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Abstract: Internet of Things (IoT) and related applications have successfully con-
tributed towards enhancing the value of life in this planet. The advanced wireless
sensor networks and its revolutionary computational capabilities have enabled
various IoT applications become the next frontier, touching almost all domains
of life. With this enormous progress, energy optimization has also become a pri-
mary concern with the need to attend to green technologies. The present study
focuses on the predictions pertinent to the sustainability of battery life in IoT fra-
meworks in the marine environment. The data used is a publicly available dataset
collected from the Chicago district beach water. Firstly, the missing values in the
data are replaced with the attribute mean. Later, one-hot encoding technique is
applied for achieving data homogeneity followed by the standard scalar technique
to normalize the data. Then, rough set theory is used for feature extraction, and the
resultant data is fed into a Deep Neural Network (DNN) model for the optimized
prediction results. The proposed model is then compared with the state of the art
machine learning models and the results justify its superiority on the basis of per-
formance metrics such as Mean Squared Error, Mean Absolute Error, Root Mean
Squared Error, and Test Variance Score.

Keywords: Internet-of-Things; sustainability; roughsets; deep neural network;
pre-processing

1 Introduction

Internet-of-Things (IoT) and related applications have gained immense momentum since the past decade
with its implementations touching almost all spheres of life in our planet. IoT is often termed as Internet of
Everything (IoE) which creates a global network of machines and devices integrated with one another
establishing seamless communication systems across wide spectrum of domains [1,2]. With the rapid
growth in human population and with surging usage of devices, services and related protocols the
applications of IoT are numerous and hence become impossible to enlist [3]. The popular and extremely
successful applications of IoT have been visualized in healthcare, agriculture, environment, automobile,
transportation and defence [4,5].
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In healthcare, IoT applications have enabled reliable tracking of patients and transforming of data for
providing essential and accelerated medical service [6]. The use of sensors has helped collect crop data
thereby aiding agronomic decision making and enhancement of cultivation [7]. Industry 4.0 is the present
trend for automation and data exchange in the manufacturing sector using cutting edge technologies like
cyber physical systems (CPS), IoT, AI, cloud computing and Industrial IoT (IIoT). Industry 4.0 is a
subset of the fourth generation industrial revolution which includes areas that are generally outliers in
industrial sector. It basically encompasses a framework consisting of wireless connectivity, sensors and
systems capable of making intelligent decisions providing visualization of the working of an entire
manufacturing floor [8]. This concept sets the stage for smart factories. It is a giant progression from
automation to a system which collects data streams from various operational processes and takes
intelligent decisions for its running without human intervention. The mundane routine tasks are taken
care by AI and machine learning applications making time for human beings to focus on only high level
decision making and exception handling [9,10]. IoT environment have significantly contributed in traffic
control, parking allotments and even assisted in improving driving experiences ensuring efficiency and
safety [11,12]. Most importantly in the defense sector IoT applications have been adopted for
surveillance, disaster prevention and robotic interventions [13]. The applications of IoT in agriculture,
industry and various real time sectors have helped primarily in monitoring and control of weather
conditions, health conditions, mechanical failures and various other instances of failure predictions. For
all of these implementations sustainability of battery life is extremely important because if battery drains
out it may lead to disastrous consequences due to failure in predictions of exceptional events [14–16].

The present study focuses on prediction of battery life sustainability for sensors which are installed in the
beaches for collecting marine data. These sensors and batteries are primary components for IoT applications
deployed to collect and monitor data from the marine environment namely Beach name, Measurement
Timestamp, Water Temperature, Turbidity, Transducer Depth, Wave Height, Wave period and the battery
life. Various applications for monitoring marine environment have been developed integrating IoT
architectures, sensing, and control and communication technologies. These implementations are
predominant in the areas of ocean sensing and monitoring, wave and current monitoring, water quality
assessment, fish farming and coral reef monitoring. Although significant research has been conducted on
IoT applications catering to the needs of marine environment, most of the studies have been conducted
either at the under-water or surface level. Also solar energy harvesting has been a major point of
discussion among various studies along with other forms of energy – wind, wave and ocean currents. The
world at this point is progressing towards green technologies where energy optimization plays a vital role
[17,18]. Based on such thorough analysis of the various applications of IoT in marine and other sectors, it
has been observed that not much research have been conducted focusing on predicting the sustainability
of battery life. Energy optimization is an essential aspect to be focused upon where the numerous
research is being conducted emphasizing green computing. Naturally predicting the sustainability of
battery life acted as a prime motivation in the present study.

The data used in the study is a publicly available dataset collected from the Chicago park district beach
water. The missing values in the raw data are replaced with attribute means and then one hot encoding
technique is applied achieve data homogeneity transforming all categorical values to numerical ones. This
data is further normalized using Standard scalar technique and rough set approach is used for feature
extraction. The extracted data thus contain best features having most significant impact on the target class
– battery life. The extracted data is fed into a DNN ensuring use of activation function for optimized
prediction results on battery life sustainability of the devices in the IoT framework. The prediction of
battery life would help in tuning the connected sensor and network devices for the achievement of
sustainable energy. The results are compared with the start of the art technologies to establish reliability
of the prediction results.
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The contributions of the proposed model are:

1. Using the DNN’s a prediction model is proposed to forecast the battery life of the water sensors
deployed along Chicago District Beach.

2. The proposed architecture uses the concepts of rough sets to minimize dimensionality and select
significant features to increase prediction accuracy and decrease complexity.

3. The results are compared with common state-of-the-art techniques such as Linear Regression and
XGBoost, which highlight the enhanced performance of the proposed model

4. A review of the current rough sets model and the state-of-the-art techniques is performed in depth.

5. The experimentation justify the fact that the proposed prediction model outperforms other popular
ML techniques thereby validating the positive impact of integrating rough set technique with the
ML model.

2 Literature Review

In the recent decade numerous artificial intelligence methods have been used to boost the learning level
of the systems in an extremely granular manner. In this section, discussion on the various contributions of
deep learning algorithms and rough set concepts are discussed through an extensive survey of literature.

In [19] authors have developed the process by which deep learning and rough sets approaches can
automate the evaluation network for motors that work through highways in snow and ice environments.
The experiment was conducted first, on a motorway in Jilin, China, with a naturalistic driving test
involving 13 licensed drivers, with specific crash point set before the inception of the experiment. It was
used to collect images and numerical data with multi-sensors (eye trackers, mini camera, and speed
detectors). The Boltzmann Restricted machine was used for the development and training of a deep-belief
network (DBN). The technique of Rough Sets was added as an evaluation of the DBN output layer.
Various conditions for perception of input factors were used to train the network. The findings emphasize
that DBN-FS was not only higher in the Naive Bayes and the BP-ANN but also greater precision in
sensing dangerous conditions due to the comparative implementation with Naive Bayes and BP-ANN of
the DBN-based perception network. This approach was useful to design partially automated vehicle
hazard detection systems.

In [20] authors proposed a DNN hybrid architecture, stacked autoencoder (SAE) and stacked denoising
autoencoder (SDAE) for ultrashort-term and short-term wind velocity prediction. Auto-encoders (AEs) were
used to learn unsupervised feature learning from a supervised regression layer and wind data was used for
wind speed forecasting. It was observed that many unknown factors had significant effect on the accuracy of
existing methodologies used in prediction of wind velocities. Deep learning models with RNN have been
used to develop new rough extensions of SAE and SDAE that stood to wind uncertainties and ensure
higher accuracy in forecasting. Experimental results of this study proclaimed the proposed rough DNN
models are superior to the traditional DNNs and various existing methods which apply shallow
architectures and mean absolute error measurements.

In [21] authors provided a novel aggregation algorithm for wireless sensor networks using the
combination of rough set concepts with an improvised version of Convolutional Neural Network (CNN).
The designed model was used for the extraction of features and training in the sink node. The rough set
concept was adopted in order to simplify information effectively and to reduce tagged dimensions. When
data features were removed from the granular deep network by cluster nodes, these data functionalities
have been transferred to the sink node to further increase the life span of the network by reducing data
density. Simulation results in the study helped to compare the existing data aggregation algorithms
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wherein in terms of energy consumption, the proposed granular CNN model contributed significantly
towards enhancement of accuracy in data aggregation.

In [22] authors provided a brief summary and functionality of the association of IoT with sensing and
wireless technologies for the implementation of the necessary health applications. In [23] authors proposed a
prediction model based on DNN, which used as a patent indicator as predictors by the company’s financial.
Proposed approach has two phases: a learning phase and another is a fine-tuning phase. The learning stage
uses limited Boltzmann machines and the fine-tuning stage uses the latest data sets to implement a back
propagation algorithm, which reflect the recent trends pertinent to relationships between predictor-
company relations.

In [24] authors checked the performance of generated data using the IEEE 802.15.4 standard. The DNN
was used to model the relationship between different communication parameters and delays. The evaluations
identified DNN model being capable of achieving optimum level of forecast accuracy outperforming other
popular regression models. The study also highlighted the success of the model even further due to its ability
to generate comparable accuracy when trained with small fraction of data.

In [25] authors focused on development and implementation of multi-source data fusion algorithmic
model (JDL) for the diagnosis and prediction of faults in mechanical equipment. The JDL fusion model
was relatively mature, yet best suited for mechanical fault diagnostic applications. The ideas of this
approach correlated with that of the hierarchical fusion model and hence were prevalent in the diagnosis
of mechanical faults. The basis of this model was neural network in convergence with data pre-
processing algorithms like SVD, EMD and WPD to achieve better accuracy. Similarly fusion algorithms
were deployed based on deep learning approaches capable of directly training and extracting data for
analysis and prediction purposes.

The management of on-site maintenance visits is an important requirement for the successful operation
of IoT networks. In particular, on-site visits to replace or recharge depleted batteries may be required in
battery powered devices. For this purpose, practitioners often use prediction techniques to estimate the
battery life of the deployed devices. Battery life is one of the biggest challenges for IoT at present [26].

In [26] authors concentrate on the actual battery lifetime and battery lifetime predictions during the
development of the deployed system with discharge patterns. The result shows the difficulties of making
predictions about battery life in an effort to encourage more study. In [27] authors have used four
different machine learning techniques that are used to handle the problem of remaining useful life battery
estimates under different flight conditions. Based on multiple experimental flight data conditions, the
effectiveness of the overall machine learning techniques in the field of battery prognostics are evaluated.

In [28] authors present a deep learning method that employs DCNN to estimate cellular capacity based
on measurements of voltage, current, and charging capacity for a partial charge cycle. In accordance with our
knowledge, this is one of the first attempts to apply a deep learning to online Li-ion battery capacity
assessment.

Tab. 1 present a comparative study of the various research works conducted in the field of Deep Learning
and Roughsets theory.

3 Preliminaries

In this section the algorithms and methods used in this study are explicitly discussed.

3.1 Rough Sets

The conventional mathematical methods like crisp sets failed to resolve unclear and vague problems which
acted as the prime motivation among researchers to work in a direction to solve such problems where
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approximations would play a major role. The concept of Rough sets was first proposed in [29] where the
primary emphasis was on selection and extraction of features, data reduction and generation of decision rule.

Table 1: Comparative study among different Deep Learning and Rough Sets

Author Contribution Advantages Disadvantages

Lopez et al.
[30]

A classifier for monitoring
Network traffic is designed
hybridizing RNN with
CNN.

Robust Method and
F1 detection scores is
excellent.

High-level header based data
is used extracting from the
data packets for training the
model.

Fan et al. [31] PSO algorithm and Rough
PSO algorithm is proposed
considering the rough set
Concept

Rough PSO also is used for
classification. Faster
convergence speed also
better precision

Trapped in locally optimum
solution and Time
complexity

Mahdavinejad
et al. [32]

ML Techniques are studied.
Applications of IoT, IoT
data characteristics and
relevant technical
implementations are
explored.

The methods surveys have
been identified to be
suitable with ease of use in
various types of problems

Present issues in the field of
smart data analytics have not
been included.

Manogaran
et al. [33]

An optimized Bayesian
neutral network is proposed
consisting of densely
connected layer is
proposed. The model helps
to detect temperature
imbalance in the field of
healthcare.

Problems relevant to
multiple access based
physical monitoring system
is resolved.

Methods to scale the devices
is excluded from the study.

Chakraborty
et al. [34]

Make use of Neighborhood
Rough Set (NRS) in
exploiting the uncertainty of
tracking the object in a
video sequence.

Without any prior
knowledge and variations in
size and speed also, propose
the rack of multiple objects.

In the areas of signal
processing, the main concern
of NRS filter and
intuitionistic entropy are
unsupervised prediction and
handling ambiguity.

Hassan et al.
[35]

A novel approach is
proposed based on concepts
of rough sets to develop ML
and soft computing using
DL architecture. The
method caters to solve real-
life problems.

Approach focuses on
integration of local
properties pertinent to
individual decision table.
The method attempts
enables acceptable global
decision making.

RS assumes the presence of
single decision-making table,
whereas real-world problems
involve numerous decisions
from varied decision-making
tables.

Otero et al.
[36]

ACO algorithm is proposed
incorporating widely used
techniques from standard
decision tree and ACO
algorithms.

Comparison of 22 publicly
available data sets including
three decision tree
algorithms - CACDT,
CART, and C4.5

Results are statistically proof
but with single test has done.

IASC, 2021, vol.27, no.2 457



Fuzzy and rough sets have been considered as complimentary simplifications of the classical set theory
concepts. The recourse to two definable subsets (ψ) is loosely defined by subsets of a universal structure (U).

As per the theory of Rough sets, there exist four classes namely -

A is roughly X - definable, iff X(A)≠ ψ ∧ X¯ (A) ≠U

A is roughly X - definable, iff X(A) = ψ ∧ X¯ (A) ≠U

A is roughly X - definable, iff X(A) ≠ ψ ∧ X¯ (A) = U

A is roughly X - definable, iff X(A) = ψ ∧ X¯ (A) = U

3.2 Accuracy

Accuracy of any rough set (A) can be measured by the possible values of target set (A) to the
immediate set.

aX ðAÞ ¼ XAj j= XA�j j (1)

where A - represents the carnality of set A and α X(A) lies in between 0 and 1.

3.3 Attribute Dependency

It is the most significant element in determining the variables from the rough sets. Considering two sets
(X, Y), its equivalence classes is considered as [A]X, [A]Y where Yi is the equivalence class from the
attribute set Y. The dependency for the other set X, η can be calculated as

g ¼ cðX ; Y Þ ¼
Xn

i¼1

A Xð ÞYij j
U

(2)

From Eq. (2), it is evident that If γ(X, Y) = 1 then Y depends on X, on the contrary, if γ(X, Y) ≤ 1 then Y
partially depends on X.

3.4 Deep Neural Network

DNN is one of the standard methods for generating classification models where learning can be of any
forms supervised, unsupervised or semi-supervised [37,38]. DNN parameters are used to examine
recognition tasks, which tend to provide best performance over datasets. A DNN builds a deep
architecture by taking self-encoders for the representation of hierarchical features. The Fig. 1 illustrates
the structure of DNN architecture, consisting of an input layer, hidden layers, and an output layer. The
data set acts as an input to the input layer.

Figure 1: Deep Neural Network (DNN)
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The input to neuron in the first hidden layer is given in Eq. (3)

A1 xð Þ ¼
X

C1 x; yð Þ ay þ z1 xð Þ (3)

where C1 (x,y) and z1 (x) are the weight and bias respectively. The output of the neuron x in the first hidden
layer is given by h1(x) = Activation Function (A1(1)) where Activation Function (.) is a particular activation
function used for the DNN.

3.5 XGBoost

XGBoost is one of the most effective approaches in ML which implements the concept of decision trees
in regular successions without any gaps [39]. Considering the aspect of computing paradigms, the model
primarily uses gradient boosting framework for optimized estimations. Fig. 2 gives a detailed view on the
various forms of gradient boosting and the process of effective data handling using paralleled tree
building segment. XGBoost basically is a form of boosting algorithm that convert weak learners into
stronger ones which basically improves the process of random guessing. Boosting as a popular
methodology is a sequential process wherein trees are developed using information of previously
developed trees in a sequential process following one another. Hence by learning from data, the process
improves the resultant predictions of the following iterations. The algorithm also renders good rate of
regularization in boosting the model and handles the missing values appropriately. Hence, XGBoost
stands extremely appropriate for classifying the labels by modeling its attributes. Numerous researchers
have prioritized the use of XGBoost algorithm in comparison to other algorithms due to its ability to
generate accurate results ensuring optimal performance level.

3.6 Linear Regression

Linear Regression is one of the best supervised algorithms with declared output having perpetual and
constant slope. It predicts values from a range of enclosed data values. Simple regression and multi-
variable regression are the forms of Linear Regression. Simple regression and multi-variable regression
are usually referred by

Figure 2: XGBoost
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y ¼ mxþ C (4)

fðx; y; zÞ ¼ a1 þ a2yþ a3z (5)

where x,y,z represents attributes, m, a1, a2 and a3 are variables for the regression process. Statistical methods
can be used to measure and reduce the size of the error variable to improve predictive power of the model.

3.7 One Hot Encoding

One Hot Encoding is a process of exemplifying categorical values into binary numbers. It is a known
fact that machine learning algorithms fail to work on categorical data and hence have to be converted to
numbers where one hot encoding technique plays its significant role. As a natural reaction it is possible to
opine on the use of integer coding directly but it has its limitations when used on relationships of the
natural ordinal types. In one hot encoding technique, the categorical values in the data are directly
assessed to integer values and each integer value is changed to a binary value [40].

4 Proposed Model

The architecture of the proposed model is depicted in the Fig. 3. The steps involved are: The IoT
dataset collected from the Chicago District Beach Water District [41]. The sensors are used in six
different district locations to monitor and detect indicative measurements of beach name, date of
measurement, water temperature, turbidity, transducer depth, wavelength, and wave duration for six
places per hour during the summer.

a. Preprocessing plays a crucial role in machine learning algorithms.

� Treat Missing Values: The missing values in the dataset are filled with the respective attribute mean,
which makes the dataset ready for further analysis. The dataset consists of ten features, out of which

Figure 3: Proposed Rough Set Based DNN Architecture
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two features are time tag driven, which do not contribute to the battery life prediction of the sensor
node. Therefore, these two features are omitted for further analysis. The remaining eight features
consist of categorical data, which also requires processing.

� One-Hot Encoding: In the next step of processing, the one-hot encoding scheme converts the
categorical data into numerical data. There are eight features with various instances that get
extrapolated to 206 features.

� Standard scaler Normalization: Further, the standard scaler normalization technique is applied on
the numerical dataset, which enables standardization of the features transforming the mean of the
distribution to 0. This ensures most of the values in the dataset range within 0 and 1.

b. The dimensionality reduction technique is applied to the used data using rough Set theory.

c. The reduced dataset is then fed into a deep neural network model for predicting the sustainability of
battery life.

d. The DNNmodel is evaluated against the traditional state of the art models to validate the performance
of the predictions.

5 Results and Discussion

Dataset Description: The experimentation was carried out in a personal laptop with 8GB RAM, 500GB
of Hard-disk, Windows 10 operating system and coding was done using Python 3.8. The dataset used for this
experimentation is of the Chicago Park District Beach Water collected from [41]. There exists specific
sensors mounted in the water at specific beaches along the Michigan Lakefront in Chicago Park District.
These sensors are used in six locations in the district to track and detect indicative measurements
pertaining to the name of the beach, the date of measurement, the temperature of the water, the turbidity,
and the depth of the transducer, the wave length and the wave duration for six places per hour during the
summer. The attributes of the dataset are described in the below Tab. 2. The dataset holds water sensor
data for 10 characteristics in all 39.5 K cases. As shown in the following Tab. 3, the location where water
sensors are mounted on the beaches.

Table 2: Chicago Park District Beach Dataset

Column
Name

Data Description Unit of the Gathered
Sensor Data

Range of Data

Beach Name Name of the beach where water sensor is
deployed

Plain Text String 6 locations

Measurement
Timestamp

Measurement is done on hourly basis in a single
day throughout the season

Date and Time 30/8/2013 8.00 AM &
11/9/2019 11.00 AM

Water
Temperature

Temperature of water at the time of
measurement

Degree Celsius 9.1 to 31.5

Turbidity Turbidity of the water waves Nephelometric
Turbidity Units
(NTU)

0.01 to 1683.48

Transducer
Depth

Depth Meters −0.082 to 2.214

Wave Height Height of the water waves Meters 0.013 to 1.467

Wave Period Period at which the waves occur Seconds 1 to 10

Battery Life Voltage of the battery remaining for the purpose
of deciding the time for replacement

Numeric 4.8 to 13.3
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5.1 Metrics used for Evaluating the Model

Mean Squared Error (MSE): This is basically an average estimator that allows the researchers to
determine the difference between the value and the actual value.

MSE ¼ 1

m

Xm

i¼1
xi � ~xið Þ2 (6)

where xi orthoginal value and ~xi is the predicted value and m is the number of observations.

Mean Absolute Error (MAE): The mean absolute error metric measures the difference between a pair
of continuous measurements in a single specific phenomenon. It reports that all the findings in progress show
the same absolute error.

MAE ¼ 1

m

Xm

i¼1
xi � ~xij j (7)

Root Mean Squared Error (RMSE): The statistics are commonly used to assess the magnitude of the
prediction error and aggregates the same to a single measurement for assessing the strength of the prediction.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1
xi � ~xið Þ2

r
(8)

The MAE calculates similarity of the projections to potential results, while the RMSE is the standard
deviation of the sample from the discrepancies between the expected ~xi and the observed xi values, which
measure the intensity and direction of a linear xi � ~xi relation.

Test Variance Score (TVS): This metric calculates the variance between the actual values and observed
values from the cumulative average of all expected rates generated by the forecast model or algorithm. The
main goal of the predictor is to have a low variance performance. h is the sum of the variations between the
observed and the predicted values.

h ¼ ztest i½ � � ~xið Þ2 (9)

z ¼ observed � actual

standarderror
(10)

z is every z[i] value that is observed minus the sum of the average of the ztest values that are observed.
The variance is,

Table 3: Location of Water Sensors Deployed in the Beaches

Name of the Location of the water sensor Location of the Sensor (in Latitude and Longitude)

63rd Street Beach (41.784561°, −87.571453°)

Calumet Beach (41.714739°, −87.527356°)

Montrose Beach (41.969094°, −87.638003°)

Ohio Street Beach (41.894328°, −87.613083°)

Osterman Beach (41.987675°, −87.651008°)

Rainbow Beach (41.760147°, −87.550081°)
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TVS ¼ 1� h

z
(11)

5.2 Dataset Preparation for Prediction

Real time raw data for water are collected from different places. Since the data is raw, there are few
instances with some features missing, as the battery drain the sensor reducing battery sustainability. There
is a possibility that some time-stamp instances would also not be usable until the battery is replaced. But
filling in of missing values is extremely important before initiating the process of forecasting using the
ML model. In the present study, the missing values in the dataset are first filled with the the respective
attribute mean which makes the dataset ready for further analysis.

It is known from the data summary that out of ten characteristics, two are time tag driven, which do not
contribute to the battery life prediction of the sensor node. Therefore, both features are omitted for further
analysis. The remaining eight features of the Tab. 2 consist of categorical data which also requires
processing. Thus, the one-hot encoding scheme converts these categorical data into numerical data. There
are eight features with various instances that are extrapolated to 206 features. The transformed sensor
results were then normalized from 0 to 1 using the Standardscalar method.

The next attempt was directed to extract features having higher impact on battery life prediction. Also
the ones with negative impact were eliminated using rough sets. The number of features thus got decreased to
182 as part of dimensionality reduction. These features have the best impact on the target class prediction.

Prediction Model: The DNN used in the prediction model consisted of one input layer with
128 neurons, five hidden layers with 256, 256, 256, 128, and 64 neurons respectively and one output
layer with 1 neuron. The Adaptive Moment Estimation (ADAM) Optimizer and the Relu activation
function are used for compiling the prediction model. Tabs. 4 and 5 provide an overview of a DNN
prediction process considering the use of rough sets in contrast with non-inclusion of the rough set technique.

Performance Evaluation: The proposed predictive model is evaluated against other commonly used
state-of-the-art models, namely DNN, Linear Regression and XGBoost, for validating the predictive
effect of the model using DNNs with rough sets integrated for dimensionality reduction. The results
integrating rough sets with DNN and without are critically analyzed. The data is shown in the Figs. 4–6

Table 4: Prediction Model DNN with rough sets as Dimensionality Reduction

Layer Type Shape Parameters

Dense\_17 Dense 128 22123

Dense\_18 Dense 256 31451

Dense\_19 Dense 256 63652

Dense\_20 Dense 256 63652

Dense\_21 Dense 256 52244

Dense\_22 Dense 128 31475

Dense\_23 Dense 64 7856

Dense\_24 Dense 1 61

Total Parameters 272514

Trainable Parameters 272514
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highlights the effects of the random selection for 25 data instances. The same experiment is repeated after
reducing the dimension using rough sets with respect to all the prediction models. The obtained results
are shown in the Figs. 7–9. Post observation of the all the images, the proposed model shows the better
results when we compare the other models like DNN, Linear Regression, XGBoost without roughsets.

The proposed model is evaluated on the basis of various standard performance metrics: Mean Absolute
Error, Mean Squared Error, Root Mean Squared Error, and Test Variance [42–47]. A comparison of different
machine learning models is shown in Tab. 6, values of MAE indicate the superiority of Roughsets DNN
where DNN, Roughsets Linear Regression, linear regression, Roughsets XGBoost and XGBoost achieve
MAE values of 5.16, 5.25, 6.45, 979.62, 5.34 and 5.47, respectively.

The Figs. 4–9 highlight the residual battery life (mAh) for the various prediction models namely Linear
Regression, XGBoost, DNN, Linear Regression + Rough Set, XGBoost + Rough Set, DNN + Rough Set. It
is pertinent to mention that the primary focus of the work was the prediction of battery life in terms of residual
life of battery when used in sensors of Chicago district beach water. The more life remains, the working
ability would automatically get extended for data collection of these sensors for prolonged time period.

Table 5: Prediction Model DNN without Dimensionality Reduction

Layer Type Shape Parameters

Dense\_14 Dense 128 25624

Dense\_15 Dense 256 32123

Dense\_16 Dense 256 64634

Dense\_17 Dense 256 64634

Dense\_18 Dense 256 64634

Dense\_19 Dense 128 31684

Dense\_20 Dense 64 7956

Dense\_21 Dense 1 54

Total Parameters 291343

Trainable Parameters 291343

Figure 4: Linear Regression Model Plot
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Figure 5: XGBoost Model Plot

Figure 6: Deep Neural Networks Prediction Model

Figure 7: Linear Regression with Rough sets
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6 Conclusion and Future Work

There is no doubt that there are significant studies relevant to application of IoT in marine environment.
But there exist lag in research which focus on energy optimization aspects of IoT applications especially
towards enhancement of sustainability of battery life. In the present study a novel approach has been

Figure 8: XGBoost with Rough sets

Figure 9: Deep Neural Networks with Rough sets

Table 6: Evaluation of Prediction Models using Standard Metrics

Model Used MAE MSE RMSE TVS

DNN + Rough sets (Proposed) 5.16 35.68 5.85 0.11

DNN 5.25 36.81 5.98 0.17

Linear Regression + Rough sets 6.45 80.47 8.74 −0.23

Linear Regression 979.62 16920158.899 40786.5 −256623.7

XGBoost + Rough sets 5.34 45.58 6.12 0.26

XGBoost 5.47 44.12 6.31 0.29
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adopted based on converging rough set with DNN to predict battery life of the IoT network with optimum
accuracy. The normal pre-processing steps used in this approach were further refined incorporating the rough
set approach for extracting significant features which has contributed immensely towards more accurate
predictions. The results of the model were compared with the state of the art techniques to establish its
superiority. As part of future work, the same model can be deployed on several IoT applications
rendering home surveillance, healthcare and defence services. Also the scalability and robustness of the
model can be validated by testing the same on magnanimous IoT application like traffic predictions, air
pollution, waste management etc.in smart city setups. The predictions of battery life would also guide in
the design and development of energy efficient products involving IoT and sustainable energy technologies.
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