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Abstract: Accurate prediction of water level in inland waterway has been an
important issue for helping flood control and vessel navigation in a proactive
manner. In this research, a deep learning approach called long short-term memory
network combined with discrete wavelet transform (WA-LSTM) is proposed for
daily water level prediction. The wavelet transform is applied to decompose time
series into details and approximation components for a better understanding of tem-
poral properties, and a novel LSTM network is used to learn generic water level
features through layer-by-layer feature granulation with a greedy layer wise unsu-
pervised learning algorithm. Six representative reaches in Yangtze River, namely,
the Jianli, Wuhan, Jiujiang, Anqing, Wuhu, and Nanjing are investigated, and water
level data from 2010 to 2019 are processed through temporal and spatial correlation
analysis, and combination-optimized to develop and evaluate the proposed model.
In general, the test average performances on RMSE and MAE are less than 0.045 m
and 0.035 m respectively, which outperforms the state-of-the-art models, such as
WA-ANN, WA-ARIMA and LSTM models. The results indicate that the
WA-LSTM model is stable, reliable and widely applicable.
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1 Introduction

The Yangtze River, being the longest river in China and the third longest river in the world, runs across
China from west to east, plays a vital role in the economic development. Water level prediction is not only
helpful for flood control in flood season and vessel navigation in dry season, but also conducive for waterway
regulation, port management, etc. Thus, accurately and timely prediction is particularly necessary.

In recent decades, a wide variety of approaches have been investigated for water level prediction, mainly
divided into model-driven and data-driven methods. The model-driven methods include experience formulas
between water level and water flow [1], generalized extreme value distributions [2], Muskingum model
parameters optimal estimation [3], mathematical expression between water level and tide [4], etc.
Generally, these models are parameter-based, frequently make a number of hypotheses ideal
circumstances, depend on hand-crafted features that are expensive to create and require expert knowledge
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of the field, in addition, they mainly focus on univariate data excluding the complex joint distributions,
resulting in sensitive to disturb. However, water level system in Yangtze River is complicated and
uncertain, from the long-term variation trends. Zhang [5] analyzed the annual maximum water level and
stream flow during the 1877–2000 year in the Yangtze river basin, and concluded that the periods of
water level changes were decreasing over time. Liu [6] explored the annual proportion of flood and dry
seasons, and suggested that the water level will emerge an irregular change. As for the factors influencing
water level as concerned, such as rainfall-runoff [7], tidal [4], three gorges reservoir [8], natural and
anthropogenic changes [9] can dramatically affect the performance of prediction. Thus, the use of model-
driven models would be disadvantageous in operational use.

The data-driven models, in the early periods, representative of shallow neural networks, including
support vector regression [10,11], artificial neural network [12–16] and hybrid models [17], these models
are non-parameter-based, which have the ability to approximate the distribution probability of water level
system regardless of its degree of non-linearity and prior knowledge, and have been demonstrated to be
effective solutions for hydrological prediction. Based on these models, some algorithms are investigated
to improve prediction capabilities, such as Levenberg-Marquard [18], feed-forward back-propagation
[19], generalized regression and radial basis function [20], differential evolution, artificial bee colony and
ant colony optimization [21], etc.

Neural networks can be specified an arbitrary number of input features, providing support for
multivariate prediction, many studies have concentrated on input features selection and extraction, such as
stochastic continuum temporal combinations of water level in previous time steps [22], the objective basis
on which historical water level have temporal impact on the future. Spatial combinations of different
locations according to the travel time that water flows to the downstream [23], the incentive origin is that
water level in different locations are spatially dependent, knowledge sharing is practical. Wavelet
transform to decompose time series into wavelet components [24–27], which is useful to obtain the
periodic components of the measured data, stationarity transform by difference operation that could help
explore any other systematic signals for better prediction.

Despite the huge improvements in water level prediction achieved by the above methods, the shallow
neural networks that do not have memory, which fail to capture the long-term evolution and can only
learn a mapping between input and output patterns, thus incapability to extract the overall temporal
interaction of multiple inputs. Recently, deep neural networks called deep learning, has dramatically
brought about breakthroughs to the shallow neural networks [28,29], including deep belief network
(DBN), convolutional neural network (CNN), stack auto-encoder (SAE) and recurrent neural network
(RNN), etc., these models are composed of multiple processing layers to learn representation of features
with multiple levels of abstraction, have get great achievements in processing images, video, speech and
text, etc. Unlike use the echo state in RNN as a supplier of interesting dynamics from which the desired
output is combined, the long short-term memory network (LSTM) [30], a typical RNN, use memory
block to store information for an arbitrary duration, effective at capturing long-term temporal correlations
in a sequence without suffering from the optimization hurdles that plague simple recurrent networks,
which may greatly improve prediction accuracy [31].

In this paper, we propose a deep-learning-based prediction model. Herein, a novel LSTM network is
used to learn generic water level features through layer-by-layer feature granulation with a greedy layer
wise unsupervised learning algorithm, and the discrete wavelet transform is applied to help to extract the
features preliminarily for performance improvement. The remainder of this paper is organized as follows.
Section 2 introduces the prediction methodology. Section 3 introduces the study area. Section 4 proposes
the prediction model. Section 5 shows the experimental results and some discussions. The conclusions
are drawn in Section 6.
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2 Methodology

LSTM is a special kind of RNN, unlike the repeating module in hidden layer has a very simple structure,
such as a single tanh layer in standard RNN, it is known as memory blocks in LSTM, each memory block
contains one or more self-connected memory cells and three multiplicative units: input gate, output gate and
forget gate. The input gate can allow incoming signal to alter the state of the memory cell or block it, the
output gate allows the state of the memory cell to have an effect on other neurons or prevent it, the forget
gate decides when to forget the output results and thus selects the optimal time lag for the input
sequence, this special structure has the ability of bridging very long time lags.

The discrete wavelet transform (DWT) has recently become a very popular when it comes to analysis
and denoising time series [32,33], which is used to decompose time series into a series of wavelet
components including both spectral and temporal information, and is beneficial to the detailed analysis in
contrast to the Fourier transform that only elucidates frequency information. The corresponding family of
the base wavelet is expressed as:

’j;k tð Þ ¼ s�j=2
0 ’ s�j

0 t � kso
� �

(1)

where j is the wavelet scale, k is the translation parameter, t is the time, ’ is the wavelet function,
s0 ¼ 2 and s0 ¼ 1 are universally adopted. The wavelet coefficients of a given discrete time
series x tð Þ can be obtained by:

c j; kð Þ ¼ 2�j=2
Z þ1

�1
x tð Þ’ 2�jt � k

� �
dt (2)

The coefficients c j; kð Þ can be divided into two parts: one is the approximation coefficient Aj nð Þ, which
is the high-scale and low-frequency components of x tð Þ, represents the stationary changing parts, reflects the
approximation of information. The other is the detail coefficient Dj nð Þ, which represents the low-scale and
high-frequency components, indicates the non-stationary changing parts, makes up the details of
information. The approximation and detail coefficients of the DWT for x tð Þ at level j can be defined as:
Aj nð Þ ¼

X
kEZ

hk�2nAj�1 kð Þ (3)

Dj nð Þ ¼
X
kEZ

hk�2nDj�1 kð Þ (4)

The reference decomposition level L is calculated according to:

L ¼ int log Nð Þ½ � (5)

where L is the decomposition level and N is the length of time series.

2.1 WA-LSTM Model Structure

In this study, the discrete wavelet transform is combined with the LSTM network for water level
prediction in one day ahead, the combination model WA-LSTM is shown in Fig. 1, mainly includes four
processes in the following order:

1. The feature selection to determine W . W is a collection of water level series that includes temporal
combinations of different lag observations and spatial combinations of different reaches.

2. The feature decomposition using wavelet function to transform each input feature W to low frequency
components Aj and high-frequency components Dj , where j is the wavelet decomposition level.
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3. The decomposed feature learning and prediction using LSTM network separately, the predicted
values are Âj and D̂j , respectively.

4. The feature reconstruction using wavelet function to get the predicted water level Ŵ .

2.2 Model Training

In shallow neural networks, the most widely used training algorithm is error back-propagation, while it
has been proven too difficult to train deep neural networks, empirically no better and often worse, a
reasonable explanation is that gradient-based optimization starting from random initialization may get
stuck near poor solutions. Recently, Hinton [28] has developed a greedy layer-wise unsupervised learning
algorithm that can train deep networks successfully. The training strategy mainly includes three aspects,
which can be stated as follows:

1. Design the architecture of the networks, and initialize parameters including weight matrices and bias
vectors randomly.

2. Pre-training the first layer at a time in a greedy way, using unsupervised learning from bottom layer to
top layer in order to preserve feature information from the input;

3. Fine-tuning the whole network by using back propagation method with gradient-based optimization
from top layer to bottom layer in a supervised way, for searching optimal parameters by minimizing
the cost function defined as:

F ¼
XT
t¼1

yt � ŷtð Þ2 (6)

where yt andbyt are the actual output and expected output at time t respectively.

3 Study Area

In this study, six routine surveillance reaches in the middle and lower of Yangtze River, including Jianli,
Wuhan, Jiujiang, Anqing, Wuhu and Nanjing are considered as the case study areas (Fig. 2). Water level is
measured daily according to the ‘Wusong zero’ baseline, datasets are obtained from the Changjiang Maritime
Safety Administration, and collected from January 1, 2010 to December 12, 2019.

Water level in Yangtze River changes daily and shows periodically trends. For instance, the
Jianli reaches, in Fig. 3, during 2010–2016, water level experienced three well defined periods: months of
1, 2, 3, 12 were in dry water period; months of 4, 5, 10, 11 were in moderate water period; months of
6, 7, 8, 9 were in flood period. In addition, it would seem obviously that water levels were different
and highly irregular at the same time in the past, also, from Tab. 1, it shows clearly that the maximum
daily water level difference of different year were quite different, which will bring great challenges to
accurate prediction.

Figure 1: The prediction structure of the WA-LSTM model
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Water level differ from the upstream to the downstream. Fig. 4 shows the changes of the proposed
reaches in 2010, it appeared that water level presented synchronous trends at Jianli, Wuhan, Jiujiang and
Anqing reaches over time, and gradually descended from the upstream to the downstream except Jianli
reaches, the same phenomenon can be also found in Wuhu and Nanjing reaches.

Figure 2: Study reaches in the middle and lower of Yangtze River

Figure 3: Water level trends of years in Jianli reaches

Table 1: The maximum daily water level differences in 2010–2016 at each reaches

Year Maximum daily difference (m)

Jianli Wuhan Jiujiang Anqing Wuhu Nanjing

2010 0.65 0.48 1.45 0.54 3.74 1.96

2011 1.04 0.81 0.62 0.68 0.59 0.81

2012 0.79 0.74 1.21 3.46 1.32 0.75

2013 0.80 0.59 0.92 0.34 0.38 0.83

2014 1.22 1.49 0.99 0.80 0.85 1.00

2015 1.08 1.31 1.20 1.08 0.72 0.96

2016 0.80 1.31 0.52 0.75 1.17 0.89
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4 WA-LSTM Model for Water Level Prediction

4.1 Input Features Selection

In neural network models, one of the most important issues for model training is to determine the input
features, in order to provide the best available input pattern for LSTM network, the correlation coefficients
are calculated based on the coefficient of determination R2:

R2 ¼ 1�
PT

i¼1 yt � ptð Þ2PT
i¼1 yt � �yð Þ2 (7)

where yt and pt are the observed and predicted water level at time t, �y is the mean of the observed water
level. Tab. 2 shows the temporal correlation coefficients between observed water level wt and wt�i at
each reaches, iE 1; 2; 3; 4; 5; 6ð Þ denotes the previous time step, as can be seen, the correlations between wt

and wt�i maintain high values, therefore, wt will be related to wt�i for prediction. Tab. 3 presents the
spatial correlation coefficients of observed water level wi

t between different reaches, iE 1; 2; 3; 4; 5; 6ð Þ
represents the Jianli, Wuhan, Jiujiang, Anqing, Wuhu and Nanjing reaches in order, according to the
maximum correlation coefficient values, the spatial association pairs are naturally the Jiujiang and Jianli,
Jiujiang and wuhan, Jiujiang and Anqing, as well as Wuhu and Nanjing.

Figure 4: Water level trends of reaches in 2010

Table 2: The temporal correlation coefficients between observed water level wt and wt�i at each reaches,
ie 1; 2; 3; 4; 5; 6ð Þ
Time step Temporal correlation coefficients

Jianli Wuhan Jiujiang Anqing Wuhu Nanjing
wt wt wt wt wt wt

wt�1 0.997 0.997 0.998 0.997 0.993 0.984

wt�2 0.989 0.992 0.993 0.992 0.986 0.963

wt�3 0.978 0.984 0.985 0.984 0.977 0.934

wt�4 0.966 0.973 0.974 0.973 0.966 0.912

wt�5 0.952 0.960 0.962 0.961 0.953 0.891

wt�6 0.938 0.947 0.948 0.948 0.939 0.874
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Considering the correlation analysis in Tabs. 2 and 3, the following prediction functions are defined in
Tab. 4, in which, the temporal correlation is investigated to explore the temporal dependence of each reaches
depend on the multi-step lag observations of historical data, while the spatial-temporal correlation extends to
research the spatial and temporal correlation between different reaches.

Table 3: The spatial correlation coefficients of observedwater level wi
t between different reaches, iE 1; 2; 3; 4; 5; 6ð Þ

represents the Jianli, Wuhan, Jiujiang, Anqing, Wuhu and Nanjing in order

w1
t w2

t w3
t w4

t w5
t w6

t

w1
t 1.000 0.839 0.888 0.877 –0.112 –2.498

w2
t 0.784 1.000 0.923 0.805 –1.556 –5.890

w3
t 0.866 0.932 1.000 0.972 –0.471 –3.552

w4
t 0.886 0.866 0.978 1.000 –0.021 –2.473

w5
t 0.505 0.154 0.450 0.509 1.000 0.671

w6
t 0.099 –0.319 0.016 0.033 0.810 1.000

Table 4: The Prediction functions studied in this paper

Prediction function Prediction Steps

Temporal correlation T wi
t�k ;w

i
t�kþ1; � � � ;wi

t

� � ¼ wi
tþ1 T kð Þ

Spatial-temporal correlation S wi
t�k ;w

j
t�k ;w

i
t�kþ1;w

j
t�kþ1; � � � ;wi

t;w
j
t

� � ¼ wi
tþ1 S kð Þ

wi
t ;w

j
t represent water level at reaches i and j at time t. i; jE 1; 2; 3; 4; 5; 6ð Þ represent the Jianli, Wuhan, Jiujiang, Anqing, Wuhu and Nanjing reaches

in order, i 6¼ j, k � t.

4.2 Input Features Wavelet Transform

LSTM network is sensitive to the scale of input data, specifically when the tanh and relu activation functions
are used. In addition, from Fig. 3, we can see that water level show large scale irregular variations and local abrupt
changes, which are not propitious for prediction and necessary to be preprocessed. In the WA-LSTM model, the
discrete wavelet transform is employed to discompose water level into a series of local features, which is useful for
detecting transient or singular points, and would help to overcome the difficulties.

The discrete wavelet transform process mainly contains two aspects, one is to select an appropriate
wavelet function as mother wavelet, the widely used are haar, db2, meyer, sym1, bior1.1, rboi1.1 and
coif1 wavelets. The other critical point is to determine the decomposition level, according to the Eq. (5),
the reference decomposition level is approximately 3 (N = 2556). In this study, not only the sensitivity of
the wavelet type but also the decomposition level are investigated to make a comprehensive comparative
study, in that case, the selected input features will be decomposed to 1, 2, 3, 4, and 5 levels by the seven
different kinds of wavelet transforms.

4.3 Evaluation Criteria

In order to evaluate the performances of the proposed model for water level prediction, two widely used
criteria are applied to measure the error of the predicted data, they are the Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE). The mathematical equations are defined as:

RMSE ¼ 1

T

XT
t¼1

yt � ptð Þ2
" #1

2

(8)
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MAE ¼ 1

T

XT
t¼1

yt � ptj j (9)

where yt and pt are the observed and predicted water level at time t. The RMSE evaluates the residual
between the predicted and observed values, and the MAE is a weighted average of the absolute errors.
The smaller the value of RMSE or MAE is, the more accurate the model will be.

5 Results and Discussion

In order to train the WA-LSTMmodel parameters and prove its predictive ability, the dataset is split into
two parts, the first 70% dataset is used as the training sample, while the remaining 30% is employed as testing
sample for measuring prediction performance of the proposed networks.

5.1 Optimum Parameters Analysis

The effectiveness of deep learning highly depends on the LSTM network topology, before applying WA-
LSTM to the dataset, some appropriate hyper-parameters must be fitted. As shown in Tab. 5, the value of
hidden layer determines the depth of the LSTM, the hidden layer neurons reflect the width, the batch size is
an optimization in the training of the network, defining how many patterns to read at a time and keep in
memory, and the epochs represents the number of times the network is optimally trained. Since the WA-
LSTM model has many parameters needed to be set, parameter optimization is notoriously difficult to
implement. In this paper, an effective method is worked out by grid search technology to address the issue.
By experiments, we find that the most suitable wavelet transform is the Meyer wavelet with decomposition
level 4, and for all the decomposed components, the optimum parameters of WA-LSTM are shown in
Tab. 5, which suggests that different frequency component should use different model parameters.

5.2 Temporal and Spatial Correlation Analysis

According to Tab. 6, the best prediction steps for different reaches are similar, which means 5 or 6 days
lag observations as an input features best predict daily water level. The temporal dependence is much longer
when compared with other approaches usually with only 2 or 3 [34], this can be explained from two aspects:
one is that the temporal correlation keeps at a comparatively high level according to Tab. 2, and the other is
the memory blocks in LSTM network are designed to remember the previous state of features, and have
ability to overcome the error back flow problems. Meanwhile, when the lag observation exceeds 7, the
accuracy is no longer improved instead of decreasing, that is because the redundant irrelevant information
has increased, which will not only increase the complexity of data processing, but also lower the quality
of internal regularity. It’s also remarkable that the scenarios integrated other reaches’s knowledge do not
outperform the scenarios which only takes use of information of the reaches itself, the results are

Table 5: Optimum model parameters of WA-LSTM model

Parameters Values

A1 D1 D2 D3 D4

Hidden layer 3 3 2 2 2

Hidden layer nerves 20 20 30 30 30

Batch size 15 15 15 15 15

Epochs 1500 1000 500 300 300
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consistent with the spatial correlation analysis in Tab. 3. Obviously, for each reaches, the spatial correlations
are much lower than the temporal correlations.

In terms of the prediction precision, the lowest RMSE and MAE of the Jianli, Wuhan, Jiujiang, Anqing,
Wuhu, Nanjing reaches are 0.035 and 0.028, 0.043 and 0.034, 0.028 and 0.019, 0.030 and 0.023, 0.038 and
0.030, 0.036 and 0.025, respectively. Such results are pretty impressive when looking into Tab. 1, the
maximum daily water level difference in 2016 were 0.80, 1.31, 0.52, 0.75, 1.17 and 0.89, respectively,
which indicates that the proposed model has robustness for uncertainty, and has good prediction accuracy.

5.3 Sensitivity Analysis of Wavelet Transform

According to Tabs. 7 and 8, the LSTM network with wavelet transforms has bring about a vast
improvement compared with LSTM model only, relatively speaking, it is the Meyer wavelet combined
with decomposition level 4 to improve the best performance that the model accepts. The decomposition
level should be moderate and comfortable, that is because high decomposition levels make the local
characteristics more specialized, but generate much more redundant information, and hardly have any
benefit on further promotion of accuracy. In addition, high decomposition levels lead to a large number of
parameters with complex nonlinear relationships in the model, for instance, the level 5 has five
components including A5, D5, D4, D3, D2 and D1 to be predicted separately, each prediction process
creates an error in predicting data, consequently errors cascade and decrease model performance.

5.4 Comparison with Prediction Models

In order to confirm the effectiveness and generalization of the WA-LSTM model, comparison
experiments are carried out using the state-of-the-art prediction models, such as ANN, LSTM and
ARIMA, these models are also combined with Meyer wavelet transform at level 4, their prediction
structures are the same in Fig. 1. Without loss of generality, each experiment repeats thirty times. According
to Tab. 9, the WA-LSTM model always has the minimum RMSE and MAE compared with other models,
which is 46%, 51%, 39%, 50%, 74%, 72% better than the LSTM on RMSE at Jianli, Wuhan, Jiujiang,

Table 6: Comparisons of the prediction steps at each reaches using Meyer wavelet at level 4

Prediction
steps

Predicted error (m)

Jianli Wuhan Jiujiang Anqing Wuhu Nanjing

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

T 1ð Þ 0.162 0.125 0.188 0.139 0.161 0.121 0.151 0.110 0.096 0.095 0.172 0.126

T 2ð Þ 0.046 0.035 0.061 0.041 0.048 0.039 0.043 0.035 0.045 0.032 0.055 0.043

T 3ð Þ 0.041 0.031 0.058 0.048 0.039 0.033 0.042 0.031 0.044 0.030 0.051 0.038

T 4ð Þ 0.039 0.030 0.049 0.032 0.036 0.030 0.035 0.027 0.050 0.034 0.039 0.026

T 5ð Þ 0.037 0.029 0.048 0.034 0.028 0.019 0.030 0.023 0.044 0.031 0.043 0.031

T 6ð Þ 0.035 0.028 0.043 0.034 0.030 0.023 0.038 0.029 0.038 0.030 0.036 0.025

T 7ð Þ 0.043 0.030 0.059 0.048 0.033 0.027 0.033 0.026 0.043 0.030 0.041 0.028

S 1ð Þ 0.227 0.170 0.197 0.150 0.148 0.103 0.129 0.089 0.132 0.097 0.162 0.120

S 2ð Þ 0.061 0.045 0.064 0.048 0.051 0.042 0.051 0.041 0.044 0.030 0.054 0.042

S 3ð Þ 0.054 0.043 0.058 0.042 0.042 0.033 0.045 0.037 0.043 0.032 0.053 0.041

S 4ð Þ 0.053 0.042 0.079 0.063 0.065 0.045 0.040 0.028 0.047 0.033 0.044 0.033
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Anqing, Wuhu, Nanjing, respectively, and 31%, 37%, 19%, 30%, 53%, 50% better than the WA-ANN, as well
as 86%, 74%, 61%, 63%, 79%, 92% better than the WA-ARIMA. The box and whisker plots of the results in
Fig. 5 are also help graphically compare the distributions. Apparently, the proposed WA-LSTM model is
demonstrated to be more effective and promising for water level prediction in practice than other models.

Table 7: Comparisons of different wavelets at level 4 in optimal prediction steps

Function Predicted error (m)

Jianli Wuhan Jiujiang Anqing Wuhu Nanjing

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

* 0.108 0.067 0.095 0.061 0.057 0.039 0.071 0.045 0.102 0.061 0.094 0.076

meyer 0.035 0.028 0.043 0.034 0.028 0.019 0.030 0.023 0.038 0.030 0.036 0.025

db2 0.084 0.060 0.093 0.059 0.051 0.035 0.058 0.043 0.092 0.051 0.092 0.067

haar 0.105 0.062 0.094 0.068 0.055 0.042 0.064 0.049 0.094 0.059 0.082 0.056

coif1 0.074 0.051 0.088 0.048 0.050 0.033 0.056 0.036 0.105 0.052 0.104 0.075

sym2 0.083 0.059 0.092 0.056 0.044 0.032 0.056 0.041 0.102 0.051 0.090 0.064

bior1.1 0.102 0.069 0.105 0.067 0.058 0.041 0.068 0.043 0.105 0.064 0.096 0.068

rbio1.1 0.099 0.065 0.101 0.058 0.057 0.040 0.070 0.044 0.098 0.052 0.097 0.073

* indicates no wavelet transform.

Table 8: Comparisons of the Meyer wavelet decomposition levels in optimal prediction steps

Meyer
level

Predicted error (m)

Jianli Wuhan Jiujiang Anqing Wuhu Nanjing

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 0.108 0.081 0.091 0.075 0.058 0.045 0.075 0.055 0.081 0.063 0.096 0.070

2 0.068 0.052 0.068 0.050 0.053 0.041 0.062 0.049 0.069 0.044 0.076 0.060

3 0.061 0.047 0.072 0.051 0.039 0.029 0.038 0.058 0.042 0.031 0.056 0.043

4 0.035 0.028 0.043 0.034 0.028 0.019 0.030 0.023 0.038 0.030 0.036 0.025

5 0.102 0.064 0.065 0.043 0.045 0.035 0.050 0.038 0.047 0.033 0.056 0.044

Table 9: Comparisons of the state-of-the-art models

Reaches Predicted errors (m)

WA-LSTM LSTM WA-ANN WA-ARIMA

RMSE MAE Steps RMSE MAE Steps RMSE MAE Steps RMSE MAE Steps

Jianli 0.035 0.028 T 6ð Þ 0.046 0.031 T 4ð Þ 0.051 0.039 T 3ð Þ 0.066 0.048 T 3ð Þ
Wuhan 0.043 0.034 T 6ð Þ 0.059 0.044 T 5ð Þ 0.065 0.056 T 3ð Þ 0.075 0.059 T 3ð Þ
Jiujiang 0.028 0.019 T 5ð Þ 0.033 0.028 T 5ð Þ 0.039 0.028 T 2ð Þ 0.045 0.034 T 2ð Þ
Anqing 0.030 0.023 T 5ð Þ 0.039 0.026 T 5ð Þ 0.045 0.032 T 3ð Þ 0.049 0.037 T 3ð Þ
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Table 9 (continued).

Reaches Predicted errors (m)

WA-LSTM LSTM WA-ANN WA-ARIMA

RMSE MAE Steps RMSE MAE Steps RMSE MAE Steps RMSE MAE Steps

Wuhu 0.038 0.030 T 6ð Þ 0.058 0.048 T 5ð Þ 0.061 0.045 T 3ð Þ 0.065 0.050 T 3ð Þ
Nanjing 0.036 0.025 T 6ð Þ 0.054 0.038 T 4ð Þ 0.060 0.042 T 2ð Þ 0.061 0.047 T 3ð Þ

Figure 5: The box and whisker plots performances of the state-of-the-art models on RMSE. (a) Jianli, (b)
Wuhan, (c) Jiujiang, (d) Anqing, (e) Wuhu, (f) Nanjing
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6 Conclusions

In this research, a new WA-LSTM model based on discrete wavelet transform and long short-term
memory network for water level prediction in Yangtze River is proposed to help flood control and vessel
navigation. In the provided model, water level time series are firstly decomposed into high frequency and
low frequency components using wavelet transforms with different scales for a better understanding of
temporal properties, then each component is put into the LSTM network for independent prediction,
finally, the predicted values are reconstructed to get the predicted water level in one day ahead.

In order to confirm the effectiveness and generalization of the model, six representative reaches
including Jianli, Wuhan, Jiujiang, Anqing, Wuhu and Nanjing are applied to study, and several
comparisons are developed, including the practicable of temporal and spatial combination, the sensitivity
of mother wavelet types and decomposition levels, the efficiency of the state-of-the-art models contained
LSTM, WA-ANN and WA-ARIMA. Comprehensive research finds out that 5 or 6 days lag observations
as input features using Meyer wavelet transform with decomposition level 4 provides the best
performance, which less than 0.045 m on RMSE and less than 0.035 m on MAE in general,
extraordinary has only 0.028 m on RMSE and 0.019 m on MAE at Jiujiang reaches. The results are
superior to those of competing models, and demonstrates that the WA-LSTM model has strong
applicability and generalization, provides references to further research on water level prediction in
Yangtze River.

Future research would look into more comprehensive prediction that incorporates with the temporal
characteristics like dry season and flood season, or the weather forecasting such as rainstorm, or the
waterway tributary characteristics. Furthermore, it would be interesting to investigate other deep learning
models for water level prediction.
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