of camera as well as the end-effector to reach target objects. In addition, we use the RLS
algorithm to estimate the Jacobian Matrix without help of camera calibration. On the other hand, the
virtual force is fed back to the joysticks and is incorporated with human operation to enhance the
reliability of system. As a consequence, teleoperation could be improved by combination of the robot
visual sensory information and human haptic perception.

The paper is divided into six sections. Section 2 explains the control method composition and principle.
Section 3 explains the method of recognizing and extracting target objects from an image, and how the
acquired information is used to estimate the image servo based composite image Jacobian matrix with an
RLS algorithm. Section 4 describes how the virtual force is constructed with an estimated composite
image Jacobian matrix and then returned to the operator. Section 5 describes experiments that were
conducted to verify the validity and efficacy of the ISBHF control method for helping the operator and
preventing a target from deviating out of the visual field of the camera. Section 6 concludes this paper.

2 Composition and Principle of Control System

Avisual servo based virtual force feedback teleoperation control system transforms the two-dimensional
image position deviation information of a target object into force signals and transmits force signals to a
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manual device as virtual attractive force and virtual repulsive force. These forces prompt the operator to
manipulate a haptic control device in order to complete a teleoperation task, as shown in Fig. 1.

The teleoperation control system consists of the master manipulation system and the slave control
system. The slave control system includes a 4-DOF robot, servo motor control modules, a Bumblebee
binocular camera (Point Grey Research, Canada) on an end-effector (used to identify and extract the
feature points of the target object), a Kinect camera (Microsoft, US; placed over the working environment
to acquire 3D data through the application of a point cloud matching technique [16–19]) and a control
computer (Computer 1 in Fig. 1). The master manipulation system consists of two joysticks (Logitech
WingMan force feedback joysticks) and a control computer (Computer 2 in Fig. 1). Computer 2 receives
the information about the robot and image, and then rebuilds the robot and objects in virtual space.
Meanwhile, Computer 2 sends the joystick information to Computer 1. The operator manipulates two
2-DOF force feedback joysticks to perform position control for the slave robot. Each joystick contains
two motors so that the operator can perceive in two directions. The manipulation is undertaken using the
image produced by Computer 2, which reconstructs an image of the 3D working environment.

3 Composite Jacobian Matrix for Image

The creation of virtual force requires the identification and extraction of image characteristic information
for the target objects. The Bumblebee binocular camera is used to identify a target object and acquire
information on feature points. In addition, the Kinect camera collects video images and depth information
of field to enable the regeneration of a 3D virtual working environment, which provides a visual interface to
improve the manipulation by the operator. These were specifically demonstrated in our period research in [8,9].

1) Acquisition and Extraction of Targets and Environment Graphic Information

For this study, we assume that there is a distinctive differentiation in terms of color, gradation, and
texture between the target objects and working environment background. Given that the work addressed

Figure 1: Visual servo based virtual force feedback teleoperation control system
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in this section is mostly a repetition of our period research, we provide only a brief introduction to the
identification, extraction and reconstruction processes.

The image information extraction and working environment reconstruction process began with the
establishment of a position relationship between the robot arms, cameras and working environment.
Binarization segmentation between the targets and the working environment background was acquired
according to the local dynamic threshold value for the color and gradation of each pixel. Microscopic
pores caused by noise were removed from the binary image by the application of an inflation-corrosion
algorithm. Chaotic area less than 100 pixels were removed after each target object had been labeled in the
image. Rough contour polygon areas in the targets were extracted through the application of an image
segmentation and fusion algorithm. Polygon vertexes were taken as feature points of the targets. The
target objects were separated from the working environment background with a geometric and color-
based regional growth method. Then, 3D objects for each segment field were constructed with processed
point cloud data according to the Power Crust algorithm [20,21]. All constructed 3D objects were placed
together to merge the integration of the virtual environment. The extracted key points of the targets are
shown in Fig. 2.

The virtual force is calculated using a composite image Jacobian matrix. The following parts describe
the deduction and value estimation of the composite Jacobian matrix according to the position and
orientation of the end-effector.

2) Establishment of Composite Image Jacobian Matrix

A pinhole model of the hand camera is shown in Fig. 3.

C xyz denotes the local coordinate system in which the hand camera is located, while O1 uv denotes the
camera’s two-dimensional image projecting plane. Further, � is the focal length of the Bumblebee binocular

camera, P is a key point of a target object defined as pc ¼ xcp; y
c
p; z

c
p

� �T
in the camera located coordinate

system. N , defined as up; vp
� �T

, is the projection of point Pin plane O1 uv. According to the camera
pinhole model, the position of a target point in plane O1 uv is related to that in the camera located
coordinate system, as follows:

up
vp

� �
¼ �

zcp

xcp
ycp

� �
(1)

Figure 2: Initial (left) and desired (right) position of targets’ image feature points
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The derivation of the above yields:

_up
_vp

� �
¼ �

zcp

_xcp �
_zcp
zcp
xcp

_ycp �
_zcp
zcp
ycp

2
6664

3
7775 ¼ �

zcp

1 0 � up
�

0 1 � vp
�
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4

3
5 _xcp
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_zcp

2
4

3
5 (2)

The composite image Jacobian matrix L contributes to the relationship between an feature point’s
position gradient in the image plane and the hand camera’s velocity relative to the robot target object
coordinate system O xyz. According to the definition, the relationship is described as _S ¼ L _nc, which can
be explained as:

_up
_vp

� �
¼ @S

@nc
voCx; voCy; voCz; wo

Cx; wo
Cy; wo

Cz

� �T
(3)

S represents the feature point’s position in the camera’s two-dimensional image projecting plane O1 uv;
_S ¼ _up; _vp

� �T
is the velocity of the feature point projected in the two-dimensional image plane, and

_nC ¼ voc ;w
o
c

� �T
, where voC ¼ voCx; v

o
Cy; v

o
Cz

� �T
, wo

C ¼ wo
Cx;w

o
Cy;w

o
Cz

� �T
, denotes the position and

orientation changes of the hand camera relative to the target object coordinate system, respectively.

According to the definition of the composite image Jacobian matrix, the gradient of each directional image
position is described for every dimensional position of the hand camera. Thus, we define L 2 R2�6 as:

L ¼ @S

@nc
¼

@up
@toCx

@up
@toCy

@up
@toCz

@vp
@toCx

@vp
@toCy

@vp
@toCz

@up
@roCx

@up
@roCy

@up
@roCz

@vp
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@vp
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2
664

3
775 (4)

up and vp, as has been described, represent the image position of a feature point P. toC ¼ toCx; t
o
Cy; t

o
Cz

� �T
,

roC ¼ roCx; r
o
Cy; r

o
Cz

� �T
denotes the position and orientation of the hand camera relative to the target object

coordinate system O xyz, respectively.

Figure 3: Pinhole model of hand camera
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The translational velocity of point P relative to the hand camera can be calculated from the kinematic
relationship, as follows:

_pc ¼ wc
o � pc þ vco (5)

where vco, w
c
o denotes the position and orientation changes of target object relative to the hand camera located

coordinate system, respectively. This can be detailed as:

_xcp
_ycp
_zcp

2
64

3
75 ¼

�1 0 0

0 �1 0

0 0 �1

0 zcp �ycp
�zcp 0 xcp
ycp �xcp 0

2
64

3
75

voCx
voCy
voCz
wo
Cx

wo
Cy

wo
Cz

2
666666664

3
777777775

(6)

According to Eqs. (2) and (6), the velocity of the image feature point P in the hand camera image plane
can be described as:

_up
_vp

� �
¼ L _nc (7)

L ¼
� �

zcp
0

up
zcp
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zcp

vp
zcp

� upvp
�

�2 þ u2p
�

�vp

�2 þ v2p
�

upvp
�

up

2
664

3
775 (8)

Considering the offset between the camera and robot end-effector coordinate system, the Jacobian
matrix M 2 R2�6, which contributes to the relationship between the speed of the hand camera’s
movement and the gradient of the end-effector’s posture is given as:

_nc ¼ M _nr (9)

where _nr ¼ vorx; vory; vorz; wo
rx; wo

ry; wvorz

� �T
contributes to the velocity vector of the end-effector relative

to the target object coordinate system.

The angular velocity _q ¼ _q1; _q2; _q3; _q4ð Þ of each joint has a Jacobian matrix relationship with end-
effector posture variation rate _nr, which could be depicted as:

Jrq ¼ @nr
@q

� �
¼

@nr1
@q1

� � � @nr1
@q4

..

. . .
. ..

.

@nr6
@q1

� � � @nr6
@q4

2
666664

3
777775 (10)

where Jrq 2 R6�4, qj( j=1, L, 4) are the ith robot joint angles.

The relationship between the velocity vector of feature point _S and the angular velocity of joints _q can be
defined as:

_S ¼ Jsq _q (11)
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where Jsq ¼ @S

@q

� �
¼

@up
@q1

@up
@q2

@vp
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@vp
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@up
@q3

@up
@q4

@vp
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2
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775; Jsq 2 R2�4, the composite image Jacobian matrix of

a single feature point is calculated based on Eqs. (8)–(11), as follow:

Jsq ¼ @S

@nc

@nc
@nr

@nr
@q

¼ LMJrq (12)

Thus, the composite image Jacobian matrix for multiple feature points can be described as:

Jsq;
P ¼

Jsq;1
..
.

Jsq;n

2
64

3
75 ¼

L1MJrq
..
.

LnMJrq

2
64

3
75 (13)

where Jsq;i i ¼ 1; 2; 3; 4ð Þ represents the ith feature point’s composite image Jacobian matrix, and it is real
matrix, Li is the feature point’s image Jacobian matrix.

3) Estimation of Composite Image Jacobian Matrix

To determine the composite image Jacobian matrix, we require the focal length of the hand camera and
the depth of image parameters. However, camera calibration and image depth accuracy greatly affect the
precision of the composite Jacobian matrix values. Thus, a direct estimation of the composite image
Jacobian matrix is neither efficient nor accurate for current ISBHF control strategy.

The recursive least square algorithm (RLS) exploits the exponential weighted average to estimate a
composite image Jacobian matrix based on the dynamic quasi-newton method. The iteration of the
composite image Jacobian matrix with the RLS algorithm can thus be described as follows:

~Jk ¼ ~Jk�1 þ
Dsk � ~Jk�1Dhk
� �

DhTk Pk�1

qþ DhTk Pk�1Dhk
(14)

~Pk ¼ 1

q
~Pk�1 �

~Pk�1DhkDhTk ~Pk�1

qþ DhTk Pk�1Dhk

� 	
(15)

where Dhk ¼ Dq1;k ; Dq2;k ; Dq3;k ; Dq4;k ;

 �T

, Dqi;k i ¼ 1; 2; 3; 4ð Þ represents the displacement
differentials of the robot joints in each step; Dsk is the error matrix between the desired image position
and the actual position; q is the forgetting factor, and Pk is the covariance matrix. A forgetting factor
between 0 and 1 can be set. However, if q is equal to 1, the new information is averaged with the
previous data, implying that the value stability of ~Jk would fluctuate greatly with the effect of noise as a
result of the infinite divergence of the composite image Jacobian matrix. This would lead to severe safety
problems in the control of the position of the robot joints. If q approaches 0, previous data is given less
weight in the Jacobian estimation, which leads to more iterative steps and more time. Finally, the value of
q is determined to be 0.5.

To reduce the iteration of the composite image Jacobianmatrix, Jk is directly estimated with four steps of linear
independent displacement control Dq1; Dq2; Dq3; Dq4 to initialize the matrix. The initialization of Jk is:

J0 ¼

Du1
Dq1

Dv1
Dq1

� � �
..
. ..

. � � �
Du1
Dq4

Dv1
Dq4

� � �

Dun
Dq1

Dvn
Dq1

..

. ..
.

Dun
Dq4

Dvn
Dq4

2
6666664

3
7777775

(16)
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where Dq1; Dq2; Dq3 and Dq4 are the respective displacements of every robot joint in each of the four
steps. Dui and Dvi i ¼ 1; � � � ; nð Þ are the finalized respective image error differentials of the target feature
points in the image plane. The dynamic estimation of the composite image Jacobian matrix is conducted
according to Eqs. (14) and (15) after the initialization.

4 Proposed Method for Visual Servo Based Force Control

We incorporated a visual servo method into the position-based force guidance strategy to construct the
virtual force for the teleoperation system based on image servo error. We describe the construction of
the virtual attractive and repulsive force model in this section. This method guarantees the convergence
of the end-effector’s movement trajectory to the desired position. In addition, the visual servo force
resists the deviation of the target image from center field of the camera view when the robot end-effector
is guided with the virtual force.

1) Image Servo Based Virtual Repulsive Force Model

The image acquisition and multiple feature point extraction for target objects are conducted with
the Bumblebee camera as part of the control process. S denotes the current position of the target’s
multiple feature point defined in Section 3.2. SD means the desired position in image plane. They are
extended as follows:

S ¼ s1; . . . ; si; . . . ; sn½ � ¼ u1
v1

� �
� � � ui

vi

� �
� � � un

vn

� �� �
(17)

SD ¼ s1;D; . . . ; si;D; . . . ; sn;D

 � ¼ u1;D

v1;D

� �
� � � ui;D

vi;D

� �
� � � un;D

vn;D

� �� �
(18)

where si ¼ ui; vi½ �T , ui 2 um; uMð Þ, vi 2 vm; vMð Þ. um and uM are the minimum and maximum
boundaries of pixels u respectively. vm and vM are the minimum and maximum boundary values of
pixels v respectively. au and av denote the size of the image margin and both are positive.
C ¼ f u; vð Þju 2 um; um þ auð Þ [ uM � au; uMð Þ; v 2 vm; vm þ avð Þ [ vM � av; vMð Þg is defined as the
marginal area of the feature point’s image, and C means the shadow area in Fig. 4. The image-based
repulsive force equation ~rT

S VR Sð Þ for the target is constructed based on the feature points’ image
boundaries using the artificial potential field method.

The repulsive potential energy equation VR Sð Þ describes the current potential energy of the image
position [22], and provides an estimation of the stability of the target object image within the visual field
of the camera. This equation is defined as:

Figure 4: Image boundary diagram
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VR Sð Þ ¼ �ln
Qn

i¼1 1� ui
uM

� 	
1� ui

um

� 	
1� vi

vM

� 	
1� vi

vm

� 	� 	
0

8<
: si 2 C

si =2C
(19)

where i 2 1 � � � nf g represents the number of target feature points. si ¼ ui; við ÞT , as has been defined, is the
feature point’s position. Define DS ¼ SD � S; Dsi ¼ Dsi;D � si; Dui ¼ Dui;D � ui;Dvi ¼ Dvi;D � vi. The
transposed first and second gradient vector equation are obtained as Eqs. (20) and (21):

~rT
S VR Sð Þ ¼ @VR

@S

� 	T

¼ g1 � � � gi � � � gn½ �T
0

�
si 2 C
si =2 C

(20)

where gi ¼ uM þ um þ 2Dui
uM þ Duið Þ um þ Duið Þ ;

vM þ vm þ 2Dvi
vM þ Dvið Þ vm þ Dvið Þ

� �
.

~r2T
S VR Sð Þ ¼ diag

@g1
@s1

; . . . ;
@gi
@si

; . . . ;
@gn
@sn

� 	
0

8<
: si 2 C

si =2 C
(21)

where
@gi
@si

¼
(
diag

1

uM þ Duið Þ2 þ
1

um þ Duið Þ2 ;
1

vM þ Dvið Þ2 þ
1

vm þ Dvið Þ2
 !

0

si 2 C
si =2 C

. ~r2T
S VR Sð Þ is

positive definite, so the Eq. (19) is convex. VR Sð Þ increases significantly when feature points deviate
from the desired position in area si 2 C, and becomes zero in si =2 C. As mentioned above, C means the
shadow area in Fig. 4. Without considering C, the curve of the Eq. (19) is shown as in Fig. 5.

With the negative gradient of the potential equation and composite Jacobian matrix for the image, the
image servo based virtual repulsive force FR is defined as:

FR ¼ �KRJrqJ
þ
sq;
P~rT

S VR Sð Þ (22)

Figure 5: Repulsive potential energy diagram of image feature points
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where KR is the positive matrix of gain, Jþ
sq;
P is the pseudo inverse of Jsq;

P, which is estimated using the

RLS algorithm from ~Jk . The repulsive force Eq. (22) decreases as the points move from marginal limit to the
center field of the camera view. It ensures all the feature points located in the inner field of view.

2) Image Servo Based Virtual Attractive Force Model

The image servo based virtual attractive force FA is constructed with the errors between the desired
feature points’ position SD and the current position S on the basis of the artificial potential field [22]. The
attractive potential energy equation is defined as:

VA Sð Þ ¼
1

2

Xn
i¼1

ksi � si;D
2k

0

8<
: si 2 C

si =2 C
(23)

The transposed gradient vector equation is obtained as:

~rT
S VA Sð Þ ¼ @VA

@S

� 	T

¼ s1 � s1;D; . . . ; si � si;D; . . . ; sn � sn;D

 �T

0

�
si 2 C
si =2 C

(24)

~r2T
S VR Sð Þ ¼ diag I2�2;1; . . . ; I2�2;i; . . . ; I2�2;n

� �
0

�
si 2 C
si =2 C

(25)

~r2T
S VR Sð Þ is positive definite, so the Eq. (23) is convex. VA Sð Þ increases when feature points

deviate from the desired position in area si=2C and becomes zero in si 2 C. The position of the target
feature point’s image and robot end-effector approaches the desired position under the guidance of the
attractive force:

FA ¼ �KAJrqJ
þ
sq;
P~rT

S VA Sð Þ (26)

where KA is the positive matrix of gain.

3) Analysis of Image Servo Based Teleoperation Model

The image servo based virtual attractive force and virtual repulsive force are incorporated through the
adaptive coefficients, f1 and z2. The forces are fed back to the joysticks in the form of haptic signals to guide
the operator to control the robot. The feedback guidance force equation can be depicted as:

FP ¼ f1FR þ f2FA (27)

The operator manipulates the slave robot to reach the desired position with image servo guidance
information and control signals from joysticks, as is shown in Fig. 6.

sh and sv are the respective torques mapped from the operator manipulating force and the feedback
virtual force. The incorporated torques on manipulator joints are used to predict velocity and drive the
slave robot. kq is the impedance matrix. The state equation of control system could be depicted as:

Figure 6: Block diagram of ISBHF control
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D _S ¼ Jsqkq sv þ shð Þ (28)

sv ¼ �f1KRJ
þ
sq
~rT

S VR Sð Þ � f2KAJ
þ
sq
~rT

S VA Sð Þ (29)

In the image servo guidance system, the virtual force is generated and is fed back to the joysticks to
guide the operator, so while the robot end-effector approaches the target, the target image remains in the
center field of the camera view. Namely, the operator does not actively operate the joystick, but the
generated virtual force can impel the joystick to guide the operator. ~rT

S VR Sð Þ works only in the marginal
area si 2 C.

5 Discussion and Experiments

In the experiments, the end-effector of a 4-DOF robot was fitted with a Bumblebee binocular camera that
was used to identify and extract the image feature points of a red target object. A Kinect camera was installed
near the robot to simultaneously acquire a 3D view of the working environment. The graphic computer
(Computer 2 in Fig. 1) reconstructed the 3D scene to provide visual guidance, while the computer
(Computer 1 in Fig. 1) determined appropriate virtual force to provide haptic guidance. Two joysticks
were used to control the teleoperation robot and to provide the operators with virtual force signals. The
operator operated the 4–DO robot by the joysticks according to the reconstructed virtual scene and virtual
force. Figs. 7 and 8 shows the platform and the interface working environment, respectively.

The ISBHF control method is used to define the desired position and orientation of the robot at the
position where the end-effector reached the target object, and the target image feature points move into
the center of the camera view. The error threshold Ds�i

  is restricted to 3.0. The robot tracks the targets as
the camera collected and extracted the image feature information, until Dsij j < Ds�i

 . The image servo
based virtual force can guarantee that the target object image is constrained to the center of the camera view.

1) Estimation of Virtual Repulsive Force and Virtual Attractive Force

In order to validate the respective efficacy of the virtual repulsive force and virtual attractive force, we
compared the image trajectories caused by virtual repulsive force and virtual attractive force, regardless of
the effective area function VR Sð Þ and VA Sð Þ, conducted experiments under only the virtual repulsive force or
attractive forces guidance without human manipulation, as shown in Fig. 9.

Figure 7: Experiment setup in slave side
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The black curves denote the results guided by the virtual repulsive force, and the red curves mean the
results guided by the virtual attractive force in Fig. 9. The coordinate (feature points (left) in Fig. 9) records
the trajectories of four feature points in the camera image plane, and the rectangle represents the view
boundary lines of the camera. When the feature points’ desired position is fully extended in the camera
view, the red curves show smooth feature points and end-effector trajectory. It demonstrates well
guidance in z-depth direction by the virtual attractive force.

As a contrast, the control guided by the virtual repulsive force shows instable and divergent trajectory
results when all the feature points’ desired position is extended in a full view. It will cause great and instable
guidance forces by every single point in the initial control period according to the definition of repulsive force
equation. On the other hand, the virtual attractive force will lose its function if the feature points’ desired
position is set too close to the center point.

Figure 8: Interface in master side

Figure 9: Comparison of feature points (left) and end-effector (right) trajectories between the virtual
repulsive force and virtual attractive force

154 IASC, 2021, vol.27, no.1



According to teleoperation model in Section 4.3, we needed to incorporate the repulsive and attractive
forces. Finally, we made a compromise and set the desired position to be (–41.72, 11.52), (–1.187, 40.21),
(–2.652, –39.82) and (40.27, –3.635) through several extensive tests. They can satisfy both the attractive and
repulsive force guidance control. In term of the curves in Fig. 9, the feature points and end-effector trajectory
can be guided into the desired position with both the attractive and repulsive force guidance control.

2) Comparison between PSBHF and ISBHF

We made a contrast experiment between the PSBHF control method and the ISBHF control method
without human manipulation. The obtained trajectories of the target feature points in camera image plane
and end-effector trajectory are shown in Fig. 10.

The black curves represent the behavior of feature points and end-effector trajectory under PSBHF
control method, while the red ones record the guidance results under ISBHF control method without
human manipulation. According to the end-effector trajectories in Fig. 10, both control methods can
guide robot to reach the target object, but they show different trajectories of end-effector. In term of the
feature points in Fig. 10, the feature points deviate from the camera visual range in the v direction, and
they are limited in the –120 pixels by the PSBHF control method. The PSBHF control method cannot
constrain the target image during manipulation. On contrary, the feature points’ position is calibrated and
restricted in the center of the camera field view by the ISBHF method. As a result, the incorporation of
repulsive and attractive forces can restrict target image in camera view and guide robot to reach the target
without the prediction for target object position.

3) Estimation of Shared Control Method

The image servo based control method may come across with challenge that camera misses the feature
points’ information. However, we are able to recapture the image of target and manipulate the robot such that
it is possible to approach the target based on operator perception.

The shared control method is the ISBHF control method with human manipulation based master-slave
teleoperation. In order to reflect the effectiveness of visual servo forces and involvement of human
manipulation (the human manipulation forces (top) in Fig. 11), we drove the robot in a way that initially
the feature points of image deviated from camera visual range, which is shown in Fig. 11 from 0 to 10 s
and then was corrected back into the camera visual range by human manipulation, which is shown in
Fig. 11 from 10 to 22 s.

The manipulation by ISBHF is separated into three periods (the visual guidance forces (bottom) in
Fig. 11). Firstly, the operator manipulates the robot and makes the feature points deviate from camera

Figure 10: Comparison of feature points (left) and end-effector (right) trajectories between PSBHF
and ISBHF
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view intentionally, which is shown in Fig. 11 from 0 to 10 s. Then, the operator corrects the feature points’
image back into camera view field, which is shown in Fig. 11 from 10 to 20 s. The last period is mainly
affected by the incorporated image servo forces and assisted with little human manipulation, which is
shown in Fig. 11 from 20 to 30 s.

As shown in Fig. 12, the multi-colored curves and red curve represent the behavior of feature points and
end-effector trajectory only under human manipulation, respectively, and the black ones record the guidance
results under human manipulation with ISBHF control method.

In term of the feature points (left) in Fig. 12, when incorporating human manipulation force with image
servo based virtual force, we can use both to affect feature points’ position. Even though human manipulation
may cause the target image to deviate from camera field view, the image servo based virtual force can guide
the operator to calibrate the view back to the center view. When missing the visual sensory information, the
operator can rely on the virtual force to correct robot camera view.

Figure 11: Human manipulation force (top) and visual force (bottom) under ISBHF

Figure 12: Comparison of feature points (left) and end-effector (right) trajectory between human
manipulation and ISBHF
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Comparing the red and black curves (the end-effector (right) in Fig. 12), it can be seen that the moving
distance of robot end-effector is shorter by the ISBHF method, which means the robot can reach the target
with less time and less posture adjustment. So the ISBHF control method can easily guide robot to track
target and prevent image feature points deviating from camera view. It is favorable for robot to avoid the
blind operation of human and the collision with other obstacles.

6 Conclusion

In this study, we proposed the ISBHF control method which is an image-based servo control method
with virtual force, and we applied it into teleoperation. The stereo image vision method identified and
extracted environment information, and then reconstructed a virtual scene to present visual guidance to
the operator. A composite image Jacobian matrix was constructed based on the relationship between the
image position change rate in the camera view and the end-effector position. The virtual force was
created from the equation and composite image Jacobian matrix. Finally, the virtual force was fed back to
the joysticks to restrict or guide the operation.

Experiments and comparisons between the ISBHF control method and PSBHF control method has
verified the validity and reliability of the ISBHF control method. Human manipulation under the
guidance of the virtual force can decrease the image servo error and end-effector position error.
The ISBHF control method proves capable of preventing the image of the target object deviating out of
the visual field of the camera. Therefore, the safety and stability of the manipulation can be improved.

Declarations: Ethical Approval and Consent to participate: Approved. Consent for publication: Approved.
Availability of supporting data: The data used to support the findings of this study are available from the
corresponding author upon request.

Funding Statement: This research was supported by the Key Research and Development Projects in Jilin
Province (Grant No. 20200401130GX T. Ni) and National Natural Science Foundation of China (Grant No.
51575219 L.T. Huang). http://www.nsfc.gov.cn.

Conflicts of Interest: These are no potential competing interests in our paper. And all authors have seen the
manuscript and approved to submit to your journal. We confirm that the content of the manuscript has not
been published or submitted for publication elsewhere. The authors declare that they have no conflicts of
interest to report regarding the present study.

References
[1] G. Y. Liu, X. D. Geng, L. Z. Liu and Y. Wang, “Haptic based teleoperation with master-slave motion mapping and

haptic rendering for space exploration,” Chinese Journal of Aeronautics, vol. 32, no. 3, pp. 723–736, 2019.

[2] Y. S. Luo, K. Yang, Q. Tang, J. Zhang and B. Xiong, “A multi-criteria network-aware service composition
algorithm in wireless environments,” Computer Communications, vol. 35, no. 15, pp. 1882–1892, 2012.

[3] M. Staniak and C. Zielinski, “Structures of visual servos,” Robotics and Autonomous Systems, vol. 58, no. 8, pp.
940–954, 2010.

[4] J. M. Zhang, X. K. Jin, J. Sun, J. Wang and A. K. Sangaiah, “Spatial and semantic convolutional features for
robust visual object tracking,” Multimedia Tools and Applications, vol. 79, no. 21, pp. 15095–15115, 2020.

[5] P. P. Kumar and L. Behera, “Visual servoing of redundant manipulator with Jacobian matrix estimation using self-
organizing map,” Robotics and Autonomous Systems, vol. 58, no. 8, pp. 978–990, 2010.

[6] L. Y. Xiang, X. B. Shen, J. H. Qin and W. Hao, “Discrete multi-graph hashing for large-scale visual search,”
Neural Processing Letters, vol. 49, no. 3, pp. 1055–1069, 2019.

IASC, 2021, vol.27, no.1 157

http://www.nsfc.gov.cn.


[7] F. Liu, S. Z. Mao and H. X. Wu, “On rough singular integrals related to homogeneous mappings,” Collectanea
Mathematica, vol. 67, no. 1, pp. 113–132, 2016.

[8] T. Ni, H. Y. Zhang, P. Xu and H. Yamada, “Vision-based virtual force guidance for tele-robotic system,”
Computers & Electrical Engineering, vol. 39, no. 7, pp. 2135–2144, 2013.

[9] T. Ni, X. P. Li, H. Y. Zhang, P. Xu and Z. Ma, “3-D vision-based kinesthesis teaching control strategy for
telerobotics,” Transactions of the Chinese Society for Agricultural Machinery, vol. 44, no. 1, pp. 244–247, 2013.

[10] Y. T. Chen, J. Wang, R. L. Xia, Q. Zhang, Z. H. Cao et al., “The visual object tracking algorithm research based
on adaptive combination kernel,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 12, pp.
4855–4867, 2019.

[11] X. Y. Li, Q. L. Zhao, Y. X. Li and H. H. Dong, “Binary Bargmann symmetry constraint associated with 3 �
3 discrete matrix spectral problem,” Journal of Nonlinear Sciences and Applications, vol. 8, no. 5, pp. 496–
506, 2015.

[12] J. A. Piepmeier, G. V. McMurray and H. Lipkin, “Uncalibrated dynamic visual servoing,” Robotics and
Automation, IEEE Transactions on Robotics & Automation, vol. 20, no. 1, pp. 143–147, 2014.

[13] J. Pomares, I. Perea, C. A. Jara, G. J. Garcia and F. Torres, “Dynamic visual servo control of a 4-axis joint tool to
track image trajectories during machining complex shapes,” Robotics and Computer-Integrated Manufacturing,
vol. 29, no. 4, pp. 261–270, 2013.

[14] Z. Cao, L. Yin, Y. Fu and T. Liu, “Predictive control for visual servo stabilization of nonholonomic mobile
robots,” Acta Automatica Sinica, vol. 39, no. 8, pp. 1238–1245, 2013.

[15] N. R. Gans, G. Hu, J. Shen, Y. Zhang and W. E. Dixon, “Adaptive visual servo control to simultaneously stabilize
image and pose error,” Mechatronics, vol. 22, no. 4, pp. 410–422, 2012.

[16] X. Li, Y. Jiang, M. Chen and F. Li, “Research on iris image encryption based on deep learning,” EURASIP Journal
on Image and Video Processing, vol. 2018, no. 1, pp. 126, 2018.

[17] K. Khoshelham, “Accuracy analysis of Kinect depth data,” ISPRS—International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3812, no. 5, pp. 133–138, 2011.

[18] J. Y. Oh, H. S. Choi, S. H. Jung, H. S. Kim and H. Y. Shin, “Development of pallet recognition system using Kinect
camera,” International Journal of Multimedia and Ubiquitous Engineering, vol. 9, no. 4, pp. 227–232, 2014.

[19] P. J. Noonan, “The design and initial calibration of an optical tracking system using the Microsoft Kinect,” in
2011 IEEE Nuclear Science Sym.Conf. Record, Valencia, Spain, 24, pp. 441–445, 2011.

[20] A. Ajouan, C. Fang, N. Tsagarakis and A. Bicchi, “Reduced-complexity representation of the human arm active
endpoint stiffness for supervisory control of remote manipulation,” International Journal of Robotics Research,
vol. 37, no. 1, pp. 155–167, 2018.

[21] L. R. Sanchez, H. A. Marin, H. E. R. Palacios, H. V. Rios-Figueroa and L. F. Marin-Urias, “A real-time 3d pose
based visual servoing implementation for an autonomous mobile robot manipulator,” Procedia Technology, vol.
2013, no. 7, pp. 416–423, 2013.

[22] Y. Gui and G. Zeng, “Joint learning of visual and spatial features for edit propagation from a single image,” The
Visual Computer, vol. 36, no. 3, pp. 469–482, 2020.

158 IASC, 2021, vol.27, no.1


	Research into Visual Servo Based Haptic Feedback Teleoperation
	Introduction
	Composition and Principle of Control System
	Composite Jacobian Matrix for Image
	Proposed Method for Visual Servo Based Force Control
	Discussion and Experiments
	Conclusion
	References


