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Abstract: Community structure is a key component in complex network systems.
This paper aims to improve the effectiveness of community detection and commu-
nity discovery in complex network systems by providing directions for the recon-
struction and optimization of community structures to expand the application of
intelligent optimization algorithms in community structures. First, deep learning
algorithms and ant colony algorithms are used to elaborate the community detec-
tion and community discovery in complex networks. Next, we introduce the tech-
nology of transfer learning and propose an algorithm of deep self-encoder
modeling based on transfer learning (DSEM-TL). The DSEM-TL algorithm’s
indicators include normalized mutual information and modularity. Finally, an
algorithm that combines the ant colony optimization (ACO) algorithm and the
quantum update strategy, called QACO, is proposed. The proposed community
structure reconstruction scheme is compared with other methods using the accu-
racy rate as the indicator. The results show that the DSEM-TL algorithm exhibits
the optimal detection rate, better applicability, and higher effectiveness in real net-
works. Under the given the condition that the number of edges between commu-
nities Zout is >6, DSEM-TL shows better performance on the Girvan–Newman
benchmark network than several other community discovery algorithms. Further-
more, under the given condition that the mixed parameter μ is >0.65, the DSEM-
TL algorithm outperforms several other algorithms on the Lancichinetti–Fortuna-
to–Radicchi benchmark network. When given μ < 0.4, the QACO algorithm can
determine the proper division of the corresponding network. When the case is μ >
0.45, the division result corresponding to the QACO algorithm is closer to the real
community division, which has a faster convergence speed and better conver-
gence performances. Consequently, the proposed community structure reconstruc-
tion scheme has higher accuracy. The proposed two intelligent optimization
algorithms have potential application in the reconstruction and optimization of
community structure.
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1 Introduction

As a branch of network science, the complex network can be regarded as a collection formed by some
individuals, which shows the interconnection between individuals [1,2]. Most research on complex networks
consists of structure, models, dynamics, structure mining prediction, and control [3]. In additional, network
reconstruction belongs to the category of dynamics [4], which predict a network’s topological structure by
mining the missing information in the network [5,6]. Various scholars have conducted research on
community structure because of its critical role in complex networks [7–10]. Jia et al. [11] proposed a k
nearest neighborhoods (k-NN) graph with increased node attributes to mitigate the sparsity and noise
effects of the original network. K-NN enhances the community structure in complex networks and is
expected to be widely applied in large-scale network analysis. Guendouz et al. [12] proposed a discrete
improved firework algorithm (FWA) for community detection in complex networks based on the label
propagation strategy. They believed that the new algorithm had sound effects. Zou et al. [13] proposed an
optimized multi-objective discrete backtracking search algorithm (MODBSA/D) and decomposed it into
community detection in complex networks. Afterward, they proved that the algorithm performs well in
the community detection of complex networks. Li et al. [14] combined orthogonal triangulation
decomposition with compressed sensing and proposed a method to solve the reconstruction problem of
complex networks using input noise. This research method reconstructed sparse complex networks and
was useful in the reconstruction of dense and complex networks. Ma et al. [15] proposed an approach
based on statistical reasoning to solve the problem of reconstructing complex network structures in
observed binary data. The application of the expectation-maximization (EM) algorithm provided a new
supplement for the rapidly expanding reconstruction problems of complex network systems. Based on the
issue of binary state dynamics in the reconstruction of complex network systems, Li et al. [16] developed
a data-based linearization method, which provided a framework for the reconstruction of complex
networks using binary state dynamics. Fu et al. [17] proposed a new node degree variance ratio method
for distinguishing a leading community from a self-organizing community in a complex network system.
This method achieved robustness on a real network. In summary, while research results about the
reconstruction and optimization of community structures in complex network systems vary, the methods
of integrating quantum mechanisms into them are rarely reported.

Therefore, to explore the reconstruction and optimization of the community structure in the complex
network systems, the optimized deep learning algorithm and quantum ant colony optimization (QACO)
algorithm are applied to community detection and community discovery. The algorithms aim to improve
the effectiveness of community detection, discovery, and mining. Hopefully, the results can provide some
references for the reconstruction and optimization of community structure.

2 Method

2.1 Complex Network Community Detection and Discovery

Community detection is a critical characteristic of complex networks. The analysis and mining of
community structures in complex networks are of great significance for discovering the inherent
development rules of complex networks and the correlation of relevant indicators within these networks
[18,19]. Nodes belonging to the same community have a higher degree of similarity in the representation
of related features. Community discovery of complex networks is an effective way to classify these nodes
in complex networks. In the study of complex networks, the exploration of community structure not only
discovers the unknown laws or phenomena but also leads to an understanding of the relationship between
the structures and corresponding functions. Complex networks, such as transportation systems, power
grid systems, and the World Wide Web are in inextricably linked to the daily lives of people. However,
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finding and mining useful information inside the network is a challenge. We need to learn how to retrieve
information from the massive amounts of big data in the study of complex networks.

In the real network structure, the community structure is widespread. From the perspective of network
nodes, it can be divided into a collection of many nodes. If there is a close connection within the network
node collection, and this connection between them also shows a relatively loose state, it will be
determined that the corresponding complex network has a community structure. The accurate
identification of community structure has developed into a crucial stage of obtaining sufficient
information [20,21]. The topological structure of a complex network can be expressed as:

G ¼ V ;Ef g; (1)

where:G represents the topology of the complex network, V represents the set v1; v2; � � � ; vnf g corresponding
to the points including n nodes, and E represents the set of edges corresponding to two random nodes in V .

2.2 Community Discovery Optimization Algorithm Based on Deep Learning

Because deep learning algorithms have excellent performance in feature extraction, deep learning has
been successfully applied in the fields of image classification and semantic recognition [22,23]. Fig. 1
below illustrates a hidden learning network structure composed of three hidden layers. The technologies
of self-encoders, deep belief networks, and convolutional neural networks are widely utilized in deep
learning. Self-encoders are built for deep structures through stacking and layerwise training. The encoder
can also fine-tune the input signal in the entire network [24]. Therefore, combined with transfer learning,
self-encoders are applied to community discovery for complex network community structures.

The proposed deep self-encoder modeling based on transfer learning (DSEM-TL) consists of the data
preprocessing module, the feature extraction module, and the optimization module. The data
preprocessing module is primarily responsible for the preprocessing of the original adjacency matrix in
the complex network. Based on the topology of the complex network, the community discovery problem
is to divide complex network systems into nodes as different groups or communities. The problem can be
expressed as:

Vtf gCi¼1 (2)

D1 ¼ DG d1
�1=2

� �
(3)

Input layer

Hidden layer

Output layer

Figure 1: Structural composition of the deep learning network
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where: D1 represents the converted adjacency matrix, DG :ð Þ represents the function diag :ð Þ among Matlab,
which can realize the construction of the diagonal matrix, and d1 represents the degree of the network node.
The realization of the entire matrix conversion process is completed by vector operation. Thus, we need to
construct the matrix A1 and A2. The corresponding expression is

A1 ¼ D1AD1 (4)

A2 ¼ A1 � DG DG A1ð Þð Þ (5)

Then, based on the eigenvalue function, the maximum eigenvalue U1 corresponding to A2 is calculated.
The corresponding calculation is

U1 ¼ Eig A2; 2kð Þ (6)

where: Eig :ð Þ represents the eigs :ð Þ function inMatlab, k ¼ C, and C represents the size of the community in
a complex network. Finally, the transformed similarity matrix can be obtained,

M ¼ DG d2
�1=2

� �
U1

� �T
(7)

where: d2 represents the row sum corresponding to the matrix U2
1 , and M corresponds to the input matrix of

the self-encoder.

In the feature extraction module, transfer learning is introduced to build a target prediction model with
excellent generalization performance. The algorithm is trained by a parameter-based migration method.
Specifically, the overall loss function is defined

J ¼ Jr M ;M
^

� �
þ aL H sð Þ;H tð Þ

� �
þ b� hð Þ (8)

where: r represents the source domain and the target domain, a and b correspond to the adjustment of

parameters in the overall loss function, Jr M ;M
^

� �
represents the reconstruction error between the source

domain and the target domain in the objective function, aL H sð Þ;H tð Þ� �þ b� hð Þ represents the KL
divergence that the embedding instance has between two different domains, and J represents the overall
loss function.

In the optimization module, through the application of the backpropagation algorithm based on the
stochastic gradient descent method, the minimization problem in the overall loss function is solved. The
update of the weight and the update of the offset term parameters are then realized by the following rules

W1  W1 � r
@J

@W1
p1  p1 � r

@J

@p1
(9)

W2  W2 � r
@J

@W2
p2  p2 � r

@J

@p2
(10)

fW1  fW1 � r
@J

@W1
q1  q1 � r

@J

@q1
(11)

fW2  fW2 � r
@J

@W2
q2  q2 � r

@J

@q2
(12)

where: W1, W2, fW1, and fW2 represent weights, p1, p2, q1, and q2 represent bias term parameters, and r
represents the learning rate. The implementation process of the DSEM-TL algorithm is shown in Fig. 2.

162 IASC, 2021, vol.27, no.1



To test the effectiveness of the proposed DSEM-TL algorithm, the learning rate corresponding to the
deep self-encoder is set to 0.01, and the number of training iterations is set to 100,000. Furthermore, by
comparing and analyzing the widely used community discovery solutions in the Girvan–Newman (GN)
and the Lancichinetti–Fortunato–Radicchi (LFR) benchmark network, we test the effectiveness of the
DSEM-TL algorithm in structural reconstruction and optimization in the complex network community.
The selected commonly used community discovery schemes the subspace pursuit (SP) algorithm [25],
unified link and content (ULC) [26], fast Fourier transform (FFT) Accumulation Method (FAM) [27], fast
unfolding algorithm (FUA) [28], and deep nonlinear reconstruction algorithm based on cross-entropy
(DNR-CE) [29]. SP is a method for detecting community structure by spectral analysis using Laplace or
modularity matrix. ULC is a heuristic search algorithm based on modularity optimization problem-
solving. FAM is a greedy clustering algorithm. FUA is a community discovery method based on
modularity. DNR-CE achieves community discovery based on the nonlinear reconstruction of deep neural
networks. The evaluation datasets and phase information composition are shown in Tab. 1. The
evaluation datasets, which can gauge the effectiveness of the algorithm in real networks, are Karate,
which represents the karate club network; Friendship 6, which represents the campus relationship
network; Polbooks, which represents the Books about US politics; Citeseer, which represents a citation
network of computer science publications; Cora, which represents a dataset of citation types; and
Football, which represents a network of U.S. football teams. These six datasets are all widely used
network datasets in community discovery research. The normalized mutual information (NMI) and
modularity (Q) are chosen as the evaluation indicators. In this field, modularity is expressed as “Q” [30,31].

2.3 Quantum ACO Algorithm Based on Community Detection

The ant colony optimization (ACO) algorithm is an intelligent optimization heuristic algorithm. It has
strong robustness and well-integrated with other algorithms. It has strong applicability in solving discrete
optimization and complex network community detection problems, and is more applicable in the network
structure for small-scale datasets [32,33]. Therefore, for large-scale datasets, the ACO algorithm is

Process the adjacency matrix 
and obtain the similarity 
matrix M of the network

Start
Divide the similarity matrix

into source domain and target 
domain

Initialize the weight W and 
offset p, q of the deep self-

encoder

Use forward propagation to 
calculate the activation value 

of each layer

Calculate the global loss 
function of deep self-encoder

Iterative training for weight 
W and offset p, q

Cluster to obtain the 
community of each node

Calculate the partial
derivative of global loss 

function
End

Figure 2: Implementation process of DSEM-TL algorithm

Table 1: Information composition of network datasets based on community discovery

Dataset Karate Friendship 6 Polbooks Citeseer Cora Football

Number of nodes 34 69 105 3312 2708 115

Number of sides 78 220 441 4732 5429 613

Number of communities 2 6 3 6 7 12
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combined with the quantum update strategy to form the proposed QACO algorithm, which we then apply to
the community detection of complex networks.

For the ACO algorithm, when the ants move from the starting node to a viable neighbor node, the
generation of the solution can be expressed as

s ¼ arg max
j2Nk

i

sij
� �a

: gij
� �bh i( )

; q � q0

S

8><>: (13)

where: sij and gij represent the corresponding pheromone and heuristic information between node i and node
j, a and b correspond to the parameters that regulate the ratio between sij and gij, q represents a uniformly
distributed random number, q0 describes the preset parameters, and S corresponds to a selection variable
of the probability distribution. In the case of q > q0, the artificial ant selects the next node according to
the transition probability pij, where the transition probability pij can be expressed as

pij ¼
sij
� �a

: gij
� �bP

j2Nk
i

sij
� �a

: gij
� �b (14)

In Eq. (14), the meaning of each symbol is the same as in that of Eq. (13) above.

As for quantum computing, the state of qubits can be expressed as

’j i ¼ a 0j i þ b 1j i (15)

where: a and b represent the probability amplitude in the corresponding state. Furthermore, in the QACO
algorithm, the pheromone can be expressed as

sj ¼ a1
b1

a2
b2

���� ���� � � �� � � ambm
	 


(16)

The update of pheromone can be expressed as

U 4hið Þ ¼ cos 4hið Þ � sin 4hið Þ
sin 4hið Þ cos 4hið Þ

	 

; (17)

where 4hið Þ represents the rotation angle.

A specific number of ants are randomly assigned among the complex network nodes using the QACO
algorithm. The ants move from one node to another according to the heuristic information and the strength of
the pheromone. Then, small groups appear in the population. We will integrate the small groups into the
community according to the maximization of modularity and community division to realize the
determination of the community structure in the complex network. In this process, the rotation and
mutation mechanism based on quantum computing enhance the global search capability and solution
diversity of the algorithm. Once the optimal solution or the maximum number of iterations appears, the
entire optimization process terminates accordingly. The specific implementation process of the QACO
algorithm is shown in Fig. 3.
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During the implementation of the QACO algorithm, the pheromone in the initialization phase can be
expressed as

sj ¼ s1a
s1b

s2a
s2b

���� ���� � � �� � � smasmb

	 

(18)

The heuristic information calculation between nodes can be expressed as

g i; jð Þ ¼ 1

1þ e�C i;jð Þ (19)

where: C i; jð Þ represents the Pearson correlation matrix. It can be defined as

C i; jð Þ ¼
P

Vk2V Aik � lið Þ Ajk � lj
� �

nrirj
(20)

where: n represents the number of nodes, Aik represents the k-th element corresponding to row i in the
adjacency matrix A, k represents the average value corresponding to node i, and ri represents the value of
standard deviation corresponding to the node Ajk . Ajk , lj, and rj may be deduced by analogy.

Furthermore, it is possible to update the pheromone intensity by using quantum rotation gates. The new
pheromone intensity obtained at this time can be expressed as

s;ja
s;jb

	 

¼ cos 4hið Þ � sin 4hið Þ

sin 4hið Þ cos 4hið Þ
	 


sja
sjb

	 

(21)

where: 4hi represents the quantum rotation angle corresponding to each qubit.

The extended GN benchmark network is used to verify the effectiveness of the QACO algorithm. At the
same time, the QACO algorithm is compared with the interest factor-based ACO algorithm (IACO), the
multi-objective discrete particle swarm optimization (MODPSO) community detection algorithm, the
quantum distribution algorithm (QDM), the quantum genetic algorithm (QGA), and the locally optimized
community detection algorithm (MABA) based on minimum spanning tree. In this way, we analyze the
performance of the QACO algorithm in the detection of complex network community with NMI and Q
selected as evaluation indicators.

All the nodes are treated as having integrity in the complex network community structure. We introduce
the concept of game theory to excavate the implicit constraint conditions. The results are achieved through
the DSEM-TL and QACO algorithms. The advantages of the deep self-encoder based on the DSEM-TL and
QACO algorithms are organically integrated so that the accuracy of community detection in the community

Start
Input adjacency matrix, number 
of ants, population number and 
maximum number of iterations

The quantum bit pheromone and 
heuristic information are 

calculated, and then the solution is 
generated by guiding ants to move

The optimal solution of ant 
correspondence

Fitness value of calculation 
solution

Initialize all ant positions, 
quantum pheromone matrix and 

heuristic information

Meet the algorithm
termination criteria

By using quantum rotation 
mechanism and quantum mutation 

gate multi-element mutation strategy, 
the pheromone strength is updated

End

Y

N

Figure 3: Specific implementation process of QACO algorithm
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structure can be improved. To verify the effectiveness of applying the two optimized community detection
algorithms in the reconstruction of the community structure, the DSEM-TL and QACO algorithms are
integrated to complete the reconstructed community structure. In two typical game models Prisoner’s
Dilemma and the Sprague-Grundy theorem both proposed algorithms are compared with the traditional
node reconstruction (NR) and partition reconstruction (PR) method. For comparative analysis of complex
networks, the random network (RN), small-world network (SWN), and scale-free network (SFN) are selected.

3 Results and Discussion

3.1 Performance of Deep Learning-Based Community Discovery Optimization Algorithm

Figs. 4a and 4b illustrate the comparison results of NMI values of DSEM-TL and the six commonly used
discovery schemes of complex network community on the selected six real network datasets, as well as the
comparison results of the modularity measures of DSEM-TL and the six discovery schemes of complex
network community on the six real network datasets.

Karate
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Polbooks
Citeseer Cora
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0.2
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N
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Figure 4: Performance comparison between DSEM-TL algorithm and other algorithms: (a) NMI; (b)
modularity measures
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Analysis of the NMI corresponding to different community discovery schemes in Fig. 4(a) shows that
the detection rate corresponding to DSEM-TL is superior to that of the DNR-CE method, as well as several
other complex network community discovery schemes. The analysis concludes that the DSEM-TL algorithm
has better applicability and more effectiveness in real networks. Analysis of the modularity measures
corresponding to different community discovery schemes in Fig. 4(b) shows that while the clustering
effect of the DSEM-TL and DNR-CE algorithms is almost the same. Meanwhile, the DNR-CE algorithm
shows a better clustering effect than several other algorithms.

The performance comparison of the six complex network community discovery solutions on the GN and
LFR benchmark network is shown in Figs. 5a and 5b.

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Number of inter-community edges per vertex Zout 
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FAM
FUA
DNR-CE

(a)

0.4 0.5 0.6 0.7 0.8
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0.8
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Mixing parameter µ
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Figure 5: Performance comparison of six complex network community discovery solutions on two
benchmark networks: (a) GN; (b) LRF
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In the above figure, Zout represents the number of edges between each vertex community.

As shown in Fig. 5, when Zout is greater than 6, DSEM-ML shows better performance on the GN
benchmark network than other community discovery methods. Similarly, when the mixed parameter μ is
greater than 0.65, the performance of DSEM-TL is superior to several other algorithms on the LRF
benchmark network. This further validates the effectiveness of the DSEM-ML algorithm in complex
network community discovery and community detection.

The above analysis reveals that the proposed DSEM-TL algorithm has the best performance. The reason
is that the new method used for matrix preprocessing in the model construction process of DSEM-TL
actually highlights the local information of the vertex. n additional, the DSEM-TL algorithm employs
transfer learning to obtain low-dimensional feature matrices. Therefore, DSEM-TL has useful community
discovery and community detection performances in complex networks. Furthermore, the DSEM-TL
algorithm model based on deep learning has applicability in the artificial benchmark network.
Accordingly, it is predicted that this complex network community discovery and community detection
method based on deep learning has vast application potential in the reconstruction and optimization of
community structure.

3.2 Performance of Community Detection QACO Algorithm

The NMI comparison results of the QACO algorithm with IACO, MODPSO, QDM, QGA, and MABA
algorithms are shown in Fig. 6a. The modularity measures comparison results of the QACO algorithm with
these five algorithms, are shown in Fig. 6b.

We compare the results of the NMI and modularity measures of several algorithms, as shown in Fig. 6.
When the mixed parameter μ is smaller than 0.4, the QACO and QDM-PSO algorithms can determine the
real division of the corresponding networks. At this point, the corresponding NMI value is 1. When the
mixed parameter μ is not greater than 0.25, the situation is reversed. The other algorithms can
determine the correct community structure of complex networks. When the mixed parameter μ is higher
than 0.45, none of the algorithms can determine the real community division of the network. However,
the division result corresponding to the QACO algorithm is more inclined to the actual community
division. From the perspective of the changes in the modularity measures of each algorithm, the
QACO algorithm has a faster convergence speed than the QGA algorithm, but the QDM-PSO and
MODPSO algorithms have faster convergence speeds in the initial stage. Overall, the convergence of
the QACO algorithm is better and faster.

The comparison between the proposed optimization scheme of complex network community structure
and several community reconstruction methods is shown in Fig. 7.

As shown in Fig. 7, the complex network community reconstruction scheme incorporating two
optimization algorithms has the highest accuracy rate. Therefore, the DSEM-TL method and the QACO
algorithm have promoted the reconstruction and optimization of the complex network community structure.

The QACO algorithm can improve the accuracy of the GN benchmark network community division.
The integration of quantum mechanisms gives the network a faster convergence speed, which leads to
superior performance in complex network community testing. The introduction of quantum strategy has
expanded the application of the ACO algorithm in solving community detection problems. The QACO
algorithm is more applicable to the detection of complex network community structure than other
algorithms, and therefore can play an active role in the reconstruction and optimization of complex
network community structure. Notably, the proposed community structure reconstruction scheme has a
high accuracy rate.
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4 Conclusion

This article proposes the DSEM-TL algorithm model, which introduces transfer learning into deep self-
encoders, and the QACO algorithm, which integrates the quantum strategy into the ACO algorithm. The
results show that the two algorithms have significant advantages in the application of community
discovery and community detection in complex network community structures. The combination of the
two optimization algorithms shows the best accuracy in the reconstruction of the complex network
community structure. However, the optimization of the complex network community structure still stays
in the exploration stage. At this time, the coverage of the selected real network dataset is limited, and
there has not been sufficient consideration of the characteristics of the complex network structure.
Resolving these issues, which are due to several factors, is a focus of future research.

Acknowledgement: We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation
of this manuscript.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. H. Jiang, X. Y. Gao, H. Z. An, H. J. Li and B. Sun, “Reconstructing complex network for characterizing the

time-varying causality evolution behavior of multivariate time series,” Scientific Reports, vol. 7, no. 1, pp. 10486,
2017.

[2] T. Alhindi, Z. Zhang, P. Ruelens, H. Coenen, H. Degroote et al., “Protein interaction evolution from promiscuity
to specificity with reduced flexibility in an increasingly complex network,” Scientific Reports, vol. 7, no. 1, pp.
44948, 2017.

[3] D. Tsiotas and S. Polyzos, “The complexity in the study of spatial networks: An epistemological approach,”
Networks & Spatial Economics, vol. 18, no. 1, pp. 1–32, 2018.

[4] K. K. Huang, S. Li, P. L. Dai, Z. Wang and Z. F. Yu, “A stacked denoising autoencoder method for game dynamics
network structure reconstruction,” Neural Networks, vol. 126, pp. 143–152, 2020.

[5] L. Bai, J. Y. Liang, H. Y. Du and Y. K. Guo, “A novel community detection algorithm based on simplification of
complex networks,” Knowledge-Based Systems, vol. 143, pp. 58–64, 2018.

[6] L. Q. Pang, Y. X. Zhang and S. F. Liu, “Monolayer-by-monolayer growth of platinum films on complex carbon
fiber paper structure,” Applied Surface Science, vol. 407, pp. 386–390, 2017.

[7] M. A. Riolo and M. E. J. Newman, “Consistency of community structure in complex networks,” Physical Review
E, vol. 101, no. 5, 052306, 2020.

[8] L. Q. Gan, X. Y. Wang, N. Yan and L. Wang, “Detecting community structure in complex networks based on node
similarity,” Computer & Digital Engineering, vol. 2, pp. 6–10, 2018.

[9] F. Ali, S. Osat and F. Radicchi, “Characterizing the analogy between hyperbolic embedding and community
structure of complex networks,” Physical Review Letters, vol. 121, no. 9, 098301, 2018.

[10] T. T. Dai, C. J. Shan and Y. S. Dong, “Community structure of complex networks based on continuous neural
network,” IOP Conference Series: Materials Science and Engineering, vol. 231, no. 1, 012154, 2017.

[11] C. Y. Jia, Y. F. Li, M. B. Carson, X. Y.Wang and J. Yu, “Node attribute-enhanced community detection in complex
networks,” Scientific Reports, vol. 7, no. 1, pp. 2626, 2017.

[12] M. Guendouz, A. Amine and R. M. Hamou, “A discrete modified fireworks algorithm for community detection in
complex networks,” Applied Intelligence, vol. 46, no. 2, pp. 373–385, 2017.

[13] F. Zou, D. Chen, S. Li, R. Q. Lu and M. Y. Lin, “Community detection in complex networks: Multi-objective
discrete backtracking search optimization algorithm with decomposition,” Applied Soft Computing, vol. 53, pp.
285–295, 2017.

170 IASC, 2021, vol.27, no.1

https://www.letpub.com


[14] L. X. Li, D. F. Xu, H. P. Peng, J. Kurths and Y. X. Yang, “Reconstruction of complex network based on the noise
via qr decomposition and compressed sensing,” Scientific Reports, vol. 7, no. 1, pp. 15036, 2017.

[15] C. Ma, H. S. Chen, Y. C. Lai and H. F. Zhang, “Statistical inference approach to structural reconstruction of
complex networks from binary time series,” Physical Review E, vol. 97, no. 2, 022301, 2018.

[16] J. W. Li, Z. S. Shen, W. X. Wang, C. Grebogi and Y. C. Lai, “Universal data-based method for reconstructing
complex networks with binary-state dynamics,” Physical Review E, vol. 95, no. 3, 032303, 2017.

[17] J. C. Fu, W. X. Zhang and J. L. Wu, “Identification of leader and self-organizing communities in complex
networks,” Scientific Reports, vol. 7, no. 1, pp. 704, 2017.

[18] X. R. Liu, Y. Z. Du, M. Jiang, M. Jiang and X. X. Zeng, “Multiobjective particle swarm optimization based on
network embedding for complex network community detection,” IEEE Transactions on Computational Social
Systems, vol. 7, no. 2, pp. 437–449, 2020.

[19] D. S. Lyu, B. Wang and W. Z. Zhang, “Large-scale complex network community detection combined with local
search and genetic algorithm,” Applied Sciences, vol. 10, no. 9, pp. 3126, 2020.

[20] P. Kumar, S. Gupta and B. Bhasker, “An upper approximation-based community detection algorithm for complex
networks,” Decision Support Systems, vol. 96, no. C, pp. 103–118, 2017.

[21] Y. K. Xue and P. Bogdan, “Reliable multi-fractal characterization of weighted complex networks: Algorithms and
implications,” Scientific Reports, vol. 7, no. 1, pp. 7487, 2017.

[22] K. Crosby, T. Garbowski and S. Nickell, “Towards fast and direct memory read-out by multi-beam scanning
electron microscopy and deep learning image classification,” Microscopy and Microanalysis, vol. 25, no. S2,
pp. 192–193, 2019.

[23] A. S. Toor and H. Wechsler, “Biometrics and forensics integration using deep multi-modal semantic alignment
and joint embedding,” Pattern Recognition Letters, vol. 113, pp. 29–37, 2018.

[24] A. Siddiqua and G. L. Fan, Semantics-enhanced supervised deep autoencoder for depth image-based 3d model
retrieval,” Pattern Recognition Letters, vol. 125, pp. 806–812, 2019.

[25] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Transactions
on Information Theory, vol. 55, no. 5, pp. 2230–2249, 2009.

[26] J. Y. Yang, “Research on community discovery technology based on user behavior analysis,” M.S. dissertation.
Beijing University of Posts and Telecommunications, China, 2018.

[27] S. Peng, L. X. Zhang, Z. Man and T. Yong, “Realization of cyclic spectrum based on time-smoothing FFT
accumulation method,” Electronic Design Engineering, vol. 4, pp. 103–106, 2013.

[28] V. D. Blondel, J. L. Guillaume, L. Renaud and L. Etienne, “Fast unfolding of communities in large networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, 10008, 2008.

[29] Y. Xie, X. M. Wang, D. Jiang and R. B. Xu, “High-performance community detection in social networks using a
deep transitive autoencoder,” Information Sciences, vol. 493, pp. 75–90, 2019.

[30] M. Chen, M. Zhang, M. Li, M. W. Leng and Z. C. Yang et al., “Detecting communities by suspecting the
maximum degree nodes,” International Journal of Modern Physics B, vol. 33, no. 13, pp. 281–297, 2019.

[31] S. Vairachilai, “A comparative analysis of community detection algorithms on complex network based on
modularity,” Journal of Computational and Theoretical Nanoscience, vol. 15, no. 9–10, pp. 2729–2735, 2018.

[32] T. Selçuk and A. Alkan, “Detection of microaneurysms using ant colony algorithm in early diagnosis of diabetic
retinopathy,” Medical Hypotheses, vol. 129, 109242, 2019.

[33] N. J. Cheung, X. M. Ding and H. B. Shen, “A nonhomogeneous cuckoo search algorithm based on quantum
mechanism for real parameter optimization,” Cybernetics IEEE Transactions on, vol. 47, no. 2, pp. 391–402, 2017.

IASC, 2021, vol.27, no.1 171


	Reconstruction and Optimization of Complex Network Community Structure under Deep Learning and Quantum Ant Colony Optimization Algorithm ...
	Introduction
	Method
	Results and Discussion
	Conclusion
	flink5
	References


