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Abstract: The Equilibrium Optimizer (EO) algorithm is a novel meta-heuristic
algorithm based on the strength of physics. To achieve better global search cap-
ability, a Parallel Equilibrium Optimizer algorithm, named PEO, is proposed in
this paper. PEO is inspired by the idea of parallelism and adopts two different
communication strategies between groups to improve EO. The first strategy is
used to speed up the convergence rate and the second strategy promotes the algo-
rithm to search for a better solution. These two kinds of communication strategies
are used in the early and later iterations of PEO respectively. To check the opti-
mization effect of the proposed PEO algorithm, it is tested on 23 benchmark func-
tions and compared with the Particle Swarm Optimization (PSO), Grey Wolf
Optimizer (GWO), Parallel Particle Swarm Optimization (PPSO), and EO as well.
The empirical study demonstrates that the abilities of exploration and exploitation
of PEO are superior to the above four algorithms in most benchmark functions.
Finally, we apply PEO to solve the Capacitated Vehicle Routing Problem (CVRP)
in the field of transportation. Experimental results show that PEO can achieve a
better driving route.

Keywords: Equilibrium optimizer; parallelism; communication strategy;
capacitated vehicle routing problem

1 Introduction

Traditional optimization algorithms usually show better performance in solving single-extreme value
optimization problems. But in fact, the practical engineering problems are multiple, extreme and complex.
The traditional optimization algorithms are difficult to solve these problems. The emergence of intelligent
optimization algorithms breaks the above-mentioned bottleneck. When solving complex problems, they
can find approximately optimal solutions within an acceptable time and improve efficiency. Therefore, the
research of intelligent optimization algorithms is becoming more and more important.

Intelligent optimization algorithms mostly belong to heuristic algorithms. They are mainly used to solve
optimization problems, and their inspiration comes from existing phenomena or things [1,2]. As an extension
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of the heuristic algorithm, the meta-heuristic algorithm given by nature can be roughly split into three
categories: swarm intelligence, evolutionary algorithm and physical algorithm. The characteristics of
meta-heuristic algorithms based on species behavior are that the optimization process shares the collective
information of all individuals. Typical examples are as follows: Cuckoo Search Algorithm (CSA) [3],
Artificial Bee Colony (ABC) algorithm [4,5], Bat Algorithm (BA) [6–8], Pigeon-Inspired Optimization
(PIO) algorithm [9], and so on. The meta-heuristic algorithms based on evolution are related to the
evolution law of organisms. Among such algorithms, there are the Differential Evolution (DE) [10,11],
Symbiotic Organism Search (SOS) [12,13], Quasi-Affine Transformation Evolutionary (QUATRE) [14–
16], and so on. The DE is an analogy with the early Genetic Algorithm (GA) [17,18]. They are efficient
global optimization algorithms with continuous variables and multiple objectives. Finally, the features of
meta-heuristic algorithms based on the physical model are that the communication between search agents
is described according to the rules in the physical process. The typical algorithms include Simulated
Annealing (SA) [19,20], Gravitational Search Algorithm (GSA) [21], Charged System Search (CSS) [22],
and so on. The Equilibrium Optimizer (EO) algorithm belongs to the meta-heuristic algorithms based on
physics, which is a new intelligent optimization algorithm [23,24].

The EO is enlightened by the model that controls the mass-volume balance and adopts a random
exploration mechanism. In EO, each particle updates its position through a candidate particle randomly
selected from the equilibrium pool, and the adaptive value of control parameters in the algorithm can
reduce the moving speed of particles. The abilities of exploration and exploitation are largely due to this
random update strategy and the control parameters in the algorithm. And the tests of EO in benchmark
functions and engineering problems prove the practicability and effectiveness of the algorithm [23].

As a new algorithm, the convergence and global search ability of EO need to be further improved. Its
balance mechanism leads to the problem of premature convergence. To further advance global search
capability and avoid its premature convergence, this paper improves the EO based on parallel ideas.
There are many improvement strategies to improve the performance of the meta-heuristic algorithm, like
parallel, compact, multi-strategy and space vector improvement [25]. Among them, the parallel strategy is
an important algorithm optimization strategy. Parallelized intelligent optimization algorithm expands the
original single population into multiple groups, and carries out group communication during the iteration
process, which further improves the optimization ability of the algorithm. The most important thing is the
communication strategy between groups when designing the parallel algorithm. Up to now, there are
many studies on the parallel improvement technology with inter-group communication strategy [26–28].
For instance, parallel Particle Swarm Optimization (PSO) [29–31], parallel Ant Colony Optimization
(ACO) [32,33], parallel Cat Swarm Optimization (CSO) [34–36], and so on. Compared with the original
algorithms, the parallel strategy improves their optimization ability in solving the problem. Inspired by
the idea, a parallel EO algorithm, named PEO, is proposed in this paper. In PEO, two different
communication strategies are used to ameliorate the exploitation and search ability of the algorithm. The
superiority of PEO is proved by the comparison between PEO and several heuristic algorithms on
benchmark functions.

To test the ability of PEO in solving practical problems, the Capacitated Vehicle Routing Problem
(CVRP) is treated as an application example of PEO. At present, many scholars have done a lot of
research in the field of intelligent transportation information [37–39]. As one of the core issues, the
Vehicle Routing Problem (VRP) was first put forward in 1959. Some non-meta-heuristic algorithms, such
as the Tabu Search (TS) algorithm [40,41] and Simulated Annealing (SA) algorithm, have been well
applied to solve VRP. As the development of meta-heuristic algorithms, like PSO and Sine Cosine
Algorithm (SCA) [42], they have also provided better solutions to VRP. The vehicle routing problem is
generally depicted as follows: several cities have different demands for goods, and the distribution center
provides vehicles to the city to transport goods. Each time the vehicle departs from the distribution
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center, it transports the goods to the unallocated cities, and finally returns to the distribution center. As a
derivative problem of the VRP, the CVRP needs to meet an important constraint: the load weight of each
vehicle cannot exceed the maximum load. The contributions of PEO in CVRP are as follows. Firstly,
the parallel improvement strategy improves the exploitation and search abilities of EO. Secondly, as far
as we know, EO is applied to CVRP for the first time, which broadens the application field of EO in
intelligent transportation.

The rest of this paper is organized as follows. Section 2 gives a brief retrospect to the basic concept of
EO. Section 3 formally proposes our PEO algorithm with details. Section 4 evaluates the algorithm using
extensive experiments. Further application analysis of the proposed PEO algorithm in the CVRP is
demonstrated in Section 5. The last section describes the conclusions about the presented work.

2 Equilibrium Optimizer

In EO, each particle (solution) and its position (concentration) are used as a search agent. During the
iteration process, the search agent randomly updates its current position (concentration) according to
the equilibrium candidates until the end of the iteration to get the optimal result (equilibrium state). The
initialization of EO is similar to the general meta-heuristic algorithm. The initial population consists of
randomly distributed particles in the search space, as shown in Eq. (1):

Cinitial
i ¼ Cmin þ randiðCmax � CminÞ i ¼ 1; 2; 3;…n (1)

Cinitial
i is the initial concentration (position) vector of the i� th particle, Cmin is the minimum

dimension, Cmax is the maximum dimension, randi is a random vector in the interval of [0,1], and n is the
whole number of particles.

The EO expects the final equilibrium state to be globally optimum. To heighten the capabilities of
exploration and exploitation, an equilibrium pool is established in EO to update the particles. The five
particles in the equilibrium pool are called equilibrium candidates. These five particles are the four
particles with the best fitness and their average. The four best candidates are beneficial to improve the
exploration ability and their average is beneficial to heighten the exploitation ability. Besides, the number
of equilibrium candidates is not fixed and can be adjusted for different application problems, which is
similar to the selection of three wolves in GWO [43]. The equilibrium pool vector can be expressed as:

C
!

eq;pool ¼ C
!

eqð1Þ
n

; C
!

eqð2Þ; C
!

eqð3Þ; C
!

eqð4Þ; C
!

eqðaveÞ
o

(2)

To maintain a balance between exploration and exploitation, the parameter F is introduced, and the
calculation equation is as follows:

F
!¼ a1signð r!� 0:5Þ e� �

!
t � 1

� �
(3)

In Eq. (3), the calculation equation of the iterative function t is as follows:

t ¼ ð1� Iter

Max iter
Þa2� Iter

Max iter (4)

Iter means the current number of iterations, Max iter is the maximum number of iterations, and a2 is a
constant with a value of 1. a1 is equal to 2. It should be noted that the values of a1 and a2 are not fixed to 2 and
1, which can be adjusted according to the problem to be solved. �

!
and r! are random vectors in the interval

of [0,1].
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The parameter G is introduced into EO to improve the exact solution in the exploitation stage. G is
expressed by the following equation:

G
!¼ G

!
0 F
!

(5)

where:

G0
�! ¼ GCP

��!ðC!eq � �
!

C
!Þ (6)

GCP
��! ¼ 0:5r1; r2 � GP

0; r2 < GP

�
(7)

In Eq. (7), r1 and r2 are two random numbers in [0,1], and the parameterGP is the generation probability.
Experiments show that when the value of GP is 0.5, the algorithm can keep a good balance between
exploration and exploitation. Finally, the update equation of EO is as follows:

C
!¼ C

!
eq þ ðC!� C

!
eqÞ � F

!þ G
!

�
!
V
ð1� F

!Þ (8)

In the Eq. (8), C represents the particle to be updated. The first part Ceq on the right side of the equation is
an equilibrium candidate particle obtained in the equilibrium pool. The second and third terms represent a
change in the concentration of particles in the population. The second term attempts to find an optimal
solution in the solution space, and the third term helps to make the solution more accurate. During the
iteration process, each particle is updated through an updated equation to improve the adaptability of the
particle and the overall optimization ability of the algorithm.

3 Parallel Equilibrium Optimizer

In this section, we propose a parallel Equilibrium Optimizer algorithm, named PEO, to improve the
optimization capability of EO. In PEO, a multi-group structure is adopted, and each group search strategy
is consistent with the original EO. Regularly, particles from different groups communicate with each
other to increase cooperation among groups. Two communication strategies are used in PEO. The first
strategy of inter-group communication is used for individual mutation of poor particles, which can
heighten the convergence speed of the algorithm. The second strategy is to replace the poor particles in
each group, which can ameliorate the exploitation capacity of the algorithm. The two strategies are
respectively applied in the early and late stages of the algorithm to further improve the convergence
results. Besides, the a2, as an important parameter, affects the exploitation capability of the algorithm.
Therefore, the parameter a2 is micro adjusted according to the number of iterations to better heighten the
search capacity of the algorithm in the exploitation stage on the parallel mechanism. The evaluation
equation of a2 is as follows:

a2 ¼ Iter

Max iter
(9)

In the initialization phase, the groups are divided according to the predetermined total number of particles.
In each group, the fitness values of all particles are calculated and sorted, to get the optimal solution and four
equilibrium candidates in the group. Comparing all groups, we can get the global optimal solution BestXof the
entire population and four global optimal equilibrium candidates Ceq1, Ceq2, Ceq3, and Ceq4. After that, each
group evolves independently. When a certain number of iterations are performed, the above two strategies
will be executed to communicate between groups. Concerning the PEO of this paper, the number of groups
is set to 6, and the number of communication iteration intervals is set to 20.
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The first inter-group communication strategy is shown in Fig. 1. In the first 1/3 of the total iteration
times, a global optimal equilibrium candidate particle Ceq is randomly selected and combined with the
global optimal particle BestX . According to Eq. (10), individual mutations are performed on the particles
with poor fitness in each group. Through this strategy, the mutant particles quickly approach the average
position of the equilibrium candidate Ceq and the optimal particle BestX , which further improves the
convergence speed of the algorithm. The mutation equation is as follow:

Xd ¼ BestXd þ Ceqd
2

� ða2 þ r � a2Þ (10)

where Xd and BestXd are the d � th dimensions of the mutated particle and global optimal particle. Ceqd
represents the d-dimensional position of the equilibrium candidate particle. r is a random vector between
0 and 1. The value of a2 is determined by Eq. (9).

The second inter-group communication strategy is shown in Fig. 2. In the last 2/3 of the whole number
of iterations, some particles with poor fitness will be replaced by the average of the optimal particles in this
group and the adjacent groups. For example, the average of the optimal particles in the first group and the
second group is used to replace the particles with poor fitness in the first group. Repeat this operation
until some poor fitness particles in all groups are replaced. This strategy makes the communication
between groups more closely, and improves the exploitation ability of the algorithm in the middle and
late stages. This operation effectively avoids the premature convergence of the algorithm. In this paper,
the number of mutation particles and substitute particles is half of each group. And during the iteration
process, the particles are updated according to the structure of EO, regardless of whether component
communication has occurred. The particle update equation is shown in Section 2. Figs. 3 and 4 represent
the flow chart and pseudo-code of PEO, respectively.
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4 Results and Discussion

To check the optimization effectiveness of PEO, we test it on 23 benchmark functions and compare it
with the PSO, PPSO, GWO, and EO algorithms as well. Among the 23 benchmark functions,
F1~F7 represent unimodal functions, F8~F13 represent multimodal functions, and F14~F23 represent
fixed-dimensional functions. The detailed description of these functions can be obtained from [21,43]. To
make the experiment fair and reasonable, the maximum iteration number of all algorithms is uniformly
set as 2000, and the population size is set as 180. Each algorithm is run 10 times independently, and its
average (AVG) and standard deviation (STD) are recorded. All simulation experiments are completed in
the same experimental environment. The parameter values of the five algorithms are displayed in Tab. 1.

Tab. 2 shows the test results of PEO and the other four meta-heuristic algorithms on 23 benchmark
functions. The bolded data represents the best average accuracy value of the five algorithms.

It can be known from the bold data in Tab. 2 that PEO can obtain the optimal value of the five algorithms
on most benchmark functions. This shows that PEO generally has better optimization ability than PSO,
PPSO, GWO, and EO algorithms on the whole. In addition, the standard deviation of PEO is generally
small, which indicates that the algorithm has better robustness. For the unimodal functions, PEO displays
a better global optimal solution than other algorithms on the functions of F1~F5 and F7, followed by EO.
On the function F6, EO performs better. The test results on unimodal functions show that the structure of
EO makes its convergence value better than other algorithms. Moreover, the parallel mechanism further
improves the convergence effect of EO, which makes PEO perform better on most unimodal functions.
For multimodal functions, PEO has a slight advantage over the other four algorithms with respect to
optimization ability on functions F8~F10. On functions F11~F13, PSO represents a good convergence
effect. But the convergence value of PEO is close to the optimal value of PSO on the function F12. This
part of the test data shows that compared with EO, PEO uses the strategy of group communication,
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which to some extent enhances the ability of the algorithm to jump out of the local optimal solution in
multivalued functions. For fixed-dimensional functions F14~F23, PEO can be better than or equal to the
convergence results of the other four algorithms. According to the data statistics in Tab. 2, PEO can
achieve the best average accuracy on 19 functions, while the corresponding numbers of PSO, PPSO,
GWO, and EO algorithms are 9, 10, 8, and 11 in turn. To a certain degree, the results in Tab. 2 also
prove the effectiveness of the parallel mechanism in improving algorithm optimization capabilities.

Start
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Communication between groups

Calculate particle fitness; find out the 
new global equilibrium candidate 

Update each particle according to the equilibrium candidate

End of the 
iteration
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Yes

No

No

Yes

Figure 3: Flow chart of parallel equilibrium optimizer
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Figure 4: Pseudo-code of parallel equilibrium optimizer

Table 1: The parameter values of five algorithms

Algorithm Parameter name and value

PSO c1=2;c2=2; Vmax=6; wMin=0.2; wMax=0.9;

PPSO groups = 4;c1=2;c2=2; Vmax=6; wMin=0.2; wMax=0.9;

GWO r1=rand; r2=rand;

EO V=1; a1=2; a2=1; GP=0.5;

PEO groups=6; V=1; GP=0.5; a1=2;
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To more intuitively observe the experimental results of the five algorithms, 6 groups are selected from
23 groups of experimental graphs to display. Fig. 5 displays the resulting chart of the five algorithms on the
unimodal functions F1 and F3, the multimodal functions F8 and F10, and the fixed-dimensional functions
F15 and F22. It can be seen from Fig. 5 that compared to other algorithms, PEO has a faster convergence
speed. In the result diagram, the test functions image is on the left, and the algorithm convergence curve
is on the right. In the algorithm convergence curve, the x-coordinate is the number of iterations, and the
y-coordinate represents the functions convergence value.

5 PEO Algorithm on the Capacitated Vehicle Routing Problem

In this section, we introduce the mathematical model of the Capacitated Vehicle Routing Problem
(CVRP) and test the proposed PEO algorithm on the CVRP.

5.1 CVRP Model

In this paper, the parameter v v ¼ 1; 2; . . . :kð Þ is used to represent the vehicle number, and the parameter
k represents the total number of vehicles. The distribution center and task city are respectively represented by
0 and i i ¼ 1; 2; . . . nð Þ. The variables are defined as follows:

Table 2: Results of comparison for the benchmark functions

Functions PSO PPSO GWO EO PEO

Ave Std Ave Std Ave Std Ave Std Ave Std

F1 1.28E-37 2.11E-37 6.10E-151 1.30E-150 1.08E-198 0 5.42E-285 0 0 0

F2 2.86E-16 5.04E-16 6.86E-77 9.65E-77 3.18E-112 3.6E-112 8.53E-156 1.04E-155 1.02E-184 0

F3 6.85E-02 5.34E-02 4.22E-134 5.98E-134 1.15E-68 3.58E-68 6.26E-97 1.00E-96 7.28E-150 1.65E-149

F4 9.86E-03 5.26E-03 2.79E-72 6.15E-72 7.99E-52 7.74E-52 5.06E-75 1.20E-74 8.65E-103 2.71E-102

F5 51.0647 29.05343 25.6475 0.35362 26.0433 0.69419 21.7378 0.20643 17.7130 0.76870

F6 9.18E-32 2.55E-31 1.38E-07 1.27E-07 1.00E-01 1.74E-01 0 0 5.18E-31 1.55E-30

F7 1.10E-02 4.49E-03 6.02E-05 6.26E-05 6.79E-05 5.40E-05 6.76E-05 3.33E-05 2.98E-05 3.24E-05

F8 −6946.93 691.2639 −7261.07 908.612 −6457.95 1012.11 −8829.28 602.889 −9634.96 447.560

F9 2.19E+01 7.777942 0 0 0 0 0 0 0 0

F10 1.37E-14 2.48E-15 8.88E-16 0 7.99E-15 0 4.44E-15 0 8.88E-16 0

F11 -3.14E+01 3.55E-01 −8 1.87E-15 −7.96808 9.52E-02 −8 1.87E-15 −8 1.87E-15

F12 1.61E-32 4.12E-34 7.81E-07 4.78E-07 1.31E-02 8.73E-03 7.65E-32 1.92E-31 7.77E-32 1.92E-31

F13 2.32E-32 1.58E-32 3.21E-03 7.16E-03 5.09E-02 5.38E-02 1.35E-32 2.88E-48 2.07E-01 1.89E-01

F14 9.98E-01 0 1.39562 0.51331 1.79164 1.02E+00 9.98E-01 0 9.98E-01 0

F15 4.40E-04 2.79E-04 4.91E-04 3.86E-04 5.28E-04 4.72E-04 2.31E-03 6.34E-03 3.99E-04 2.90E-04

F16 −1.03163 0 −1.03163 0 −1.03163 5.10E-10 −1.03163 0 −1.03163 7.40E-17

F17 3.98E-01 0 3.98E-01 0 3.98E-01 2.35E-08 3.98E-01 0 3.98E-01 0

F18 3 1.12E-15 3 1.04E-15 3 4.90E-08 3 4.44E-16 3 7.40E-16

F19 −3.86278 0 −3.86278 0 −3.86278 2.03E-07 −3.86278 0 −3.86278 0

F20 −3.32200 4.44E-16 −3.32200 0 −3.26255 0.08407 −3.26255 0.08407 −3.32200 0

F21 −7.62698 3.572606 −10.1532 0 −10.1532 1.23E-05 −10.1532 0 −10.1532 0

F22 −10.4029 0 −10.4029 0 −10.4029 2.20E-05 −10.4029 1.77E-15 −10.4029 0

F23 −10.0003 1.69522 −10.5364 1.96E-15 −10.5364 2.81E-05 −10.5364 1.87E-15 −10.5364 2.13E-15
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Figure 5: Convergence curve of test functions: F1 (a), F3 (b), F8 (c), F10 (d), F15 (e), F22 (f)
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xijv ¼ 1; if vehicle v travels from city i to city j;
0; else

�
(11)

yiv ¼ 1; if city i needs to be fulfilled by vehicle v;
0; else

�
(12)

Cij means the distance traveled from city point i to city point j,Q represents the maximum load of the car,
n is the total number of city points, g represents the demand for each city point, the distance traveled of the
vehicle is represented by D, and the solution of the shortest pathD is set as the objective function. Finally, the
mathematical model of the CVRP can be obtained as shows:

minD ¼
Xn
i¼0

Xn
j¼0

Xk
v¼0

Cijxijv (13)

Xn
i¼0

xijv ¼ yjv; j ¼ 1; 2;…; n; v ¼ 1; 2;…; k (14)

Xn
j¼0

xijv ¼ yjv; i ¼ 1; 2;…; n; v ¼ 1; 2;…; k (15)

Xk
v¼0

yiv ¼ 1; i ¼ 1; 2;…; n (16)

Xn
i¼0

giyiv � Q; v ¼ 1; 2;…; k (17)

In the mathematical model of the CVRP, Eq. (13) means the shortest path of the objective function. Eqs.
(14) and (15) ensure that the task of the city point can be completed. Eq. (16) guarantees that each city point
can only be completed by one vehicle. Eq. (17) guarantees that the loading weight of each vehicle must not
outnumber the maximum loading capacity, which is the most important constraint condition of the CVRP.

5.2 Simulation and Results Analysis

Firstly, a set of simple data is used to test. The task point coordinate and demand are shown in Tab. 3.

In this set of simple test cases, 0 is the central warehouse, the maximum load of the car is set to 100, the
task distribution is completed by 3 cars, and the known optimal path is 217.8. In the test, the number of
iterations is 200, and the particle swarm size is 180, divided into 6 groups. The test result of PEO reveals
in Fig. 6. As can be seen from the Fig. 6, it receives the optimal path 217.8 when PEO iterates to the
fifth generation. The results show that PEO has the certain optimization ability in solving VRP.

Table 3: The task point coordinates and demand

Sequence 0 1 2 3 4 5 6 7

Coordinate (18,54) (22,60) (58,69) (71,71) (83,46) (91,38) (24,42) (18,40)

Requirement 0 89 14 28 33 21 41 57
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To further test the effect of PEO in the CVRP, we select five groups of test data in the CVRP international
standard example VRPLIB and compare the results with EO, MMSCA [44], and PSO algorithms. In this
paper, to ensure the fairness of results, the number of iterations for the four algorithms is uniformly set as
3000, and the number of population particles is 180. Tab. 4 records the results of the four algorithms on
5 sets of test data.

Analyzing the data in the Tab. 4, PEO can get a shorter distance than PSO, EO, and MMSCA algorithms
on the CVRP under the same experimental conditions. To observe the test results of the four algorithms more
intuitively, Fig. 7 shows the change curve of the four algorithms on the CVRP test data A-k32-n5 and A-k33-
n6. It can be seen from the Fig. 7 that PEO has a better convergence value than the other three algorithms, yet
the convergence speed in the early stage of the iteration is not as fast as other algorithms. Therefore, there is
still a lot of room for improvement in the optimization of PEO on the CVRP problem, which can be regarded
as the future optimization direction.

Figure 6: The test result of the PEO algorithm under simple test data

Table 4: The result of four algorithms in five test data

PSO-route MMSCA-route EO-route PEO-route

A-n32-k5 1137 1080 1226 1020

A-n33-k5 1177 1011 977 902.1

A-n33-k6 1155 1037 1081 1025

A-n44-k7 1577 1446 1486 1417

A-n46-k7 1746 1507 1631 1492
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6 Conclusion

In this paper, we developed a parallel paradigm for the EO algorithm, called PEO. Two efficient
communication strategies are designed and applied to the set of groups in PEO. Experiments show that
our approach outperforms existing approaches in most of 23 benchmark functions. Furthermore, applying
the PEO algorithm on CVRP can get a shorter distance than PSO, EO, and MMSCA algorithms, which
further testify the effectiveness and superiority of the proposed PEO algorithm.

Funding Statement: This work is supported by the National Natural Science Foundation of China [Grant
No. 61872085], the Natural Science Foundation of Fujian Province [Grant No. 2018J01638], and the
Fujian Provincial Department of Science and Technology [Grant No. 2018Y3001]. The author who
received the grant is J. S. Pan.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. S. Pan, P. Hu and S. C. Chu, “Novel parallel heterogeneous meta-heuristic and its communication strategies for

the prediction of wind power,” Processes, vol. 7, no. 11, pp. 845, 2019.

[2] J. Wang, Y. Cao, B. Li, H. J. Kim and S. Lee, “Particle swarm optimization based clustering algorithm with mobile
sink for WSNs,” Future Generation Computer Systems, vol. 76, pp. 452–457, 2017.

[3] P. C. Song, J. S. Pan and S. C. Chu, “A parallel compact cuckoo search algorithm for three-dimensional path
planning,” Applied Soft Computing, vol. 94, pp. 106443, 2020.

[4] H. Wang, Z. Y. Wu, S. Rahnamayan, H. Sun, Y. Liu et al., “Multi-strategy ensemble artificial bee colony
algorithm,” Information Sciences, vol. 279, pp. 587–603, 2014.

[5] P. W. Tsai, M. K. Khan, J. S. Pan and B. Y. Liao, “Interactive artificial bee colony supported passive continuous
authentication system,” IEEE Systems Journal, vol. 8, no. 2, pp. 395–405, 2014.

[6] T. T. Nguyen, J. S. Pan and T. K. Dao, “A novel improved bat algorithm based on hybrid parallel and compact for
balancing an energy consumption problem,” Information-an International Interdisciplinary Journal, vol. 10, no.
6, pp. 194, 2019.

Figure 7: Convergence curves of A-k32-n5 (a) and A-k33-n6 (b)

IASC, 2021, vol.27, no.1 245



[7] T. T. Nguyen, J. S. Pan and T. K. Dao, “A compact bat algorithm for unequal clustering in wireless sensor
networks,” Applied Sciences, vol. 9, no. 10, pp. 1973, 2019.

[8] X. S. Yang, “A new metaheuristic bat-inspired algorithm,” Nature Inspired Cooperative Strategies for
Optimization, vol. 284, pp. 65–74, 2010.

[9] A. Q. Tian, S. C. Chu, J. S. Pan, H. Q. Cui and W. M. Zheng, “A compact pigeon-inspired optimization for
maximum short-term generation mode in cascade hydroelectric power station,” Sustainability, vol. 12, no. 3,
pp. 767, 2020.

[10] X. M. Hu, J. Zhang and H. H. Chen, “Optimal vaccine distribution strategy for different age groups of population:
A differential evolution algorithm approach,” Mathematical Problems in Engineering, vol. 2014, pp. 1–7, 2014.

[11] A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global
numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009.

[12] A. E. Ezugwu and D. Prayogo, “Symbiotic organisms search algorithm: theory, recent advances and applications,”
Expert Systems with Applications, vol. 119, pp. 184–209, 2019.

[13] S. C. Chu, Z. G. Du and J. S. Pan, “Symbiotic organism search algorithm with multi-group quantum-behavior
communication scheme applied in wireless sensor networks,” Applied Sciences, vol. 10, no. 3, pp. 930, 2020.

[14] Z. Meng, J. S. Pan and H. Xu, “Quasi-affine transformation evolutionary (QUATRE) algorithm: A cooperative
swarm based algorithm for global optimization,” Knowledge-Based Systems, vol. 109, pp. 104–121, 2016.

[15] Z. Meng and J. S. Pan, “Quasi-affine transformation evolution with external archive (QUATRE-EAR): An
enhanced structure for differential evolution,” Knowledge-Based Systems, vol. 155, pp. 35–53, 2018.

[16] Z. G. Du, J. S. Pan, S. C. Chu, H. J. Luo and P. Hu, “Quasi-affine transformation evolutionary algorithm with
communication schemes for application of RSSI in wireless sensor networks,” IEEE Access, vol. 8, pp. 8583–
8594, 2020.

[17] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated annealing: a genetic algorithm,” Parallel
Computing, vol. 21, no. 1, pp. 1–28, 1995.

[18] D. Abramson and J. Abela, “A parallel genetic algorithm for solving the school timetabling problem,” in Proc. of
15 Australian Computer Science Conf., Citeseer, Hobart, Australia, vol. 14, pp. 1–11, 1992.

[19] A. V. Breedam, “Improvement heuristics for the vehicle routing problem based on simulated annealing,”
European Journal of Operational Research, vol. 86, no. 3, pp. 480–490, 1995.

[20] W. C. Chiang and R. A. Russell, “Simulated annealing met heuristics for the vehicle routing problem with time
windows,” Annals of Operations Research, vol. 63, no. 1, pp. 3–27, 1996.

[21] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, “GSA: A gravitational search algorithm,” Information
Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

[22] A. Kaveh and S. Talatahari, “A novel heuristic optimization method: charged system search,” Acta Mechanica,
vol. 213, no. 3–4, pp. 267–289, 2010.

[23] A. Faramarzi, M. Heidarinejad, B. Stephens and S. Mirjalili, “Equilibrium optimizer: a novel optimization
algorithm,” Knowledge-Based Systems, vol. 191, 105190, 2020.

[24] M. Ahmed, S. Hamdy and K. Salah, “Extracting model parameters of proton exchange membrane fuel cell using
equilibrium optimizer algorithm,” in 2020 IEEE Int. Youth Conf. on Radio Electronics, Electrical and Power
Engineering, Russia, Moscow, pp. 1–7, 2020.

[25] S. C. Chu, X. S. Xue, J. S. Pan and X. J. Wu, “Optimizing ontology alignment in vector space,” Journal of Internet
Technology, vol. 21, no. 1, pp. 15–22, 2020.

[26] J. F. Chang, S. C. Chu, J. F. Roddick and J. S. Pan, “A parallel particle swarm optimization algorithm with
communication strategies,” Journal of Information Science and Engineering, vol. 21, no. 4, pp. 809–818, 2005.

[27] P. W. Tsai, J. S. Pan and S. M. Chen, “Parallel cat swarm optimization,” in Proc. of the 2008 International Conf.
on Machine Learning and Cybernetics, Kunming, China, vol. 6, pp. 3328–3333, 2008.

[28] X. P. Wang, J. S. Pan and S. C. Chu, “A parallel multi-verse optimizer for application in multilevel image
segmentation,” IEEE Access, vol. 8, pp. 32018–32030, 2020.

246 IASC, 2021, vol.27, no.1



[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of ICNN’95-International Conf. on Neural
Networks, Perth, Australia, vol. 4, pp. 1942–1948, 2005.

[30] H. Wang, M. N. Liang, C. L. Sun, G. C. Zhang and L. P. Xie, “Multiple-strategy learning particle swarm
optimization for large-scale optimization problems,” Complex & Intelligent Systems, 2020.

[31] S. F. Qin, C. L. Sun, G. C. Zhang, X. J. He and Y. Tan, “A modified particle swarm optimization based on
decomposition with different ideal points for many-objective optimization problems,” Complex & Intelligent
Systems, vol. 6, no. 2, pp. 263–274, 2020.

[32] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[33] S. C. Chu, J. F. Roddick and J. S. Pan, “Ant colony system with communication strategies,” Information Sciences,
vol. 167, no. 1, pp. 63–76, 2004.

[34] S. C. Chu, P. W. Tsai and J. S. Pan, “Cat swarm optimization,” in 9th Pacific Rim Int. Conf. on Artificial
Intelligence, Heidelberg, Berlin, pp. 854–858, 2006.

[35] P. W. Tsai, J. S. Pan, S. M. Chen and B. Y. Liao, “Enhanced parallel cat swarm optimization based on the taguchi
method,” Expert Systems with Applications, vol. 39, no. 7, pp. 6309–6319, 2012.

[36] L. P. Kong, J. S. Pan, P. W. Tsai, S. Vaclav and J. H. Ho, “A balanced power consumption algorithm based on
enhanced parallel cat swarm optimization for wireless sensor network,” International Journal of Distributed
Sensor Networks, vol. 11, no. 729680, pp. 1–10, 2015.

[37] C. L. Lo, H. Y. Kung, C. H. Chen and L. C. Kuo, “An intelligent slope disaster prediction and monitoring system
based on WSN and ANP,” Expert Systems with Applications, vol. 41, no. 10, pp. 4554–4562, 2014.

[38] C. I. Wu, C. H. Chen, B. Y. Lin and C. C. Lo, “Traffic information estimation methods from handover events,”
Journal of Testing and Evaluation, vol. 44, no. 1, pp. 656–664, 2016.

[39] C. C. Lo, K. M. Chao, H. Y. Kung, C. H. Chen and M. Chang, “Information management and applications of
intelligent transportation system,” Mathematical Problems in Engineering, vol. 2015, pp. 613940, 2015.

[40] M. Gendreau, A. Hertz and G. Laporte, “A tabu search heuristic for the vehicle routing problem,” Management
Science, vol. 40, no. 10, pp. 1276–1290, 1994.

[41] P. Toth and D. Vigo, “The granular tabu search and its application to the vehicle routing problem,” INFORMS
Journal on Computing, vol. 15, no. 4, pp. 333–346, 2003.

[42] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization problems,” Knowledge-Based Systems, vol.
96, pp. 809–818, 2016.

[43] P. Hu, J. S. Pan and S. C. Chu, “Improved binary grey wolf optimizer and its application for feature selection,”
Knowledge-Based Systems, vol. 195, no. 11, pp. 105746, 2020.

[44] Q. Y. Yang, S. C. Chu, J. S. Pan and C. M. Chen, “Sine cosine algorithm with multigroup and multistrategy for
solving CVRP,” Mathematical Problems in Engineering, vol. 2020, pp. 1–10, 2020.

IASC, 2021, vol.27, no.1 247


	Parallel Equilibrium Optimizer Algorithm and Its Application in Capacitated Vehicle Routing Problem
	Introduction
	Equilibrium Optimizer
	Parallel Equilibrium Optimizer
	Results and Discussion
	PEO Algorithm on the Capacitated Vehicle Routing Problem
	Conclusion
	References


