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Abstract: The National Center for Education Statistics study reported that 80% of
students change their major or institution at least once before getting a degree,
which requires a course equivalency process. This error-prone process varies
among disciplines, institutions, regions, and countries and requires effort and
time. Therefore, this study aims to overcome these issues by developing a deci-
sion support tool called TiMELY for automatic Arabic text recognition using arti-
ficial intelligence techniques. The developed tool can process a complete
document analysis for several course descriptions in multiple file formats, such
as Word, Text, Pages, JPEG, GIF, and JPG. We applied a comparative approach
in selecting the highest score using three Arabic text extraction algorithms: term
frequency-inverse document frequency measure algorithm, Cortical.io tool with
Retina Database, and keyword extraction using word co-occurrence algorithm.
The data repository consisted of 1000 datasets built from five different faculties
at King Abdul-Aziz University and King Faisal University. It was followed by
a discussion of the evaluation techniques using precision and recall measure-
ments, which indicated that the keyword extraction using word co-occurrence
algorithm scored 90% for the English language and 80% for the Arabic language
in terms of the F1 measure that focuses on the linguistic relation between words.

Keywords: Text mining; artificial intelligence; Arabic text recognition; course
equivalency; decision support system; semantic text processing

1 Introduction

A study conducted between 2011 and 2014 by the National Center for Education Statistics (NCES)
revealed that nearly one-third of students each year realize that they did not enroll in the right institution
or select a major of their interest [1]. NCES also conducted the same study in 2017 and showed that 80%
of the enrolled college students changed their major within the first 3 years of their studies [2]. To correct
their choices, students have the option of changing their major or transferring to another university and
go through the course equivalency process. The college faculty or the institution assigns academic affairs
and the responsible equivalency administrators to handle students’ transfer. Their primary responsibility is
to enforce that the correct equivalency procedures are applied for the completed courses before the
student’s transfer occurs [3]. On average, the course equivalency procedure takes 14 business days, but it
takes months in Saudi universities in some cases due to strict governance and manual practice. For
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example, when a student fills out the transfer application from college A to college B, the request will be
denied by the academic affairs if the courses’ descriptions are not attached. Moreover, a new request with
all required documents must be initiated for transmission to the responsible equivalency.

This study aims to develop a decision support tool for processing course equivalency; it is based on
artificial intelligence (AI) using text mining and recognition addressing the Arabic language challenges.
The developed tool analyzes and compares the courses’ descriptions by extracting relevant keywords in
English or Arabic using text mining and recognition techniques. The work highlights the effect of
merging AI techniques (text mining and recognition) with the decision support systems (DSSs) and
compares the scores of three algorithms’ results. Text mining is an automatic process of converting
human language text into meaningful and valuable information or knowledge utilizing machine learning
algorithms [4]. Meanwhile, text recognition is the process of detecting, recognizing, and segmenting
characters from an input image and converting them to an editable text [5]. The proposed tool takes the
educational administrative processes into a new dimension of AI-based service and thus enables students
to decide in advance whether to transfer to another university or college by informing them if the courses
are accredited in the new college. For administration, the process becomes faster, saves time, and requires
less effort. The researchers selected a comparative approach using three techniques for creating and
testing to minimize the equivalency process’ errors during the implementation. The work produced the
first bilingual tool specialized in the course equivalency process using AI techniques of text and
recognition. The course equivalency’s primary problem is that the process varies among disciplines,
institutions, regions, and countries. Furthermore, the process is date and place specific because it depends
on the time and place of studying the course. Many prestigious international universities, such as McGill
University, Washington University, and Iowa State University, have proposed systems to automate the
process. However, the systems’ operations are still not fully automated and limited only to the English
language. The equivalency process for the Arabic language is essential for many universities in several
countries, and the administration at King Abdul-Aziz University (KAU) is keen to improve the current
process for making it fully automated. Therefore, one of our created TiMELY tool’s main objectives is to
support management for electronically equalizing courses completed for transferred students from an
accredited university to KAU or even among KAU colleges. TiMELY, which is based on text mining
techniques, analyzes and compares course descriptions when uploaded as Word, Text, Pages, JPEG, GIF,
and JPG file formats. Then, the tool works in automated and manual mode to support a higher level of
accuracy. It performs data extraction based on predefined keyword relevancy and allows a person in
charge of the process, called the responsible equivalency, for the course equivalency process to modify
the keywords if needed. TiMELY autonomously decides whether to equalize the given course for the
transferred student.

With all the mentioned issues to illustrate the need for an automated system in the previous section, the
main challenge for TiMELY is to support text mining and recognition techniques efficiently for the Arabic
language. This work implements a DSS to develop a new tool called (TiMELY) using Text-Mining based on
course EquivaLencY procedures. DSS assists in analyzing massive amounts of data to enhance decision
makers’ judgments during the equivalency process [6]. We incorporated Arabic in addition to English
languages into TiMELY because the Arabic language is widely used, and it is the official language in
Saudi Arabia and 25 other countries in the region. A total of 300 million people speak Arabic, and the
number will increase exponentially. Several other languages also use the Arabic alphabet, such as Urdu,
Hebrew, Persian, Jawi, and Kurdish [7]. The rapid technological evolution in AI has increased
technological companies’ interest in developing a practical tool for Arabic text mining and recognition [7].

The Arabic alphabet differs in the way it is drawn, and the reading direction from right to left makes the
text mining techniques for other languages unsuitable for the Arabic language. Arabic language text
recognition is complicated because of the cursive and overlapping writing nature of the characters (Fig. 1)
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and many dots and diacritics that differentiate between letters [7]. Diacritics (Ta-ShØ-ki:-lØ: ليكتش ) are short
vowels known as (Dammah, Kasra, Fatha, Sukun, Shaddah, Tanwin, Hamza, Maddah, Alif Khanjariyah) and
written on top or underneath a character that could change the meaning of a word (we elaborated more with
examples on Tab. 1) (Fig. 1) [4–8]. Furthermore, the Arabic language has 28 characters, each of which has
two to four shapes according to its position in a sentence. For example, the letter (Yaa: (ي has four different
representations: word initially indicating a verb in the present tense, (Ya-dØ-ru-sØ: سردي : he is studying);
word medially representing a noun to indicate dual, (Da-rØ-sai-nØ: نيسرد : two lessons); word finally
specifying ownership of a noun (Da-rØ-si: يسرد : my lesson); and in an isolated form (Mi-hØ- wa-ri: يروحم :
pivotal). Furthermore, unlike most languages, the Arabic language is written from right to left. Moreover, if
one of the characters (DaaØl: ,(د (Alif: ,(أ (ZaaØl: ,(ذ (Raa: ,(ر (zaaØy:ز), and (Waa/w: (و occurs mid-word,
then the word becomes separated into two or more sub-words. The possibility of overlapping also increases,
especially with a specific type of fonts; for example, “Diwani” and “Andalusi” (Fig. 1 and Tab. 1) [9]. The
large number of available Arabic fonts complicates the text recognition process as well.

Figure 1: Example of semantic difficulties for Arabic word structure

Table 1: Examples of Arabic diacritic complexities

# Word with
diacritics in Arabic

Transcription Diacritic position and type
with the letter La:m

Example

1 فلِأَ A-li-fØ Kasra underneath the letter
La:m

The letter Alif is the first letter in the
alphabet

2 فلْأَ A -lØ-fØ Fatha on top the letter La:m Ten decades is equal to a thousand-year

3 فَلٰأَ A -lØ-la-fØ Shadda on top of the letter
La:m

The author composed a new book
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More complexities exist at the morphological level. For example, the single word (Wa-sa-ya-ktub-uwna-
haa: اهَنَوبُتُكْيَسَوَ : then, they will write it) [10] consists of different morphemes described in Fig. 1 that we
redesigned, which emphasizes details to highlight the complexity. The general structure of an Arabic
word is as follows: [Proclitic(s)+[Prefix(es)]] + stem + [Suffix(es)+[Enclitic]]. The stem is the heart of all
words, such as in Fig. 1 example (KØtub: بُتُكْ ), while affixes are the prefix and suffix that can be attached
to the stem, such as (Yaa: (يَ and (Uwna: نَو ). By contrast, the clitics are one to three letters that
symbolize the proclitic and enclitic, such as (Waa: ,(وَ (Saa: ,(سَ and (Haa: اهَ ) in the example [11].

In the segmentation and extraction method, the Arabic language poses several difficulties during the
automation and processing, which requires the involvement of a human actor to edit the result of a
processed document manually. Moreover, building a bilingual database requires accurate translation and
mining capabilities to achieve acceptable efficiency.

2 Related Work

Many prestigious universities, such as McGill University, have attempted to solve course equivalency
problems using their automated systems. An educational DSS typically explores data using analytical
models to generate decision makers’ options to improve policies, strategies, planning, and monitoring of
the educational system. The most dominant tools are explained below, and we also summarized the
advantages and disadvantages of Tab. 2. The work used limited data from two Saudi Universities; with
big data, different techniques would be recommended to use unlimited data; another limitation is related
to the generated information from the comparison considering that no accredited official body exists for
the reported results.

2.1 King Abdul-Aziz University Decision Support Center (KAU DSC)

The KAUDSC is located in Saudi Arabia, and its objective is to assist the quality of scientific research and the
educational process. It mainly provides information about the University’s programs’ standards and regulations and
performance indicators for decision makers. It also improves the value of students’ learning and the University’s
utilities’ quality. The data at KAU DSC were collected from all the University’s sectors and modeled to support
its strategic objectives. The KAU DSC course equivalency system is still under development.

2.2 MHE’s Certificate Equalization System

The Ministry of Higher Education of Kuwait uses an online equivalency system to equalize certificates
and makes it available to every University. The user must have a registered account to log in and benefit from
the system’s services even before uploading a certificate to the system, which is stored and equalized
manually. Finally, the equalization results are saved in the server database.

2.3 McGill University’s Course Equivalency System

McGill University’s Course Equivalency System is available in Canada to support extracting course
information within the University or across educational institutions. The system has a database that contains
the course names and descriptions for various universities around the world. The system provides users
with clear instructions on using and storing the University’s database’s equalization results. Unfortunately,
the equalization process is performed manually, and the system only supports the English language.

As shown in Tab. 2, current available DSSs, as discussed above, do not complete the equalization
process for courses electronically and require more human involvement in the loop. It is contrary to our
proposed tool, TiMELY, which can automate the entire course equalization process and limit human
intervention to assist in training the algorithm to only the process’ final phases.
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3 Proposed Method

On the basis of the interviews, survey, and observation, the course equivalency system is conducted
manually. It involves mainly three agents: the applicant, academic affairs, and responsible equivalency.
First, we designed a survey targeting the 80 transfer students in all faculties during the first semester to
determine their need for an automated system and the end-user interaction. Then, we interviewed the five
academic affair representatives, plus the equivalency responsible in all faculties, and the deanship of
distance learning and e-learning based on their defined tasks to fully understand the existing system and
perceive their expectations.

We found that 72% of students were unsure of the number of credit hours gained after equalization and
the remaining credit hours in the study plan when transferring to another college or major. A total of 90% of
students thought that an automated system for course equivalency would facilitate the procedure if it is
applied before the transfer request. From an academic affair viewpoint, the process and procedure are
time and effort consuming. We went further and decided to investigate the number of available decision
support tools for the Arabic language and found only two (mentioned in Section 4).

Table 2: Comparison among educational tools

# Systems Advantages Disadvantages

1 King Abdul-Aziz University
Decision Support Center
(KAU DSC)

� Support Arabic language
� Helps in decision making
� Enhance the quality of the
University’s utilities

� Place the collected data into
use to strategic objectives

� Only limited for KAU use
� The system is not fully
automated

� Does not serve the course
equivalency process

2 MHE’s Certificate Equalization
System

� Specialized in the course
equivalency process

� Support Arabic language

� Only limited to Kuwait’s
University

� The equivalency process is
conducted manually

� Time consuming

3 McGill University’s Course
Equivalency System

� Specialized in the course
equivalency process

� Support Canadian and
American universities

� Does not support the Arabic
language

� The equivalency process is
conducted manually

� Time consuming

4 TiMELY � Specialized in the course
equivalency process

� Support Arabic and English
languages

� Uses AI techniques (text
mining and recognition)

� Automated system
� Help students in decision
making

� Minimize the errors in the
equivalency process

� Needs academic affair approval
(a human intervention)

� Needs more data training in
Arabic and English
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We started to build a dataset repository of 1000 keywords for selecting the optimal algorithm to bridge
the existing gap. Thereafter, we collected 50-course descriptions chosen randomly from the Faculty of
Computing and Information Technology, Faculty of Economics and Administration, Faculty of Law, and
Faculty of Arts and Humanities at KAU and Faculty of Finance at King Faisal University. The datasets
were divided equally between Arabic and English course descriptions. We tested the developed dataset on
keyword extraction algorithms, and the results showed that the keyword extraction using the word co-
occurrence algorithm [11] scored the highest in F1 score [12], with 90% for English course descriptions
and 80% for Arabic course descriptions. The results showed that the accuracy rate was insufficiently
good, and the word extraction process should be improved and increased more efficiently. TiMELY uses
the following user interface tools:

3.1 User Interfaces

The design of TiMELY interfaces follows the “10 heuristics” for user interface design [13]. TiMELY is
also a centralized decision support tool that operates among all the end-users: students, academic affairs, and
the responsible equivalency. It learns and accelerates the updating and analysis of data. We show the
interactions between the TiMELY tool and all the end-users in Fig. 2.

The process starts when a student applies for a new equivalency request in our tool. TiMELY will
validate the uploaded documents that request to check if the uploaded course description matches existing
courses’ descriptions. In case the course description does not exist or the student uploaded false
documents, then the tool will reject and terminate the request; otherwise, it will proceed. Next, TiMELY
will update the request status and notify the responsible equivalency for analyzing the courses’ contents.

Thereafter, TiMELY will display the extracted keyword list to the equivalency responsible. Then, the
equivalence responsible will choose to add, delete, modify, and save the keyword list. TiMELY will

Figure 2: TiMELY workflow
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automatically update the keyword list, calculate the percentage of matched keywords, and upload the course
description and the transferred department’s course. Subsequently, the tool will notify the academic affairs to
verify if the resulting percentage is valid according to the University’s regulations. If the request did not fulfill
all of the required University’s rules and regulations, then the academic affairs would specify the rejection
reasons, or he or she will accept the request, which will proceed and trigger TiMELY to update the status and
notify the student about the completion of the process.

4 Results

4.1 Technical Feasibility

The main aim of technical feasibility is to complete the project from a technical perspective [6,14,15].
The following section describes and compares different techniques of text mining and recognition.

4.2 Text Recognition

The text recognition process consists of five steps, as illustrated in Fig. 3. The first step is pre-processing;
it applies specific algorithms to the input picture or data to reduce noise for simplifying the next step [16].
The second step is text segmentation that defines the task of dividing the text into segments, where a page is
segmented into letters. Each segment is topically coherent, and cutoff points indicate a topic change [17].

A third step is an analytical approach called feature extraction. It is a critical aspect of Arabic text
recognition to achieve a high accuracy performance. It also distinguishes attributes of the segmented
characters for use in the fourth step, which is the classification step [9]. Such technique identifies and
assigns the segmented features into predefined classes. Each class provides a set of elements with some
type of similarity, where it could be beneficial for storing keywords and essential information in a database [7].

The fifth step is post-processing, which enhances the recognition efficiency by correcting linguistic
spellings and parsing the unstructured text [9]. Parsing is the process of breaking up ordinary
unstructured text and simplifying it. The unstructured text refers to a plain text file with no predefined
format in different forms, such as XML or HTML [12].

4.3 Text Mining

The text mining process saves time and effort and helps in supporting decisions [4]. We demonstrate the
workflow of the five phases of text mining implementation in Fig. 4.

First is the pre-processing phase or the post-processing phase in text recognition. It begins by filtering all
text of a given document, removing redundancies, eliminating words such as “a, an, the” plus conjunctions
such as “and, but,” and stemming the words. Stemming is a natural grouping of words with similar meanings
—the process of reducing the Affix to Suffix, Prefix, or root [4–18]. Second, the text transformation phase
defragments the text to a small unit called features (identifying features of the documents). This phase will
generate a massive number of features preparing for the next step. The third phase is called feature selection;

Figure 3: Text recognition steps

IASC, 2021, vol.27, no.2 525



it aims to minimize database space and simplify the searching technique by eliminating irrelevant features.
Those features could affect the algorithms’ logic and accuracy [19]. Fourth, the pattern selection phase stores
extracted data from the previous phase in a structured database. The final phase is to evaluate and measure the
results of the process [18–27].

4.4 Algorithm Analysis

We collected a dataset with 1000 keywords (500 Arabic and 500 English) during our data gathering
process. Then, we manually specified the list of keywords. Thereafter, we tested three keyword extraction
algorithms: term frequency-inverse document frequency (TFIDF), Cortical.io tool with Retina Database,
and word co-occurrence algorithm. We examined and compared the results using validation technique
calculations, namely, precision (P), recall (R), and F1 score. Then, we computed four measurements, as
shown in Tab. 3, which we designed based on [12–28].

The value returned for precision (P) represents the accuracy for the extracted keywords by the algorithm,
where the recall (R) represents the level of relevancy, and the value of the F1 score combines precision and
recall. Our aim while testing the algorithm performance was to obtain higher values for precision (P) and
recall (R) (high F1 score).

Figure 4: Text mining steps

Table 3: Measurements and equations

Name Definitions Equation

True Positive
(TP)

Number of resulting keywords that match the correct keywords

False Positive
(FP)

Number of resulting keywords that do not match the correct
keywords

True Negative
(TN)

Number of negative keywords that do not generate result after
applying the algorithm

False Negative
(FN)

Number of correct keywords that do not generate result after
applying the algorithm

Precision (P) The percentage of the true result against performance of incorrect
information retrieval

P = TP / TP + FP

Recall (R) The percentage of the true result against performance of forgotten
information retrieval

R = TP / TP + FN

F1 score A measure that combines precision and recall F1 = 2 (P*R / P + R)
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4.5 Experimental Results

From multiple existing algorithms and tools used in text mining, we selected the most suitable algorithm
to build our tool, namely, TiMELY.

1. Term frequency-inverse document frequency (TFIDF) measure algorithm [12] is the most famous
statistical algorithm for extracting keywords that appear frequently. It works directly on the top of
the fetched document and treats it as the “corpus.” TFIDF is robust and efficient for the dynamic
tenor because any change in the document requires updating prorated frequency counts. It is
typically efficient for a massive quantity of text documents, such as in scoring and ranking
documents in search engines.

2. Cortical.io tool with Retina Database [20] is an application of semantic folding, which is a newmodel
for natural language understanding that simulates how the human brain processes the text to
numerical representation named the semantic fingerprint, which allows intuitive text comparisons.
The Retina Database contains actual terms distributed over a 128 × 128 grid matrix as a 2D
structure. The topic location on the matrix in the semantic space mimics the neocortex.

3. Keyword extraction using word co-occurrence algorithm [11] after the text pre-processing phase and
stop word removal. The algorithm first generates a co-occurrence matrix to count the frequency for
each pair of terms. For example, if a term occurs in 11 different sentences, then the value of the terms
of co-occurrence is equal to 11. Accordingly, the algorithm creates a co-occurrence matrix by v2 (chi-
square measure) value; its equation is (N × G), where N is the number of unique terms in the text and
G is the frequent terms denoted as the set of the frequent. Thereafter, the algorithm measures
linguistic relations between words and extracts keywords. The co-occurrence algorithm focuses on
short contexts and quantifies the degree of bias during the co-occurrence circulation [21].
Frequent terms would have a significant meaning if the term’s bias degree scored a high v2 value.

According to the experimental results in Tabs. 4 and 5, the keyword extraction using word co-occurrence
algorithm achieved the highest performance for Arabic and English databases. TFIDF did not score well for
course description documents because of the shortness of text; most of the course descriptions were around
500 words or less. Furthermore, the Cortical.io tool with Retina Database achieved the lowest score,
particularly for the Arabic language.

Table 4: Test results for recall and precision for English descriptions

Algorithms TP FP FN Precision Recall F1M

Term Frequency-Inverse Document Frequency (TFIDF) 506 57 73 0.90 0.87 0.88

Cortical.io tool with Retina Database 483 112 97 0.81 0.83 0.82

Keyword Extraction Using Word Co-occurrence 517 39 62 0.92 0.89 0.90

Table 5: Test results for recall and precision for Arabic descriptions

Algorithms TP FP FN Precision Recall F1M

Term Frequency-Inverse Document Frequency (TFIDF) 278 127 108 0.68 0.72 0.70

Cortical.io tool with Retina Database 191 209 195 0.48 0.50 0.49

Keyword Extraction Using Word Co-occurrence 314 86 72 0.79 0.81 0.80
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Word co-occurrence accuracy in the Arabic text needs improvement. We enhanced the algorithm’s
results by developing an Arabic stop word list and involved a human intervention during the course
equivalency process. The equivalency responsible will approve the extracted keywords or modify them to
train the algorithm before TiMELY saves the results. The TiMELY results are shown in Tab. 6.

4.6 Testing Techniques

Testing is the procedure of debugging and checking errors when executing a program. It validates and
verifies whether the system has met all the requirements [22].

4.6.1 Unit and Integration Testing
Unit testing consists of several encapsulated classes, and every class contains different methods. We

performed unit testing using the primary methods [23]. Tab. 7 presents one of the methods’ results of the
extraction function in our tool TiMELY. We examined and validated the data using the xUnit open-source
framework. It considers the latest unit testing technology in C# [24].

4.6.2 Usability Testing
We tested the interfaces using the Feng-GUI tool, which is smart testing in measuring visual efficiency

and eligibility [25–29], to ensure the usability of TiMELY. It works by mimicking a 5 seconds eye-tracking
session for 40 end-users and develops advanced reports that predict human eye movement similar to the heat
map report [23–25]. This click tracking heat map report is a useful tool for collecting data about users’ clicks.
It visualizes areas that receive most of the user’s attention and interaction. The heat map colors depend on the
design and type of the website. If TiMELY used advertisement or were an e-commerce website, then the
emphasis will be focused (more red areas) on the advertisement picture. TiMELY’s interface design aims
to spread the user’s focus on all the page contents given that it is a DSS tool, which results in more green

Table 6: TiMELY test results for recall and precision

Algorithms TP FP FN Precision Recall F1M

Keyword Extraction Using Word Co-occurrence (English) 179 2 2 0.98 0.98 0.98

Keyword Extraction Using Word Co-occurrence (Arabic) 152 2 4 0.97 0.99 0.98

Table 7: Example of unit tests for the extracting keyword function

# Test case description Expected
result

Actual
result

Pass/
Fail

1 Test case 1 checks the method of text extraction from a text file format
the student’s uploads

Return true
values

Return true
values

Pass

2 Test case 2 checks the method of text extraction from a pdf file format
the student’s uploads

Return
false values

Return
false value

Pass

3 Test case 3 checks the extraction classes if the method extracts the
keywords from the text

Return true
values

Return true
values

Pass

4 Test case 4 checks the modification if the method stores the
responsible equivalency keywords that he or she adds

Return true
values

Return true
values

Pass
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areas. We tested TiMELY’s home interface, as shown in Fig. 5. The test showed that the user’s attention was
equally divided on the page, which validates the usability of the interface’s design.

4.6.3 Learnability and Performance
We implemented a usability test for measuring learning and performance by using 20 users from

academic affairs, responsible equivalence, and students. We first performed a usability pilot study that
gives us an overall knowledge of the user experience with the first version of TiMELY to improve it.
Second, all the users were asked to create a new request, login, and check the request; for each request,
we measured and recorded the time per user. Finally, the users answered the System Usability Scale
(SUS) questionnaire for measuring the system’s usability and user satisfaction in 10 sentences to evaluate
their experience with TiMELY (Fig. 6). The users evaluated their experience with TiMELY from 1 (do
not agree) to 5 (agree), and the success score was calculated depending on their responses. The
questionnaire’s result was a 92.5% success rate, which indicates the usability in TiMELY and that users
find the tool useful, learnable, and easy to use.

5 Conclusion and Future Work

We briefly presented an overview of the course equivalency process and its problems and discussed the
Arabic language challenges. We illustrated our developed bilingual decision support tool called TiMELY for
course equivalency using AI techniques (text mining and recognition). We described all algorithms and
functions tested using unit and integration testing. We also applied usability tests such as the SUS
questionnaire and heat map test for the end-users. The developed TiMELY tool scored 92.5% for overall
test performance. We recommend continuous development to overcome the system’s current limitations
using advanced AI techniques including web mining, deep learning, and knowledge representation for
unlimited data given that these technologies are always evolving. Furthermore, our tool is currently

Figure 5: Result of heat map test for the TiMELY home interface

Figure 6: Performance & time response results
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bilingual to extend the system’s implementation to cover various applications serving establishments,
companies, and government agencies that use Arabic text documentation. Our tool also needs more
enhancement to score higher F1M. We suggest adding multi-languages and test the tool using the Google
platform or IBM Watson and creating an innovative unified segmentation process linked to phonological
transcription in Arabic and similar languages.
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