
A Novel Semi-Supervised Multi-Label Twin Support Vector Machine

Qing Ai1,2,*, Yude Kang1 and Anna Wang2

1School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
2College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China

�Corresponding Author: Qing Ai. Email: lyaiqing@126.com
Received: 04 August 2020; Accepted: 25 September 2020

Abstract: Multi-label learning is a meaningful supervised learning task in which
each sample may belong to multiple labels simultaneously. Due to this character-
istic, multi-label learning is more complicated and more difficult than multi-class
classification learning. The multi-label twin support vector machine (MLTSVM)
[1], which is an effective multi-label learning algorithm based on the twin support
vector machine (TSVM), has been widely studied because of its good classifica-
tion performance. To obtain good generalization performance, the MLTSVM
often needs a large number of labelled samples. In practical engineering problems,
it is very time consuming and difficult to obtain all labels of all samples for multi-
label learning problems, so we can only obtain a large number of partially labelled
and unlabelled samples and a small number of labelled samples. However, the
MLTSVM can use only expensive labelled samples and ignores inexpensive par-
tially labelled and unlabelled samples. Because of the MLTSVM’s disadvantages,
we propose an alternative novel semi-supervised multi-label twin support vector
machine, named SS-MLTSVM, which can take full advantage of the geometric
information of the edge distribution embedded in partially labelled and unlabelled
samples by introducing a manifold regularization term into each sub-classifier and
use the successive overrelaxation (SOR) method to speed up the solving process.
Experimental results on several publicly available benchmark multi-label datasets
show that, compared with the classical MLTSVM, our proposed SS-MLTSVM
has better classification performance.
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1 Introduction

Multi-label learning is a meaningful supervised learning task, wherein each sample may belong to
multiple different labels simultaneously. In real life, many applications employ multi-label learning,
including text classification [2,3], image annotation [4], bioinformatics [5], and so on [6]. Because the
samples can have multiple labels simultaneously, multi-label learning is more complicated and more
difficult than multi-class classification learning. At present, there are two kinds of methods to solve multi-
label learning problems: problem transformation and algorithm adaptation. The problem transformation
solves the multi-label learning problem by transforming it into one or more single-label problems, such as

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2021.013357

Article

echT PressScience

mailto:lyaiqing@126.com
http://dx.doi.org/10.32604/iasc.2021.013357
http://dx.doi.org/10.32604/iasc.2021.013357


binary relevance (BR) [7], classifier chains (CC) [8], label powerset (LP) [9], calibrated label ranking (CLR)
[10], and random k-labelsets (RAKEL) [11]. The algorithm adaptation extends the existing single-label
learning algorithm to handle multi-label learning problems, such as multi-label k-nearest neighbour (ML-
kNN) [12], multi-label decision tree (ML-DT) [13], ranking support vector machine (Rank-SVM) [14],
and collective multi-label classifier (CML) [15].

The TSVM [16], proposed by Jayadeva, is used to solve classification problems. It has been widely
studied because of its good classification performance. Subsequent to its release, many improved
algorithms have been proposed [17–29]. The aforementioned improved algorithms can solve only single-
label learning problems, not multi-label learning problems. In 2016, Chen et al. extended the TSVM to
solve multi-label learning problems and proposed a multi-label twin support vector machine (MLTSVM)
[1]. Compared with other traditional multi-label classification algorithms, the MLTSVM has better
generalization performance. Thereafter, many improved algorithms of MLTSVM have been proposed
[30,31]. Hanifelou et al. introduced local information and structural information of samples into the
MLTSVM and proposed the k-nearest neighbour-based MLTSVM with priority of labels (PKNN-
MLTSVM) [30]. Meisam et al. proposed the structural least square twin support vector machine for
multi-label learning (ML-SLSTSVM) [31], which proposed a least squares version of the MLTSVM and
added structural information of samples.

The aforementioned improvements to the MLTSVM mainly focused on improving the generalization
performance and learning speed. It is very time consuming and difficult to obtain all labels of all samples
for multi-label learning problems; in fact, we can obtain only a large number of partially labelled
and unlabelled samples and a small number of labelled samples. However, the MLTSVM and its
improvements can use only expensive labelled samples and ignores inexpensive partially labelled
and unlabelled samples. Because of this disadvantage, we propose a novel semi-supervised MLTSVM,
named SS-MLTSVM, which can take full advantage of the geometric information of the edge
distribution embedded in partially labelled and unlabelled samples by introducing a manifold
regularization term into each sub-classifier and use the successive overrelaxation (SOR) method to increase
the solving speed. Experimental results show that, compared with the MLTSVM, our SS-MLTSVM has
better classification performance.

The structure of this paper is as follows: Section 2 introduces some related works, such as the TSVM and
MLTSVM. In Section 3, the SS-MLTSVM is introduced in detail, including the linear model, nonlinear
model, decision rules and training algorithm. The fourth section gives the experimental results of the
proposed algorithm on the benchmark datasets. The fifth section is the conclusion.

2 Related Works

2.1 TSVM

For the binary classification problem, we suppose the training set is T ¼ xi; yið Þji ¼ 1;…;mf g, where
xi 2 Rn is the training sample and yi 2 þ1;�1f g is the label corresponding to the training sample xi. We
denote positive training samples by A 2 Rm1�n and negative training samples by B 2 Rm2�n. m ¼ m1 þ m2

is the total number of training samples.

The TSVM is aimed to find two nonparallel hyperplanes:

f1 xð Þ : wT
1 xþ b1 ¼ 0; f2 xð Þ : wT

2 xþ b2 ¼ 0: (1)
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The original problem of TSVM is:

min
w1;b1;n2

1

2
Aw1 þ e1b1k k2 þ c1e

T
2 n2

s:t: � Bw1 þ e2b1ð Þ þ n2 � e2; n2 � 0
; (2)

min
w2;b2;n1

1

2
Bw2 þ e2b2k k2 þ c2e

T
1 n1

s:t: Aw2 þ e1b2 þ n1 � e1; n1 � 0
; (3)

where c1 and c2 are the penalty parameters, n1 and n2 are the slack variables, and e1 and e2 are all 1 vector of
the proper dimension.

By introducing the Lagrange multiplier, the dual problems of (2) and (3) can be obtained as follows:

max
a

eT2 a�
1

2
aTG HTH

� ��1
GTa

s:t: 0 � a � c1e2

; (4)

max
c

eT1 c�
1

2
cTH GTG

� ��1
HTc

s:t: 0 � c � c2e1

; (5)

where H ¼ A e1½ �, G ¼ B e2½ �, and a and c are the Lagrange multipliers.

The two hyperplanes can be obtained by solving the dual problems as follows:

v1 ¼ � HTH
� ��1

GTa; v1 ¼ wT
1 b1

� �T
; (6)

v2 ¼ � GTG
� ��1

HTc; v2 ¼ wT
2 b2

� �T
: (7)

2.2 MLTSVM

For the multi-label problem, we denote the training set as:

T ¼ xi; yið Þji ¼ 1;…;mf g; (8)

where xi 2 Rn is the training sample, yi ¼ yi1;…; yip
� �

is the label set of the sample xi,
yiq 2 f1; . . . ;Kg(q ¼ 1; . . . ; p), m is the total number of training samples and K is the total number of labels.

The MLTSVM seeks K hyperplanes:

fk xð Þ : wT
k xþ bk ¼ 0; k ¼ 1; 2;…;K: (9)

We denote the samples belonging to the kth class by Ak and the other samples by Bk. The original
problem for label k is:

min
wk ;bk ;EBk

1

2
Akwk þ eAkbkk k2 þ cke

T
Bk
nBk

þ 1

2
�kð wkk k2 þ b2kÞ

s:t: � ðBkwk þ eBkbkÞ þ nBk
� eBk ; nBk

� 0

; (10)

where ck and �k are the penalty parameters, eAk and eBk are all 1 vector of the proper dimension, and nBk
is the

slack variable.
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By introducing the Lagrange multiplier, the dual problems of (10) can be obtained as follows:

max
aBk

eTBk
aBk �

1

2
aTBk

GðHTH þ �kIkÞ�1GTaBk

s:t: 0 � aBk � ck

; (11)

where H ¼ Ak eAk½ �, G ¼ Bk eBk½ �, Ik are the diagonal matrices of the proper dimension, and aBk is the
Lagrange multiplier.

By solving the dual problem (11), we can obtain:

uk ¼ �ðHTH þ �kIkÞ�1GTaBk ; uk ¼ wT
k bTk

� �T
: (12)

2.3 ML-STSVM

Similar to the MLTSVM, the ML-STSVM also seeks K hyperplanes:

fk xð Þ : wT
k xþ bk ¼ 0; k ¼ 1; 2;…;K: (13)

The original problem for label k is:

min
wk ;bk ;EBk

1

2
Akwk þ eAkbkk k2 þ ck1e

T
Bk
nBk

þ 1

2
ck2ð wkk k2 þ b2kÞ þ

1

2
ck3ðwT

k�AkwkÞ

s:t: � ðBkwk þ eBkbkÞ þ nBk
� eBk ; nBk

� 0

; (14)

where ckiði ¼ 1; 2; 3Þ are the penalty parameters, nBk
is the slack factor, eAk and eBk are all 1 vector of the

proper dimension, and �Ak ¼ �1 þ…þ �i þ…þ �n, �i is the covariance matrix of the ith cluster in Ak .

The dual problem of (14) is:

max
aBk

eTBk
aBk �

1

2
aTBk

GðHTH þ ck2Ik þ ck2J Þ�1GTaBk

s:t: 0 � aBk � ck1

; (15)

where H ¼ Ak eAk½ �, G ¼ Bk eBk½ �, and J ¼ �Ak 0
0 0

� 	
. Ik are the diagonal matrices of the proper

dimension, and aBk is the Lagrange multiplier.

By solving the dual problem (15), we can obtain:

uk ¼ �ðHTH þ ck2Ik þ ck3J Þ�1GTaBk ; uk ¼ wT
k bTk

� �T
: (16)

3 SS-MLTSVM

For the semi-supervised multi-label problem, we define the training set as follows:

T ¼ xi; yið Þji ¼ 1;…; lf g; (17)

where xi 2 Rn is the training sample and yi ¼ yi1;…; yiKf g is the label matrix of the sample xi.

yip ¼
þ1; if xi belongs to the kth class;
�1 if xi doesn0t belong to the kth class; 1 � p � K:
0; uncertain;

8<
: (18)
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3.1 Manifold Regularization Framework

The manifold regularization framework [32], proposed by Belkin et al., can effectively solve semi-
supervised learning problems. The objective optimization function of the manifold regularization
framework can be expressed as follows:

f � ¼ arg min
f 2Hk

Xl
i¼1

V xi; yi; fð Þ þ cH fk k2HþcM fk k2M ; (19)

where f is the decision function to be solved, V is the loss function on the labelled samples, the regularization
term fk k2H is used to control the complexity of the classifier, and the manifold regularization term
fk k2M reflects the internal manifold structure of the data distribution.

3.2 Linear SS-MLTSVM

Similar to the MLTSVM, for each label, the SS-MLTSVM seeks a hyperplane:

fk xð Þ : wT
k xþ bk ¼ 0; k ¼ 1; 2;…;K: (20)

For the kth label, we denote the samples that definitely belong to the kth class by Ak, i.e.,
Ak ¼ xijyik ¼ þ1f g; the samples that definitely do not belong to the kth class by,
i.e., Bk ¼ xijyik ¼ �1f g; and the samples that are uncertain of belonging to the kth class, by Uk, i.e.,
Uk ¼ xijyik ¼ 0f g; T ¼ Ak [ Bk [ Uk .

To make full use of Uk , according to the manifold regularization framework, in our SS-MLTSVM, the
loss function V is replaced by a square loss function and a Hinge loss function, namely:

V xi; yi; fkð Þ ¼ Ai;�wk

� �þ bk
� �2 þmax 0; 1� fk Bi;�

� �� �
: (21)

The regularization term fk k2H can be replaced by:

fkk k2H¼
1

2
wkk k22þb2k


 �
: (22)

The manifold regularization term fk k2M can be expressed as:

fkk k2M¼
1

l2
Xl
i;j¼1

Wi;j fk xið Þ � fk xj
� �� �2 ¼ f Tk Lfk ; (23)

where fk ¼ fk x1ð Þ;…; fk xlð Þ½ �T ¼ Twk þ ebk . L ¼ D�W is the Laplace matrix, where W is defined as
follows:

Wi;j ¼ expð� xi � xj
�� ��2=2r2Þ; if xi and xj are k nearest neighbor;

0; otherwise;



(24)

and D is defined as follows:

Di;i ¼
Xlþu

j¼1

Wi;j: (25)
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For the kth label, the original problem in the linear SS-MLTSVM is:

min
1

2
Akwk þ eAkbkð Þ2 þ ck1e

T
B
k
nB

k
þ 1

2
ck2 wkk k2 þ b2k


 �
þ 1

2
ck3 Twk þ ebkð ÞTL Twk þ ebkð Þ

s:t: � Bkwk þ eB
k
bk


 �
þ nB

k
� eB

k
; nB

k
� 0

; (26)

where ckiði ¼ 1; 2; 3Þ are the penalty parameters, nBk
is the slack factor, eAk , eBk and e are all 1 vector of the

proper dimension, and L is the Laplace matrix.

The Lagrange function of (26) is as follows:

L �ð Þ ¼ 1

2
Akwk þ eAkbkð Þ2 þ ck1e

T
Bk
nBk

þ 1

2
ck2 wkk k2 þ b2k


 �
þ 1

2
ck3 Twk þ ebkð ÞTL Twk þ ebkð Þ

� aTBk
� Bkwk þ eBkbkð Þ þ nBk

� eBk

� �� bTBk
nBk

; (27)

where � ¼ wk ; bk ; nk ; aBk ;bBk

� �
. aBk � 0 and bBk

� 0 are Lagrange multipliers. Using KKT theory, we can
obtain:

@L

@wk
¼ AT

k Akwk þ eAkbkð Þ þ ck2wk þ ck3T
TL Twk þ ebkð Þ þ BT

k aBk ¼ 0; (28)

@L

@bk
¼ eTAk

Akwk þ eAkbkð Þ þ ck2bk þ ck3e
TL Twk þ ebkð Þ þ eTBk

aBk ¼ 0; (29)

@L

@nk
¼ ck1eBk � aBk � bBk

¼ 0: (30)

According to (28)–(30), we can obtain the dual problem of (26) as follows:

maxa e
T
Bk
aBk �

1

2
aTBk

G HTH þ ck2Ik þ ck3J
TLJ

� ��1
GTaBk

s:t: 0 � aBk � ck1eBk

; (31)

where H ¼ Ak eAk½ �, G ¼ Bk eBk½ �, and J ¼ T e½ �.
For the kth label, the hyperplane can be obtained by solving the dual problem as follows:

vk ¼ � HTH þ ck2Ik þ ck3J
TLJ

� ��1
GTaBk ; vk ¼ wT

k bTk
� �T

: (32)

3.3 Nonlinear SS-MLTSVM

In this section, using the kernel-generated surfaces, we extend the linear SS-MLTSVM to the nonlinear
case. For each label, the nonlinear SS-MLTSVM seeks the following hyperplanes:

fkðxÞ : KðxT ;TTÞwk þ bk ¼ 0; k ¼ 1; 2;…;K; (33)

where Kð�; �Þ is a kernel function. Similar to the linear case, the regularization term fk k2H and the manifold
regularization term fk k2M in (19) can be, respectively, expressed as:

fkk k2H¼
1

2
wT
k K T ;TT
� �

wk þ b2k
� �

; (34)

fkk k2M¼ f Tk Lfk ¼ K T ;TT
� �

wk þ ebk
� �T

L K T ;TT
� �

wk þ ebk
� �

: (35)

210 IASC, 2021, vol.27, no.1



The original problem of the nonlinear SS-MLTSVM is as follows:

min
1

2
K Ak ; T

T
� �

wk þ eAkbk
� �2 þ ck1e

T
B
k
nB

k
þ 1

2
ck2 wT

k K T ; TT
� �

wk þ b2k
� �

þ 1

2
ck3 K T ; TT

� �
wk þ ebk

� �T
L K T ; TT

� �
wk þ ebk

� �
s:t: � K Bk ; T

T
� �

wk þ eB
k
bk


 �
þ nB

k
� eB

k
; nB

k
� 0

: (36)

The Lagrange function of (36) is as follows:

L �ð Þ ¼ 1

2
K Ak ;T

T
� �

wk þ eAkbk
� �2 þ ck1e

T
B
k
nB

k
þ 1

2
ck2 wT

k K T ;TT
� �

wk þ b2k
� �

þ 1

2
ck3 K T ; TT

� �
wk þ ebk

� �T
L K T ; TT

� �
wk þ ebk

� �
�aTB

k
� K Bk ; TTð Þwk þ eB

k
bk


 �
þ nB

k
� eB

k


 �
� bTB

k
nB

k

: (37)

According to KKT theory, we can obtain:

@L

@wk
¼ K Ak ; T

T
� �T

K Ak ; T
T

� �
wk þ eAkbk

� �þ ck2K T ; TT
� �

wk

þ ck3K T ; TT
� �T

L K T ; TT
� �

wk þ ebk
� �þ K Bk ;T

T
� �T

aBk ¼ 0

; (38)

@L

@bk
¼ eTAk

K Ak ; T
T

� �
wk þ eAkbk

� �þ ck2bk þ ck3e
TL K T ;TT

� �
wk þ ebk

� �þ eTBk
aBk ¼ 0; (39)

@L

@nk
¼ ck1eBk � aBk � bBk

¼ 0: (40)

According to (38)–(40), we can obtain the dual problem of (32) as follows:

max
a

eTBk
aBk �

1

2
aTBk

G HTH þ ck2Ik þ ck3J
TLJ

� ��1
GTaBk

s:t: 0 � aBk � ck1eBk

; (41)

where H ¼ K Ak ; TTð Þ eAk

� �
, G ¼ K Bk ;TTð Þ eBk

� �
, J ¼ K T ; TTð Þ e

� �
and Ik ¼ K T ; TTð Þ 0

0 1

� 	
.

By solving the dual problem, the hyperplane of the kth label can be obtained as follows:

vk ¼ � HTH þ ck2Ik þ ck3J
TLJ

� ��1
GTaBk ; vk ¼ wT

k bTk
� �T

: (42)

3.4 Decision Function

In this subsection, we present the decision function of our SS-MLTSVM. For a new sample x, as
mentioned above, if the sample x is proximal enough to a hyperplane, it can be assigned to the
corresponding class. In other words, if the distance dk xð Þ between x and the kth hyperplane

dk xð Þ ¼ wT
k xþ bk

�� ��
wkk k ; k ¼ 1;…;K; (43)
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is less than or equal to the given value Dk , k ¼ 1;…;K, then the sample x is assigned to the kth class. To
choose the proper Dk, we apply the strategy in the MLTSVM, which is a simple and effective method, i.e.,

we set Dk ¼ D ¼ minp¼1;…;K
1

wp

�� ��
 !

; k ¼ 1;…;K.

3.5 Fast Solvers

In this subsection, we use SOR to solve the dual problems (31) and (41) efficiently [33]. For
convenience, we set Q ¼ G HTH þ ck2Ik þ ck3JTLJð Þ�1

GT . The dual problems (31) and (41) can be
uniformly rewritten as:

max
a

eTBk
ak � 1

2
aTk Qak

s:t: 0 � ak � ck1eBk

; (44)

Algorithm 1 only updates one variable aiþ1 in each iteration, which can effectively reduce the
complexity of the algorithm and speed up the learning process.

4 Experiments

In this section, we present the classification results of backpropagation for multi-label learning
(BPMLL) [34], ML-kNN, Rank-SVM, MLTSVM and our SS-MLTSVM on the benchmark datasets. All
the algorithms are implemented in MATLAB (R2017b), and the experimental environment is an Intel
Core i3 processor and 4G RAM. In the experiments, we use five common datasets for multi-label
learning, including flags, birds, emotions, yeast and scene (see Tab. 1). To verify the classification
performance of our SS-MLTSVM, we choose 50% of the dataset as labelled samples and the remaining
samples as unlabelled samples.

The parameters of the algorithm have an important impact on the classification performance. We use 10-
fold cross-validation to select the appropriate parameters for each algorithm. For BPMLL, the number of
hidden neurons is set to 20% of the input dimension, and the number of training epochs is 100. For the
ML-kNN, the number of nearest neighbours is set to 5. For the Rank-SVM, the penalty parameter c is

Algorithm 1: The SOR for optimization problem (44)

INPUT:

penalty parameter ck1, relaxation factor t 2 0; 2ð Þ, and matrix Q.

OUTPUT:

The optimal solution ak in (44).

Step 1: Initialize the iteration variable i ¼ 0 and start with any a0.

Step 2: Decompose Q ¼ S þM þ S
0
, where M is a diagonal matrix and S is a strict lower triangular

matrix.

Step 3: While aiþ1 � ai
�� �� < r

Calculate aiþ1 ¼ ai þ tDa, where Da ¼ �M�1 Qai � eþ S
0
aiþ1 � aið Þ� �

.

Project aiþ1 2 0; ck1½ �.
End while.
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selected from 2�6;…; 20;…; 26
� �

. For the MLTSVM, we select penalty parametersck and �k from

2�8;…; 20;…; 28
� �

. For the SS-MLTSVM, we select penalty parameters ck1, ck2, and ck3 from

2�8;…; 20;…; 28
� �

.

4.1 Evaluation Criteria

In the experiments, we use five popular metrics to evaluate the multi-label classifiers, which are
Hamming loss, average precision, coverage, one_error and ranking loss. Next, we introduce these five
evaluation metrics in detail.

We denote the total number of samples by l and the total number of labels by K. Yi and Yi represent the
relevant label set and irrelevant label set of sample xi, respectively. The function f ðx; yÞ returns a confidence
of y being the right label of sample x, and the function rank x; y; fð Þ returns a descending rank of f x; yð Þ for
any y 2 fy1; . . . ;yKg.
4.1.1 Hamming Loss

The evaluation criteria are used to measure the proportion of labels that are wrongly classified.

Hamm ing lossðH LÞ ¼ 1

l

Xl
i¼1

1

K
h xið ÞDYij j; (45)

where h xið Þ is the predicted label set of sample xi.

4.1.2 Coverage
The evaluation criteria are used to measure how many steps we need to go down the ranked label list to

contain all true labels of a sample.

Coverage ¼ 1

l

Xl
i¼1

max
y2Yi

rank xi; y; fð Þ � 1: (46)

4.1.3 One_Error
The evaluation criteria are used to measure the proportion of samples whose label with the highest

prediction probability is not in the true label set.

Table 1: Detailed description of the datasets

Datasets Domain Unlabelled
Instance

Labelled
Instance

Feature Label

Flags image 97 97 19 7

Birds audio 322 323 260 19

Emotions music 296 297 72 6

Scene image 1203 1204 294 6

Yeast biology 1235 1236 103 14
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One errorðO EÞ ¼ 1

l

Xl
i¼1

H xið Þ; (47)

where

H xið Þ ¼ 0 if argmax f xi; yð Þ 2 Yi
1 otherwise



: (48)

4.1.4 Ranking Loss
The evaluation criteria are used to measure the proportion of label pairs that are ordered reversely.

Ranking lossðR LÞ ¼ 1

l

Xl
i¼1

1

Yij j Yi
�� �� y

0
y
00


 �
jf xi; y

0ð Þ � f xi; y
00


 �
; y0 2 Yi; y

00 2 Yi
n o��� ���

 !
: (49)

4.1.5 Average Precision
The evaluation criteria are used to measure the proportion of labels ranked above a particular label

y 2 Yi.

Average precisionðA PÞ ¼ 1

l

Xl
i¼1

1

Yij j
X
y2Yi

y0 2 Yið Þjrank xi; y0; fð Þ � rank xi; y; fð Þf gj j
rank xi; y; fð Þ

 !
: (50)

4.2 Results

We show the average precision, coverage, Hamming loss, one_error and ranking loss of each algorithm
on the benchmark datasets in Tabs. 2–6. From Tabs. 2 and 3, we can observe that, for average precision and
coverage, our SS-MLTSVM is superior to the other algorithms for each dataset, while for Hamming loss,
one_error and ranking loss, no algorithm is superior to any other algorithm on all datasets. Therefore, for
Hamming loss, one_error and ranking loss, we proceed to use the Friedman test to evaluate each
algorithm statistically. The Friedman statistics is as follows:

v2F ¼ 12N

k k þ 1ð Þ
X
j

R2
j �

k k þ 1ð Þ2
4

" #
; (51)

where Rj ¼ 1

N

X
i

rji, r
j
i represents the rank of the jth algorithm on the ith dataset. Because v2F is undesirably

conservative, we apply the better statistic

FF ¼ N � 1ð Þv2F
N k � 1ð Þ � v2F

	 Fðk � 1; ðk � 1ÞðN � 1ÞÞ; (52)

where k is the number of algorithms and N is the number of datasets.

We can obtain v2FðH LÞ ¼ 7:84, v2F O Eð Þ ¼ 9:76, v2F R Lð Þ ¼ 9:92, and FF H Lð Þ ¼ 2:58,
FF O Eð Þ ¼ 3:81, FF R Lð Þ ¼ 3:94. When the significance level is a ¼ 0:10, F 4; 16ð Þ ¼ 2:33. Because
FF H Lð Þ ¼ 2:58, FF O Eð Þ ¼ 3:81 and FF R Lð Þ ¼ 3:94 are larger than the critical values, 5 algorithms
have significant differences for the three metrics. We list the rank of the different algorithms in light of
Hamming loss, one_error and ranking loss in Tabs. 7–9. From Tabs. 7–9, we can see that the average
rank of our SS-MLTSVM is better than other algorithms; thus, the SS-MLTSVM has better
classification performance.
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Table 2: Average precision of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 0.785639 ± 0.051239 0.793221 ± 0.008711 0.795623 ± 0.003876 0.777998 ± 0.009513 0.800176 ± 0.008125

Birds 0.358771 ± 0.010801 0.421682 ± 0.008798 0.406008 ± 0.003114 0.404525 ± 0.005299 0.449760 ± 0.004186

Emotions 0.581655 ± 0.030349 0.697028 ± 0.004776 0.709426 ± 0.005503 0.757375 ± 0.005520 0.811084 ± 0.006444

Scene 0.453430 ± 0.020162 0.842465 ± 0.003841 0.830496 ± 0.002475 0.827238 ± 0.002951 0.845295 ± 0.004920

Yeast 0.720021 ± 0.023814 0.731047 ± 0.001198 0.730825 ± 0.000957 0.731715 ± 0.000454 0.744821 ± 0.001117

Table 3: Coverage of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 3.875556 ± 0.663135 3.777000 ± 0.031977 3.797440 ± 0.024735 3.837778 ± 0.082848 3.771110 ± 0.054257

Birds 3.923201 ± 0.073242 4.101629 ± 0.052476 3.889508 ± 0.029002 3.482169 ± 0.028734 3.133523 ± 0.063058

Emotions 2.868046 ± 0.294812 2.245276 ± 0.034788 2.191575 ± 0.032059 2.044092 ± 0.035888 1.842989 ± 0.057524

Scene 2.171729 ± 0.141061 0.555427 ± 0.008191 0.598790 ± 0.007469 0.612847 ± 0.011717 0.523698 ± 0.014979

Yeast 6.341873 ± 0.342050 6.456955 ± 0.022583 6.231757 ± 0.010173 6.987227 ± 0.024749 6.222335 ± 0.042419

Table 4: Hamming loss of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 0.347143 ± 0.028855 0.329460 ± 0.009443 0.306206 ± 0.006918 0.315238 ± 0.009461 0.301361 ± 0.012386

Birds 0.067793 ± 0.001566 0.055723 ± 0.000044 0.106989 ± 0.003470 0.097220 ± 0.001389 0.087929 ± 0.001621

Emotions 0.374502 ± 0.040605 0.263362 ± 0.003004 0.264391 ± 0.003745 0.222902 ± 0.003495 0.206513 ± 0.007170

Scene 0.285942 ± 0.019638 0.151188 ± 0.003112 0.090790 ± 0.000977 0.184711 ± 0.00128 0.147302 ± 0.001591

Yeast 0.216659 ± 0.016479 0.212532 ± 0.000808 0.212260 ± 0.001056 0.210753 ± 0.001176 0.209740 ± 0.001138

Table 5: One_error of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 0.262222 ± 0.012525 0.246806 ± 0.029941 0.195583 ± 0.021652 0.238889 ± 0.022773 0.161905 ± 0.023462

Birds 0.765142 ± 0.019694 0.633331 ± 0.012700 0.642681 ± 0.004973 0.733791 ± 0.012932 0.686058 ± 0.012041

Emotions 0.634943 ± 0.051561 0.412047 ± 0.014014 0.383724 ± 0.012444 0.296793 ± 0.006964 0.232759 ± 0.007655

Scene 0.820441 ± 0.026645 0.269452 ± 0.003841 0.278494 ± 0.004690 0.287614 ± 0.004593 0.252672 ± 0.009250

Yeast 0.240158 ± 0.036489 0.265893 ± 0.003882 0.241793 ± 0.002361 0.249052 ± 0.003871 0.232493 ± 0.003846

Table 6: Ranking loss of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 0.229981 ± 0.043959 0.228139 ± 0.008245 0.216063 ± 0.00325 0.239685 ± 0.010365 0.229881 ± 0.009013

Birds 0.313953 ± 0.006586 0.318532 ± 0.004400 0.302169 ± 0.004040 0.292203 ± 0.002815 0.250932 ± 0.004507

Emotions 0.392612 ± 0.039955 0.266880 ± 0.004724 0.253129 ± 0.005824 0.216821 ± 0.006205 0.169383 ± 0.008775

Scene 0.418993 ± 0.028879 0.098806 ± 0.001565 0.105142 ± 0.001448 0.124898 ± 0.002293 0.085024 ± 0.002948

Yeast 0.185699 ± 0.001101 0.181432 ± 0.000784 0.171814 ± 0.000470 0.217908 ± 0.000920 0.174228 ± 0.021022
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From the above analysis, we can conclude that our SS-MLTSVM is superior to the other algorithms for
all metrics.

We show the learning time of different algorithms on the benchmark datasets in Tab. 10. From Tab. 10,
we can observe that our SS-MLTSVM has a lower learning speed than the MLTSVM. This is mainly because
our SS-MLTSVM adds a manifold regularization term that needs to solve the Laplace matrix with whole
samples. Even so, our SS-MLTSVM still has great advantages compared with the Rank-SVM and BPMLL.

Table 7: Ranks of algorithms in light of Hamming loss

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 5 4 2 3 1

Birds 2 1 5 4 3

Emotions 5 3 4 2 1

Scene 5 3 1 4 2

Yeast 5 4 3 2 1

Average 4.4 3 3 3 1.6

Table 8: Ranks of algorithms in light of one_error

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 5 4 2 3 1

Birds 5 1 2 4 3

Emotions 5 4 3 2 1

Scene 5 2 3 4 1

Yeast 2 5 3 4 1

Average 4.4 3.2 2.6 3.4 1.4

Table 9: Ranks of algorithms in light of ranking loss

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 4 2 1 5 3

Birds 4 5 3 2 1

Emotions 5 4 3 2 1

Scene 5 2 3 4 1

Yeast 4 3 1 5 2

Average 4.4 3.2 2.2 3.6 1.6

216 IASC, 2021, vol.27, no.1



4.3 Sensitivity Analysis

In this subsection, we investigate the effect of the size of unlabelled samples on the classification
performance. In Figs. 1–5, we show the classification performance of our SS-MLTSVM and the
MLTSVM on different datasets for different sizes of unlabelled samples.

From Figs. 1–5, we can observe that the classification performance of the SS-MLTSVM is better than
that of the MLTSVM in all cases. With the increase of unlabelled samples, the advantages of the SS-
MLTSVM become increasingly obvious, because, with the increase of in unlabelled samples, the SS-
MLTSVM can make full use of the embedded geometric information, construct a more reasonable
classifier, and further improve the classification performance.

Table 10: Learning time of algorithms on the benchmark datasets

BPMLL ML-kNN Rank-SVM MLTSVM SS-MLTSVM

Flags 4.808817 0.050400 0.359997 0.050300 0.074584

Birds 16.868832 0.139376 4.273635 0.187632 1.566527

Emotions 17.929608 0.147162 1.282045 0.384163 1.153655

Scene 154.982600 1.913366 5.794408 4.145783 12.102076

Yeast 69.403602 2.093822 49.447880 19.581926 38.792532

Average 52.798700 0.868840 12.231600 4.869937 10.737873
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Figure 1: Average precision of the SS-MLTSVM and MLTSVM for unlabelled samples of different sizes
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Figure 2: Hamming loss of the SS-MLTSVM and MLTSVM for unlabelled samples of different sizes
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5 Conclusion

In this paper, a novel SS-MLTSVM is proposed to solve semi-supervised multi-label classification
problems. By introducing the manifold regularization term into the MLTSVM, we construct a more
reasonable classifier and use SOR to speed up learning. Theoretical analysis and experimental results
show that, compared with the existing multi-label classifiers, the SS-MLTSVM can take full advantage of
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Figure 3: One_error of the SS-MLTSVM and MLTSVM for unlabelled samples of different sizes
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Figure 4: Ranking loss of the SS-MLTSVM and MLTSVM for unlabelled samples of different sizes
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Figure 5: Coverage of the SS-MLTSVM and MLTSVM for unlabelled samples of different sizes
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the geometric information embedded in partially labelled and unlabelled samples and effectively solve semi-
supervised multi-label classification problems. It should be pointed out that our SS-MLTSVM does not
consider the correlation among labels; however, the correlation among labels is very valuable to improve
the generalization performance. Therefore, more effective methods of obtaining correlation among labels
should be addressed in the future.
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