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Abstract: The interval type-2 fuzzy sets can describe nonlinear plants with uncer-
tain parameters. It exists in nonlinearity. The parameter uncertainties extensively
exist in the nonlinear practical Networked Control Systems (NCSs), and it is para-
mount to investigate the stabilization of the NCSs on account of the section type-
2 fuzzy systems. Notice that most of the existing research work is only on account
of the convention Parallel Distribution Compensation (PDC). For overcoming the
weak point of the PDC and acquire certain guard stability conditions, the state
tickling regulator under imperfect premise matching can be constructed to steady
the NCSs using the section type-2 indistinct muster, where the fuzzy plant and
fuzzy regulator may enjoy together not the same membership functions. By lead-
ing into the message of the up and down membership functions of both the fuzzy
pattern and fuzzy regulator, we build a new composed term of the section type-2 net-
work systems. The new results we obtained can provide a larger area of stability
than the conventional membership unconcerned stability results. Moreover, a novel
unmatching state feedback controller design method for the interval type-2 net-
worked systems is explored in our work. The proposed approach can significantly
improve the design flexibility of the fuzzy controllers, because their membership
functions can be arbitrarily selected. Two numerical examples are further used to
demonstrate the less-conservativeness and effectiveness of the novel technique.

Keywords: Network control systems; stability analysis; interval type-2 fuzzy
systems; controller design; imperfect premise matching

1 Introduction

As we know, the Takagi-Sugeno can efficacious express non-linear dynamics, and often is called a type-
1 system [1]. Unfortunately, the type-1 fuzzy sets have some difficulties in describing the nonlinear plants
with uncertain parameters. In order to handle this drawback, Zadeh [2] introduced the type-2 fuzzy sets
as an extension of the type-1 fuzzy sets. In view of the type-2 fuzzy sets, Mendel et al. [3] proposed the
section Type-2 (IT2) fuzzy sets. During the past decades, the IT2 fuzzy model has been widely applied in
practice [4,5]. For example, in Lam et al. [6], the stability area and the fuzzy regulator for the IT2 fuzzy
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model-based system were examined, in which the parameter non-determinacy are captured by both the up
and down grades of fuzzy membership. Most of the controller design methods reported in the literature
are inspired by the PDC scheme, and the fuzzy pattern and fuzzy regulator are provided with the identical
membership functions. Nevertheless, Lam developed the concept of “imperfect premise matching” in
Lam et al. [7], i.e., the membership functions of the fuzzy regulator probable be distinct from fuzzy
model. The stabilization issue of the type-1 systems was investigated in Zhang et al. [8–11]. Li et al.
[12,13] generalized these research results to the IT2 fuzzy model with the imperfect premise matching,
thus improving the flexibility in highway design and cutting down the complexity of implementation.
More work on the Interval type-2 fuzzy model stability conditions and controller design was presented in
Wu et al. [14–16].

The Networked Control Systems (NCSs) have been got a lot of attention owing to their theory and
reality purport [17]. Compared with the conventional point-point connections, the network systems
reduce the heavy expenses of cables and facility maintenances. The network systems have found
numerous applications in the fields of automobile, aerospace, industrial manufacturing, etc. [18–21].
Moreover, It is difficult if not impossible to guarantee the steadiness of the NCSs. what to analyze and
devise the stability requirement for the T-S under NCSs has been a popular research topic [22,23]. Such
as in Chi et al. [24], the networked H1 filtration with many output and many transducer nonsynchronous
take sample for the T-S fuzzy systems was explored. By drawing into Laypunov-Krasovskii function to
analysis the robust stability and the project of the state feedback for the NCSs in Rouamel et al. [25].
Actually, the above issues were received in view of the type-1 fuzzy set theory. NCSs also have
parameter uncertainties, and considerable research work concerning the sector type-2 fuzzy pattern has
been carried out [26,27]. However, the current efforts on the controller design are mainly inspired by the
convention PDC idea. For the sake of overcoming the shortcomings of the PDC and receive a number of
less conservative stability conditions, a novel devise way was put forward to manage the unmatching
premise of the type-1 systems [28]. It is necessary to further investigate the controller design scheme
under the imperfect premise matching for the Interval type-2 T-S fuzzy systems under NCSs.

In this article, the innovations of the paper are as follows:

� A less conservative stability conditions are obtained.

� The unmatching regulator is designed for the nonlinear NCSs in view of the Interval typ-2 T-S, which
makes the regulator design simpler and more flexible.

� The proposed method can be generalized to other types of nonlinear control systems.

The rest of our article is arranged as follows. In Section 2, the controller design problem under
consideration is represented in details. In Section 3, the synthesis of the state-feedback type-2 fuzzy
controller under the imperfect premise matching is presented. In Section 4, for explaining the
practicability and validity of the recommend technique, we give two numerical examples. Ultimately, In
Section 5, we summarize this paper with some remarks and conclusions

2 Preparatory Knowledge

Here the interval type-2 T-S fuzzy model can be described as follows:

The ith rule can be represented as follows:

IF q1 v tð Þð Þ is �i
1 … qj v tð Þð Þ is �i

j THEN

_v tð Þ ¼ Aiv tð Þ þ Bil tð Þ; (1)
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�i
a, a ¼ 1; 2; . . . ; j; i ¼ 1; 2; . . . ; l l is the number of the fuzzy rules. Ai;Bi are the constant matrices.

l tð Þ 2 Rm is the input vector, v tð Þ 2 Rn is the state vector.

We have:

hi v tð Þð Þ ¼ hi v tð Þð Þ �hi v tð Þð Þ� �
; i ¼ 1; 2; � � � ; l; (2)

where

hi v tð Þð Þ ¼
Yj
a¼1

u�i
a
qa v tð Þð Þð Þ � 0; �hi v tð Þð Þ ¼

Yj
a¼1

�u�i
a
qa v tð Þð Þð Þ � 0;

They content the character of 1 � �u�i
a
qa v tð Þð Þð Þ � u�i

a
qa v tð Þð Þð Þ � 0, and hi v tð Þð Þ and �hi v tð Þð Þ show

the down and up grades of the membership. Then we have

_v tð Þ ¼
Xl
i¼1

hi v tð Þð Þ Aiv tð Þ þ Bil tð Þ½ �; (3)

where

hi v tð Þð Þ ¼ hi v tð Þð Þti v tð Þð Þ þ �hi v tð Þð Þ�ti v tð Þð ÞPl
i¼1

hi v tð Þð Þti v tð Þð Þ þ �hi v tð Þð Þ�ti v tð Þð Þ� � ;

in which
Pl
i¼1

hi v tð Þð Þ ¼ 1, and ti; �ti 2 0; 1½ � are the nonlinear functions with ti v tð Þð Þ þ �t v tð Þð Þ ¼ 1.

In this article, The system in Eq. (1) through IP based network control, system status can be used for
feedback, as shown in Fig. 1 [29].

Distinct of the famous Parallel Distributed Compensation (PDC) plan means, we adopt a new
unmatching fuzzy control law to make the interval type-2 fuzzy systems in Eq. (3) stable. For the NCSs,
the transducer is clock-driven and h h > 0ð Þ express the sampling period is constant. The regulator and
actuator are eventdriven. Suppose that h h > 0ð Þ express the sampling cycle of the semaphore, and the
Dh D ¼ 1; 2; 3 � � �ð Þ express the Δth acquisition time.

Smart ZOH Actuator Sampler
Interval type-2

 T-S fuzzy model

Imperfect Premise Matching Controller

NETWORK

� �,ku i h

Event_driven

Event_driven

� �x t

Figure 1: The interval type-2 networking system diagram
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Under imperfect premise matching, we have the following fuzzy regulator:

Rule j: IF r1 v Dhð Þð Þ is �j
1… r� v Dhð Þð Þ is �j

� THEN

l tð Þ ¼ Zjv Dhð Þ; j ¼ 1; 2; . . . ; l; t 2 Dhþ sk ; Dþ 1ð Þhþ skþ1½ �;D ¼ 1; 2; � � � ; (4)

where Zj are the unknown tickling gains to be pending. On the other hand,

ej v tð Þð Þ ¼ ej v tð Þð Þ �ej v tð Þð Þ� �
; t 2 Dhþ sk ; Dþ 1ð Þhþ skþ1½ �;D ¼ 1; 2; � � � ; (5)

where

ej v tð Þð Þ ¼
Y�
b¼1

u�j
b
rb v tð Þð Þ� � � 0; �ej v tð Þð Þ ¼

Y�
b¼1

�l�j
b
rb v tð Þð Þ� � � 0:

For t 2 Dhþ sk ; Dþ 1ð Þhþ skþ1½ �, we have

l tð Þ ¼
Xl
j¼1

ej v tð Þð Þ þ �ej v tð Þð Þ� �
Zjv Dhð Þ; (6)

Here the u�j
b
rb v tð Þð Þ� �

and �u�j
b
rb v tð Þð Þ� �

express the down and up membership functions. They satisfy
the character 0 � u�j

b
rb v tð Þð Þ� � � �u�j

b
rb v tð Þð Þ� � � 1. ej v tð Þð Þ and �ej v tð Þð Þ express the down and up grades

of the membership functions. We have

Xl
j¼1

ej v tð Þð Þ þ �ej v tð Þð Þ� � ¼ 1: (7)

Owing to the network slowdown is invariably bounded, The input delay is:

s tð Þ ¼ t � Dh; 0 � s tð Þ � c: (8)

where c is the upper limit of the lag. Putting Eq. (8) into Eq. (6), the following regulator can be shown:

l tð Þ ¼
Xl
j¼1

ej v tð Þð Þ þ �ej v tð Þð Þ� �
Zjv t � s tð Þð Þ: (9)

We have the following closed-loop networked system:

_v tð Þ ¼
Xl
i¼1

Xl
j¼1

hi v tð Þð Þ �ej v tð Þð Þ þ ej v tð Þð Þ� �	 Aiv tð Þ þ BiZjv t � s tð Þð Þ� �
: (10)

Lemma 1 [30] For ’ mð Þ 2 Rn; m � 0 , D ¼ DT 2 Rn	n, supposing that there has v sð Þ 2 Rn; s 2 m1; m2½ �,
for ’ mð Þ 2 Rn; m � 0, D ¼ DT 2 Rn	n, we have:

�2’T mð Þ
Z m2

m1

_v sð Þds � m2 � m1ð Þ’T mð ÞD�1’ mð Þ þ
Z m2

m1

_vT sð ÞD _v sð Þds: (11)

Lemma 2 [31] �1;�2, and � are constant matrices, and 0 � s tð Þ � d. We have

s tð Þ�1 þ d � s tð Þð Þ�2 þ � < 0: (12)

if and only if d�1 þ � < 0 and d�2 þ � < 0 set up.
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Lemma 3 [32] The a bT

b d

� �
> 0 is equivalent to d > 0, a� bTd�1b > 0, where a ¼ aT , d ¼ dT , and

b is a matrix .

3 Main Results

Theorem 1 When the membership functions satisfy ej v tð Þð Þ � qj�hj v tð Þð Þ � 0 and
�ej v tð Þð Þ � qjhj v tð Þð Þ � 0 for all j; v tð Þ, where 0 < dj < 1, and for given invariant c > 0 and matrix Zj,

and there exist matrices P > 0;R > 0;Q > 0; gi ¼ gTi 2 R4n	4n > 0 i ¼ 1; 2; � � � ; lð Þ; Ti i ¼ 1; 2; 3; 4ð Þ and

Oij¼ O1ij O2ij 0 0½ �T ;Uij ¼ 0 U1ij U2ij 0½ �T ;Yij ¼ Y1ij Y2ij 0 0½ �T ; Sij ¼ 0 S1ij S2ij 0½ �T
of such that the following LMIs hold:

�ij � gi cOij

� �cR

� �
< 0; (13)

�ij � gi cUij

� �cR

� �
< 0; (14)

di�ii � digi þ gi cdiOij

� �cR

� �
< 0 (15)

di�ii � digi þ gi cdiUij

� �cR

� �
< 0; (16)

dj�ij � djgi þ di�ji

þgi þ digj þ gj
c djOij þ diOji

� 	
� �cR

" #
< 0; (17)

dj�ij þ gi þ di�ji

þgi � digj þ gj
c djUij þ diUji

� 	
� �cR

" #
< 0; (18)

�ij � gi cYij
� �cR

� �
< 0; (19)

�ij � gi cSij
� �cR

� �
< 0; (20)

di�ii � digi þ gi cdiYij
� �cR

� �
< 0; (21)

di�ii � digi þ gi cdiSij
� �cR

� �
< 0; (22)

dj�ij � djgi þ di�ji

þgi � digj þ gj
c djYij þ diYji

� 	
� �cR

" #
< 0; (23)

dj�ij � djgi þ di�ji

þgi � digj þ gi þ gj
c djSij þ diSji

� 	
� �cR

" #
< 0: (24)
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where

�ij ¼
�11

ij �12
ij 0 P þ T1 þ AT

i T
T
4

� �22
ij �U1ij þ UT

2ij �T2 � ZT
j B

T
i T

T
4

� � �U2ij � UT
2ij � Q �T3

� � � cR� T4 � TT
4

2
6664

3
7775;

�11
ij ¼ O1ij þ OT

1ij þ Qþ TAi þ AT
i T

T
1 ;

�12
ij ¼ �O1ij þ OT

2ij � T1BiZj þ AT
i T

T
2 ;

�22
ij ¼ �O2ij � OT

2ij þ U1ij þ UT
1ij � T2BiZj � ZT

j B
T
i T

T
2 ;

�ij ¼
�11

ij �12
ij 0 P þ T1 þ AT

i T
T
4

� �22
ij �S1ij þ ST2ij �T2 � ZT

j B
T
i T

T
4

� � �S2ij � ST2ij � Q �T3
� � � cR� T4 � TT

4

2
6664

3
7775;

�11
ij ¼ Y1ij þ YT

1ij þ Qþ T1Ai þ AT
i T

T
1 ;

�12
ij ¼ �Y1ij þ YT

2ij � T1BiZj þ AT
i T

T
2 ;

�22
ij ¼ �Y2ij � YT

2ij þ S1ij þ ST1ij � T2BiZj � ZT
j B

T
i T

T
2 :

Here, “*” represents the transposition of symmetric position elements, then the fuzzy type-2 NCSs
described by Eq. (10) is asymptotically stable.

Proof. Select the following Lyapunov function:

T v tð Þð Þ ¼ T1 v tð Þð Þ þ T2 v tð Þð Þ þ T3 v tð Þð Þ; (25)

where

T1 v tð Þð Þ ¼ vT tð ÞPv tð Þ; T2 v tð Þð Þ ¼
Z t

t�c
vT sð ÞQv sð Þds; T3 v tð Þð Þ ¼

Z 0

�c

Z t

tþh
_vT sð ÞR _v sð Þdsdh

We take the derivative of T v tð Þð Þ:
_T v tð Þð Þ ¼ _T1 v tð Þð Þ þ _T2 v tð Þð Þ þ _T3 v tð Þð Þ; (26)

where

_T1 v tð Þð Þ ¼ _vT tð ÞPv tð Þ þ vT tð ÞP _v tð Þ;
_T2 v tð Þð Þ ¼ vT tð ÞQv tð Þ � vT t � cð ÞQv t � cð Þ;

_T3 v tð Þð Þ ¼ c _vT tð ÞR _v tð Þ �
Z t

t�c
_vT sð ÞRv sð Þds ¼ c _vT tð ÞR _v tð Þ �

Z t

t�s tð Þ
_vT sð ÞRv sð Þds�

Z t�s tð Þ

t�c
_vT sð ÞRv sð Þds

There exist some matrices Oij¼ O1ij O2ij 0 0½ �T ;Uij ¼ 0 U1ij U2ij 0½ �T ;Yij ¼
Y1ij Y2ij 0 0½ �T ; Sij ¼ 0 S1ij S2ij 0½ �T , here we use Newton-Leibniz, we have
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Xl
i¼1

Xl
j¼1

hi v tð Þð Þej v tð Þð Þ2n tð ÞTOij v tð Þ � v t � s tð Þð Þ �
Z t

t�s tð Þ
_v sð Þds

" #
¼ 0; (27)

Xl
i¼1

Xl
j¼1

hi v tð Þð Þej v tð Þð Þ2n tð ÞTUij v t � s tð Þð Þ � v t � cð Þ �
Z t�s tð Þ

t�c
_v sð Þds

" #
¼ 0; (28)

Xl
i¼1

Xl
j¼1

hi v tð Þð Þ�ej v tð Þð Þ2n tð ÞTYij v tð Þ � v t � s tð Þð Þ �
Z t

t�s tð Þ
_v sð Þds

" #
¼ 0; (29)

Xl
i¼1

Xl
j¼1

hi v tð Þð Þ�ej v tð Þð Þ2n tð ÞTSij v t � s tð Þð Þ � v t � cð Þ �
Z t�s tð Þ

t�c
_v sð Þds

" #
¼ 0; (30)

where

n tð Þ ¼ vT tð Þ vT t � s tð Þð Þ vT t � cð Þ _vT tð Þ� �T
:

For any matrices Ti; i ¼ 1; 2; 3; 4, we have :

2
Xl
i¼1

Xl
j¼1

hi v tð Þð Þ �ej v tð Þð Þ þ ej v tð Þð Þ� � vT tð ÞT1 þ vT t � s tð Þð ÞT2þ
vT t � cð ÞT3 þ _vT tð ÞT4

� �

Aiv tð Þ � BiZjv t � s tð Þð Þ � _v tð Þ� � ¼ 0:

(31)

By Lemma 1, we get

�2n tð ÞTOij

Z t

t�s tð Þ
_v sð Þds � s tð ÞnT tð ÞOijR

�1OT
ijn tð Þ þ

Z t

t�s tð Þ
_vT sð ÞRv sð Þds; (32)

�2n tð ÞTUij

Z t�s tð Þ

t�c
_x sð Þds � d � s tð Þð ÞnT tð ÞUijR

�1UT
ij n tð Þ þ

Z t�s tð Þ

t�c
_xT sð ÞRx sð Þds; (33)

�2n tð ÞTYij
Z t

t�s tð Þ
_x sð Þds � s tð ÞnT tð ÞYijR�1YT

ij n tð Þ þ
Z t

t�s tð Þ
_vT sð ÞRv sð Þds; (34)

�2n tð ÞTSij
Z t�s tð Þ

t�c
_x sð Þds � d � s tð Þð ÞnT tð ÞSijR�1STij n tð Þ þ

Z t�s tð Þ

t�c
_vT sð ÞRv sð Þds: (35)

With the above equation, we have

_T v tð Þð Þ � nT tð Þ
Xr
i¼1

Xr
j¼1

hiej �ij þ s tð ÞOijR
�1OT

ij þ d � s tð Þð ÞUijR
�1UT

ij

� 	" #
n tð Þ

þ nT tð Þ
Xr
i¼1

Xr
j¼1

hi�ej �ij þ s tð ÞYijR�1YT
ij þ d � s tð Þð ÞSijR�1STij

� 	" #
n tð Þ:

(36)

Let

	1
ij ¼ �ij þ s tð ÞOijR

�1OT
ij þ c� s tð Þð ÞUijR

�1UT
ij ; (37)

	2
ij ¼ �ij þ s tð ÞYijR�1YT

ij þ c� s tð Þð ÞSijR�1STij ; (38)
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where

�ij ¼
�11

ij �12
ij 0 P þ T1 þ AT

i T
T
4

� �22
ij �U1ij þ UT

2ij �T2 � ZT
j B

T
i T

T
4

� � �U2ij � UT
2ij � Q �T3

� � � cR� T4 � TT
4

2
6664

3
7775;

�11
ij ¼ O1ij þ OT

1ij þ Qþ T1Ai þ AT
i T

T
1 ;

�12
ij ¼ �O1ij þ OT

2ij � T1BiZj þ AT
i T

T
2 ;

�22
ij ¼ �O2ij � OT

2ij þ U1ij þ UT
1ij � T2BiZj � ZT

j B
T
i T

T
2 ;

�ij ¼
�11

ij �12
ij 0 P þ T1 þ AT

i T
T
4

� �22
ij �O1ij þ OT

2ij �T2 � ZT
j B

T
i T

T
4

� � �O2ij � OT
2ij � Q �T3

� � � cR� T4 � TT
4

2
6664

3
7775;

�11
ij ¼ Y1ij þ YT

1ij þ Qþ T1Ai þ AT
i T

T
1 ;

�12
ij ¼ �Y1ij þ YT

2ij � T1BiZj þ AT
i T

T
2 ;

�22
ij ¼ �Y2ij � YT

2ij þ S1ij þ ST1ij � T2BiKj � ZT
j B

T
i T

T
2 :

From Eq. (34), it is obvious that if

Xl
i¼1

Xl
j¼1

hiej	
1
ij < 0; (39)

Xl
i¼1

Xl
j¼1

hi�ej	
2
ij < 0: (40)

we have _T v tð Þð Þ < 0. Next, we will consider the following equation

Xl
i¼1

Xl
j¼1

hi hj � ej
� �

gi ¼
Xl
i¼1

hi
Xl
j¼1

hj�
Xl
j¼1

ej

 !
gi ¼

Xl
i¼1

hi 1� 1ð Þgi ¼ 0; (41)

Xl
i¼1

Xl
j¼1

hi hj � �ej
� �

gi ¼ 0: (42)

where gi ¼ gTi 2 R4n	4n > 0; i ¼ 1; 2; . . . ; l. For reducing the conservativeness, the above equations are
added to Eqs. (39) and (40), we have
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�	1
ij ¼

Xl
i¼1

Xl
j¼1

hiej	
1
ij ¼

Xl
i¼1

Xl
j¼1

hiej	
1
ij þ

Xl
i¼1

Xl
j¼1

hi hj � ej þ djhj � djhj
� �

gi

¼
Xl
i¼1

Xl
j¼1

hihj dj	
1
ij � djgi þ gi

� 	
þ
Xl
i¼1

Xl
j¼1

hi ej � gjhj
� �

	1
ij � gi

� 	

�
Xl
i¼1

h2i di	
1
ii � digi þ gi

� �þXl
i¼1

Xl
j¼1

hi ej � djhj
� �

	1
ij � gi

� 	

þ
Xl
i¼1

X
i, j

hiej dj	
1
ij þ di	

1
ji � djgi � digj þ gi þ gj

� 	
;

(43)

�	2
ij �

Xl
i¼1

h2i dj	
2
ij � djgi þ gi

� 	
þ
Xl
i¼1

Xl
j¼1

hi ej � djhj
� �

	2
ij � gi

� 	
þ

Xl
i¼1

X
i<j

hi�ej dj	
2
ij þ di	

2
ji � djgi � digj þ gi þ gj

� 	
:

(44)

If ej � dj�hj � 0 and �ej � djhj � 0, ej � djhj � 0and �hj � djhj � 0 hold. With ej � dj �hj � 0 and
�ej � djhj � 0, let

	1
ij � gi < 0; (45)

di	
1
ii � digi þ gi < 0; (46)

dj	
1
ij þ di	

1
ji � djgi � digj þ gi þ gj < 0; i < j; (47)

	2
ij � gi < 0; (48)

di	
2
ii � digi þ gi < 0; (49)

dj	
2
ij þ di	

2
ji � djgi � digj þ gi þ gj < 0; i < j: (50)

The Eqs. (45)–(50) are equivalent to the following inequalities on the basis of Eq. (37), Eq. (38) and
Lemma 2:

�ij � gi þ cOijR
�1OT

ij < 0; (51)

�ij � gi þ cUijR
�1UT

ij < 0; (52)

di�ii � digi þ gi þ cdiOijR
�1OT

ij < 0; (53)

di�ii � digi þ gi þ cdiUijR
�1UT

ij < 0; (54)

dj�ij � djgi þ di�ji � digj þ cdjOijR
�1OT

ij þ gi þ cdiOjiR
�1OT

ji þ gj < 0; (55)

dj�ij � djgi þ di�ji � digj þ cdjUijR
�1UT

ij þ di þ cdiUjiR
�1UT

ji þ dj < 0; (56)

�ij � gi þ cYijR
�1YT

ij < 0; (57)
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�ij � gi þ cSijR
�1STij < 0; (58)

di�ii � digi þ cdiYijR
�1YT

ij þ gi < 0; (59)

di�ii � digi þ cdiSijR
�1STij þ gi < 0; (60)

dj�ij � djgi þ di�ji � digj þ cdjYijR
�1YT

ij þ gi þ cdiYjiR
�1YT

ji þ gj < 0; (61)

dj�ij � djgi þ di�ji � digj þ cdjSijR
�1STij þ gi þ cdiSjiR

�1STji þ gj < 0; (62)

We can see from Shur complement, the above inequalities Eqs. (51)–(62) are equivalent to
Eqs. (13)–(24). Since _T x tð Þð Þ < 0, the system described in Eq. (10) is asymptotically stable.

Remark 1We consider the relationship between the membership and the fuzzy regulator in Theorem 1,
which is more relaxed than the stability condition that does not consider the information of the membership
(Corollary 1). When hi v tð Þð Þ ¼ ei v tð Þð Þ, Theorem 1 can be reduced to Corollary 1 below, i.e., the
membership function independent stability condition.

Corollary 1. The scalars c and the matrix Zj are given, the Eq. (10) is asymptotically stable, if there

exist matrices ~P > 0; ~R > 0; ~Q > 0; ~Ti i ¼ 1; 2; 3; 4ð Þ and ~Oij¼ ~O1ij
~O2ij 0 0

� �T
; ~Uij ¼

0 ~U1ij ~U2ij 0
� �

; ~Yij ¼ ~Y 1ij ~Y 2ij 0 0
� �T

; ~Sij ¼ 0 ~S1ij ~S2ij 0
� �T

make the under non-equality
set up:

~�11
ij

~�12
ij 0 ~P þ ~T1 þ AT

i
~TT
4 c~O1ij

� ~�22
ij �~E1ij þ ~ET

2ij �~T 2 � ~KT
j B

T
i
~TT
4 c~O2ij

� � �~E2ij � ~ET
2ij � ~Q �~T3 0

� � � c~R� ~T 4 � ~TT
4 0

� � � � c~R

2
666664

3
777775 < 0; (63)

~�11
ij

~�12
ij 0 P þ ~T1 þ AT

i
~TT
4 0

� ~�22
ij �~E1ij þ ~ET

2ij �T2 � ZT
j B

T
i
~TT
4 c~E1ij

� � �~E2ij � ~ET
2ij � Q �~T3 ~E2ij

� � � c~R� ~T 4 � ~TT
4 0

� � � � c~R

2
666664

3
777775 < 0; (64)

~�11
ij ¼ ~D1ij þ ~DT

1ij þ ~Qþ ~T1Ai þ AT
i
~TT
1 ; (65)

~�12
ij ¼ �~D1ij þ ~DT

2ij � ~T1Bi~Zj þ AT
i
~TT
2 ; (66)

~�22
ij ¼ �~D2ij � ~DT

2ij þ ~E1ij þ ~ET
1ij � ~T2Bi~Zj � ~ZT

j B
T
i
~TT
2 ; (67)

~�11
ij

~�12
ij 0 ~P þ ~T 1 þ AT

i
~TT
4 c~F1ij

� ~�22
ij �~G1ij þ ~GT

2ij �~T2 � ~ZT
j B

T
i
~TT
4 c~F2ij

� � �~G2ij � ~GT
2ij � ~Q �~T3 0

� � � c~R� ~T4 � ~TT
4 0

� � � � �c~R

2
666664

3
777775 < 0; (68)
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~�11
ij

~�12
ij 0 ~P þ ~T 1 þ AT

i
~TT
4 0

� ~�22
ij �~G1ij þ ~GT

2ij �~T2 � ~ZT
j B

T
i
~TT
4 c~G1ij

� � �~G2ij � ~GT
2ij � ~Q �~T3

~G2ij

� � � C~R� ~T4 � ~TT
4 0

� � � � �c~R

2
666664

3
777775 < 0; (69)

~�11
ij ¼ ~F1ij þ ~FT

1ij þ ~Qþ ~T1Ai þ AT
i
~TT
1 ; (70)

~�12
ij ¼ �~F1ij þ ~FT

2ij � ~T1BiZj þ AT
i
~TT
2 ; (71)

~�22
ij ¼ �~F2ij � ~FT

2ij þ ~G1ij þ ~GT
1ij � ~T2Bi~Zj � ~ZT

j B
T
i
~TT
2 ; (72)

dj�ij � djgi þ di�ji þ gi � digj þ gj c djFij þ diFji

� 	
� �cR

" #
< 0; (73)

dj�ij þ gi þ di�ji � djgi þ gj � digj c djGij þ diGji

� 	
� �cR

" #
< 0: (74)

Based on Theorem 1, The following Theorem 2 will give the controller design method.

Theorem 2. The scalars c > 0 are given, the Eq. (10) is asymptotically stable with feedback gains
Zj ¼ 
jX�T , if there satisfy satisfy ej v tð Þð Þ � dj�hj v tð Þð Þ � 0 and �ej v tð Þð Þ � djhj v tð Þð Þ � 0 for all j; v tð Þ,
where 0 < dj < 1, and the following matrices P̂ > 0; R̂ > 0; Q̂ > 0; ĝi ¼ ĝTi 2 R4n	4n > 0 i ¼ 1; 2; � � � ; lð Þ
and Ôij¼ Ô1ij Ô2ij 0 0

� �T
; Ûij ¼ 0 Û1ij Û2ij 0

� �
; Ŷij¼ Ŷ 1ij Ŷ 2ij 0 0

� �T
; Ŝij ¼ 0 Ŝ1ij Ŝ2ij 0

� �T
exist, and make the following LMIs set up:

�̂ij� ĝi cÔij

� �cR̂

� �
< 0; (75)

�̂ij � ĝi cÛ ij

� �cR̂

� �
< 0; (76)

di�̂ii � diĝi þ ĝi cdiÔij

� �cR̂

� �
< 0; (77)

di�̂ii � diĝi þ ĝi cdiÛ ij

� �cR̂

� �
< 0; (78)

dj�̂ij þ gj þ di�̂ji þ gj � diĝj þ ĝj c djÔij þ diÔji

� 	
� �CR̂

" #
< 0; (79)

dj�̂ij þ gj þ di�̂ji � djĝi þ ĝj � diĝj c djÛ ij þ diÛji

� 	
� �cR̂

" #
< 0; (80)

�̂ij � ĝi cŶ ij

� �cR̂

� �
< 0; (81)
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�̂ij � ĝi cŜij
� �cR̂

� �
< 0; (82)

di�̂ii � diĝi þ ĝi cdiŶ ij

� �cR̂

� �
< 0; (83)

di�̂ii � diĝi þ ĝi cdiŜij
� �cR̂

� �
< 0; (84)

dj�̂ij þ ĝi þ di�̂ji � djĝi þ ĝj � diĝj c djŶ ij þ diŶji

� 	
� �cR̂

" #
< 0; (85)

dj�̂ij þ ĝi þ di�̂ji � djĝi þ ĝi � diĝj c djŜij þ diŜji

� 	
� �cR̂

" #
< 0; (86)

where

�̂ij ¼
�̂11

ij �̂12
ij 0 P̂ þ XT þ t4XAT

i

� �̂22
ij �Û1ij þ ÛT

2ij �t2XT � t4
T
j B

T
i

� � �Û2ij � ÛT
2ij � Q̂ �t3XT

� � � cR̂� t4XT � t4X

2
6664

3
7775;

�̂11
ij ¼ Ô1ij þ ÔT

1ij þ Q̂þ AiX þ XAT
i ;

�̂12
ij ¼ �Ô1ij þ ÔT

2ij � Bi
j þ XAT
i ;

�̂22
ij ¼ �Ô2ij � ÔT

2ij þ Û1ij þ ÛT
1ij � t2Bi
j � t2


T
j B

T
i ;

�̂ij ¼
�̂11

ij �̂12
ij 0 P̂ þ XT þ t4XAT

i

� �̂22
ij �Ŝ1ij þ ŜT2ij �t2XT � t4
T

j B
T
i

� � �Ŝ2ij � ŜT2ij � Q̂ �t3XT

� � � cR̂� t4XT � t4X

2
6664

3
7775;

�̂11
ij ¼ Ŷ1ij þ Ŷ T

1ij þ Q̂þ AiX þ XAT
i ;

�̂12
ij ¼ �Ŷ1ij þ Ŷ T

2ij � Bi
j þ XAT
i ;

�̂22
ij ¼ �Ŷ2ij � Ŷ T

2ij þ Ŝ1ij þ ŜT1ij � t2Bi
j � t2

T
j B

T
i :

Proof. Pre- and post-multiply the diag X X X X X½ � and its transpose to both sides of Eqs. (13)–
(24). Let Ti ¼ tiT1 i ¼ 2; 3; 4ð Þ, and the new variables are as follows: X ¼ T�1

1 ,P̂ ¼ XPXT ,Q̂ ¼ XQXT ,

Ô1ij ¼ XO1ijX T , Ô2ij ¼ XO2ijX T , Û1ij ¼ XU1ijX T , Û2ij ¼ X Û2ijX T , Ŷ1ij ¼ XY1ijX T , Ŷ2ij ¼ XY2ijX T ,

Ŝ1ij ¼ XS1ijX T , Ŝ2ij ¼ X Ŝ2ijX T . With Zj ¼ 
jX�T ; j ¼ 1; 2; � � � ; l, the inequalities Eqs. (75)–(86) can be
obtained.
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4 Numerical Examples

Example 1 [33]. In order to compare the results of Theorem 1 and Corollary 1, stability regions are
shown in Figs. 2(a) and 2(b).

Rule i: v1 tð Þ is Mi
1,

_v tð Þ ¼ Aiv tð Þ þ Biu tð Þ; i ¼ 1; 2; v 2 v1; v2½ �; v1 2 �10; 10½ � (87)

where

A1 ¼
2:78 �5:63

0:01 0:33

� �
; A2 ¼

�a �4:33

0 0:05

� �
0 � a � 45ð Þ; B1 ¼ 2 �1½ �T ;

B2 ¼ �bþ 6 �1½ �T 0 � b � 25ð Þ:
We choose the following function as the membership functions of Eq. (87)

h1 v1ð Þ ¼ 1� 1
.

1� 4e� v1þ4þg tð Þð Þ
� 	

; h2 v1ð Þ ¼ 1� h1 v1ð Þ; g tð Þ 2 �0:25; 0:25½ �:

e1 v1ð Þ ¼ 1� 1
.

1� 4e� v1þ4þ0:25ð Þ
� 	

; �e1 v1ð Þ ¼ 1� 1
.

1� 4e� v1þ4�0:25ð Þ
� 	

;

h2 v1ð Þ ¼ 1� �h1 v1ð Þ; �h2 v1ð Þ ¼ 1� h1 v1ð Þ:
Distinct of the above membership, the down and up membership functions of controller are

e1 v1ð Þ ¼ 1� 1
.
e� v1þ0:15ð Þ=2; �e2 v1ð Þ ¼ 1� e1 v1ð Þ; �e1 v1ð Þ ¼ 1� 1

.
e� v1�0:15ð Þ=2; e2 v1ð Þ ¼ 1� �e1 v1ð Þ:

Here, we select c ¼ 0:19; d1 ¼ 0:75, and d2 ¼ 0:85, and the feedback gains of Zj; j ¼ 1; 2 take the value
when the characteristic root is �5, and we obtain the stability area which is shown in Figs. 2(a) and 2(b)
based on Theorem 1 and Corollary 1. we can see larger stability area can be obtained from Theorem
1 than that from Corollary 1(based on the PDC method), which means that the stability condition under
the incomplete premise matching is less conservative.

(b)
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0
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10

15

20

25
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b

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

a

b

(a)

Figure 2: (a) Stable area of Theorem 1 with c ¼ 0:19, d1 ¼ 0:75, d2 ¼ 0:85 (denoted by “o”); (b) Stable
area of Corollary 1 with c ¼ 0:19 (denoted by “×”)
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Example 2 Consider the following mechanical system [27]

e€gþ r _gþ xgþ xa2g3 ¼ d tð Þ; (88)

Let g tð Þ ¼ g1 tð Þ g2 tð Þ½ �T ¼ g _g½ �, g1 tð Þ 2 �2; 2½ �; e ¼ 1; r ¼ 2; a ¼ 0:3, and x 2 5; 8½ �.
q ¼ �x� xa2g21 tð Þ

e
, qmin ¼ �10:88; qmax ¼ �5. The mass-spring-damper system in Eq. (88) is

described as:

_x tð Þ ¼
X2
i¼1

hi x1 tð Þð Þ Ai x tð Þð Þ þ Bil tð Þ½ �; (89)

where

A1 ¼
0 1

qmin � c

m

" #
;A2 ¼

0 1
qmax � c

m

" #
;B1 ¼

0
1

m

" #
;B2 ¼

0
1

m

" #
:

In this example, the lower and upper bounds of the membership functions of the plant in Eq. (89) can be
selected as the same as those in Example 1. However, according to Theorem 2, the membership functions of
the controller cannot be chosen as hi x1ð Þ; i ¼ 1; 2. For simplification, they are set to be �ej x1ð Þ; ej x1ð Þj ¼ 1; 2,

which satisfy ej � dj�hj � 0 and �ej � djhj � 0; j ¼ 1; 2. Using Theorem 2 with d1 ¼ 0:75 and d2 ¼ 0:85, we
can obtain the maximum value of delay c ¼ 0:12, and the controller gains are:

Z1 ¼ �6:5123 �3:3432½ �;Z2 ¼ �7:0032 �4:1432½ �:
With the controller gains and membership functions �ej x1ð Þ; ej x1ð Þj ¼ 1; 2, the controller in Eq. (6) is

applied to control the mass-spring-damper mechanical system in Eq. (89). The system responses and
control inputs are shown in Figs. 3 and 4, respectively under the initial condition of x 0ð Þ ¼ �1 �1½ �T ,
which demonstrate that the proposed controller design method is indeed effective and efficient.

0 1 2 3 4 5 6 7 8 9 10
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-1.5

-1

-0.5

0

0.5

1

1.5
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x(
t)

x1

x2

Figure 3: Answers of the control system in Eq. (10) with c ¼ 0:12
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Remark 2 Compared with conventional controller design techniques proposed in Lam et al. [6,14–
16,26,27] where the fuzzy regulator is bear on the up and down membership functions of the interval
type-2 model, the membership functions of our networked fuzzy controller are much simpler, thus
significantly enhancing the controller design flexibility.

5 Conclusions

In this article, we investigate the stability and synthesis for the interval type-2 fuzzy systems. A less
conservative stability criterion is got. The stability condition can offer larger stability regions than those
obtained from the traditional PDC scheme. Furthermore, a new design technique under the imperfect
premise matching is developed in order to stabilize the control systems. Distinct of the PDC controller
design method, some simple and certain functions as the membership functions of the fuzzy controller
can be selected. Two numerical examples are used to demonstrate the less conservativeness of the above
methods. They can significantly improve the design flexibility as well as reduce the implementation
complexity of the fuzzy controller.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[2] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning, ” in Learning
Systems and Intelligent Robots. New York: Plenum Press, pp. 1–10, 1974.

[3] J. M. Mendel and R. B. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10,
no. 2, pp. 117–127, 2002.

[4] S. Coupland and R. John, “Geometric type-1 and type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 1, pp. 3–15, 2007.

[5] M. Benbrahim, N. Essounbouli, A. Hamzaoui and A. Betta, “Adaptive type-2 fuzzy sliding mode controller for
SISO nonlinear systems subject to actuator faults,” International Journal of Automation and Computing, vol. 10,
no. 4, pp. 335–342, 2013.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/s

u(
t)

Figure 4: System control input

IASC, 2021, vol.27, no.1 187



[6] H. K. Lam and S. Lakmal, “Stability analysis of interval type-2 fuzzy-model-based control systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 28, no. 3, pp. 617–628, 2008.

[7] H. K. Lam and M. Narimani, “Stability analysis and performance design for fuzzy-model-based control system
under imperfect premise matching,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 949–961, 2009.

[8] Z. J. Zhang, X. L. Huang, X. J. Ban and X. Z. Gao, “New delay-dependent robust stability and stabilization for
uncertain T-S fuzzy time-delay systems under imperfect premise matching,” Journal of Central South University,
vol. 19, no. 12, pp. 3415–3423, 2012.

[9] Z. J. Zhang, X. Z. Gao, K. Zenger and X. L. Huang, “Delay-dependent stability analysis of uncertain fuzzy
systems with state and input delays under imperfect premise matching,” Mathematical Problems in
Engineering, vol. 2013., pp. 1–13, 2013, 2013.

[10] Z. J. Zhang, X. L. Huang, X. J. Ban and X. Z. Gao, “Stability analysis and design for discrete fuzzy systems with
time-delay under imperfect premise matching,” Journal of Information & Computational Science, vol. 13, no. 1,
pp. 2611–2622, 2011.

[11] Z. J. Zhang, X. L. Huang, X. J. Ban and X. Z. Gao, “Stability analysis and controller design of T-S fuzzy systems
with time-delay under imperfect premise matching,” Journal of Beijing Institute of Technology, vol. 21, no. 3,
pp. 387–393, 2012.

[12] Y. Li, H. K. Lam and L. Zhang, “Interval type-2 fuzzy-model-based control design for time-delay systems under
imperfect premise matching,” in Proc. of 2015 IEEE Int. Conf. on Fuzzy Systems, Istanbul, pp. 1–6, 2015.

[13] T. Zhao and J. Xiao, “A new interval type-2 fuzzy controller for stabilization of interval type-2 T-S fuzzy system,”
Journal of the Franklin Institute, vol. 352, no. 4, pp. 1627–1648, 2015.

[14] D. Wu, J. M. Mendel and S. Coupland, “Enhanced interval approach for encoding words into interval type-2 fuzzy
sets and its convergence analysis,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 499–513, 2011.

[15] H. Li, C. Wu and L. Wu, “Filtering of interval type-2 fuzzy systems with intermittent measurements,” IEEE
Transactions on Cybernetics, vol. 46, no. 3, pp. 668–678, 2015.

[16] Z. Du, Y. Kao and J. H. Park, “New results for sampled-data control of interval type-2 fuzzy nonlinear systems,”
Journal of the Franklin Institute, vol. 357, no. 1, pp. 121–141, 2020.

[17] C. Peng, Y. C. Tian and D. Yue, “Output feedback control of discrete-time systems in networked environments,”
IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 41, no. 1, pp. 185–190, 2010.

[18] F. Rossi, R. D. Lglesias and M. Alizadeh, “On the interaction between autonomous mobility-on-demand systems
and the power network: Models and coordination algorithms,” IEEE Transactions on Control of Network Systems,
vol. 7, no. 1, pp. 384–397, 2019.

[19] R. Akhtyamov, I. Cruz, H. Matevosyan, D. Knoll, U. Pica et al., “An implementation of software defined radios
for federated aerospace networks: Informing satellite implementations using an inter-balloon communications
experiment,” Acta Astronautica, vol. 123, pp. 470–478, 2016.

[20] Y. Wu, H. R. Karimi and R. Lu, “Sampled-data control of network systems in industrial manufacturing,” IEEE
Transactions on Industrial Electronics, vol. 65, no. 11, pp. 9016–9024, 2018.

[21] H. Feng and J. Li, “Distributed adaptive synchronization of complex dynamical network with unknown time-
varying weights,” International Journal of Automation and Computing, vol. 12, no. 3, pp. 323–329, 2015.

[22] C. Hua, L. Zhang and X. Guan, Decentralized Fuzzy Networked Control System Design With Sector Input.
Singapore: Springer, 129–155, 2018.

[23] A. Sakr, A. M. El-Nagar, M. El-Bardini and M. Sharaf, “Model predictive control based on modified smith
predictor for networked control systems,” Journal of Electronic Engineering Research, vol. 27, no. 2,
pp. 237–258, 2018.

[24] X. Chi, X. Jia and F. Cheng, “Networked H∞ filtering for Takagi-Sugeno fuzzy systems under multi-output multi-
rate sampling,” Journal of the Franklin Institute, vol. 356, no. 6, pp. 3661–3691, 2019.

[25] M. Rouamel, S. Gherbi and F. Bourahala, “Robust stability and stabilization of networked control systems with
stochastic time-varying network-induced delays,” Transactions of the Institute of Measurement and Control,
vol. 42, no. 10, pp. 1782–1796, 2020.

188 IASC, 2021, vol.27, no.1



[26] Z. Du, Y. Kao and H. R. Karimi, “Interval type-2 fuzzy sampled-data H∞ control for nonlinear unreliable
networked control systems,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 5, pp. 1480–1496, 2019.

[27] Q. Zhou, D. Liu, Y. B. Gao and H. K. Lam, “Interval type-2 fuzzy control for nonlinear discrete-time systems with
time-varying delays,” Neurocomputing, vol. 157, pp. 22–32, 2015.

[28] S. D. Ma, C. Peng, J. Zhang and X. P. Xie, “Imperfect premise matching controller design for T-S fuzzy systems
under network environments,” Applied Soft Computing, vol. 52, pp. 805–811, 2017.

[29] C. Peng, D. Yue and Q. L. Han, “Delay distribution-dependent control for networked Takagi-Sugeno fuzzy
systems,” in Communication and control for networked complex systems. Berlin, Heidelberg: Springer, pp. 1–
58, 2015.

[30] L. Sheng and X. Ma, “Stability analysis and controller design of interval type-2 fuzzy systems with time delay,”
International Journal of Systems Science, vol. 45, no. 5, pp. 977–993, 2014.

[31] E. Tian, D. Yue and Y. Zhang, “Delay-dependent robust H∞ control for T-S fuzzy system with interval time-
varying delay,” Fuzzy Sets and Systems, vol. 160, no. 12, pp. 1708–1719, 2009.

[32] G. Cheng and B. K. Su, “Delay-dependent robust robust H∞ control of convex polyhedral uncertain fuzzy
systems,” Journal of Systems Engineering and Electronics, vol. 19, no. 6, pp. 1191–1198, 2008.

[33] Z. Zhang, D. Wang and X. Z. Gao, “Stability analysis for interval type-2 fuzzy systems based on network
environments under imperfect premise matching,” in The 39th Chinese Control Conf., China, 2020.

IASC, 2021, vol.27, no.1 189


	Imperfect Premise Matching Controller Design for Interval Type-2 Fuzzy Systems under Network Environments
	Introduction
	Preparatory Knowledge
	Main Results
	Numerical Examples
	Conclusions
	References


