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Abstract: Retail companies recognize the need to analyze and predict their sales
and customer behavior against their products and product categories. Our study
aims to help retail companies create personalized deals and promotions for their
customers, even during the COVID-19 pandemic, through a big data framework
that allows them to handle massive sales volumes with more efficient models. In
this paper, we used Black Friday sales data taken from a dataset on the Kaggle
website, which contains nearly 550,000 observations analyzed with 10 features:
qualitative and quantitative. The class label is purchases and sales (in U.S. dol-
lars). Because the predictor label is continuous, regression models are suited in
this case. Using the Apache Spark big data framework, which uses the MLlib
machine learning library, we trained two machine learning models: linear regres-
sion and random forest. These machine learning algorithms were used to predict
future pricing and sales. We first implemented a linear regression model and a ran-
dom forest model without using the Spark framework and achieved accuracies of
68% and 74%, respectively. Then, we trained these models on the Spark machine
learning big data framework where we achieved an accuracy of 72% for the linear
regression model and 81% for the random forest model.

Keywords: Big data; correlation and regression analysis; machine learning;
numerical algorithms; performance; prediction; Black Friday sales; cloud

1 Introduction

The term big data is used to describe the large and growing volumes of data that can inundate a business
[1]. Big data has been said to have five characteristics, called the five V’s: volume, velocity, variety, veracity,
and valence. Now an overlapping sixth V has been added to the big data formula: value [2], as shown in Fig. 1.
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Big data is a relatively new research area in applications such as network instruction and deduction,
spam filtering, recommendation systems, health analytics, and sales analytics. Another challenge is to
obtain accurate predictions through a machine-learning algorithm in business intelligence and data
science [1,3]. Many frameworks handle large volumes of structured and unstructured data, but perhaps
the two most popular are Apache Hadoop and Apache Spark. Spark is 10x faster than Hadoop because it
stores data in-memory rather than by using disk storage [4]. Budgetary unpredictability models examine
accurate information. Sales data can be analyzed and applied to money-related markets for better
expectations. Currently, data analysis utilizes data science with machine learning (ML), which trains the
computer according to models and provides better accuracy than business intelligence [5].

The intersection of big data and data mining, where knowledge is extracted from raw data, finds a
relationship between the entities and then applies machine learning models to the process of making
predictions and gaining knowledge for better decision-making in business intelligence and other applications.

Many small retailers know who their customers are and can contact them through various means to
notify them of product promotions, but when sales volumes are massive, companies need to find other
ways to reach customers. Large retailers like Apple, Amazon, and Walmart are now using big data
analytics, data science, and business intelligence to analyze their sales and customer behavior to deliver
personalized communications. In the U.S., Black Friday is the day after Thanksgiving. It is the biggest
sales day of the year in the U.S. Brick-and-mortar and online retailers run special offers, deals, and
discounts on countless products. One theory is that the day is called Black Friday because it is the day
when many retailers come into the black for the year. Fig. 2 shows four of the main factors affecting
customer purchases: customer level, store level, city level, and product level.

Figure 1: Characteristics of the 6 V’s of big data

Figure 2: Factors affecting purchases on Black Friday
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1.1 Machine Learning

Machine learning is a branch of artificial intelligence that learns data from computer-based models to
discover hidden insights. There are two major types of machine learning: supervised learning and
unsupervised learning.

a) Supervised learning: Class labels or predictor values can be determined based on features. If the
labels are continuous, then these models are said to belong to regression; if the labels are
categorical, then the models are said to belong to classification.

b) Unsupervised learning: Class labels or prediction values are unknown [6].

1.2 Apache Spark

There are many big data frameworks for handling a large volume and variety of data, and for performing
real-time analysis. The Apache Spark clustered computing framework is much faster and more reliable than
Apache Hadoop because of its in-memory storage and distributed computation of large datasets. Apache
Spark is a framework with machine learning, real-time streaming, GraphX, and Spark SQL libraries [7],
and support of programming languages such as Python, R, Java, Scala, and other third-party languages.
The framework of Spark [8] is shown in detail in Fig. 3.

Spark is built around resilient distributed datasets (RDDs), which can be transformed, created, analyzed,
and stored in any Spark program with the help of the textFile method and parallelization through
SparkContext objects. The benefits of RDDs are shown in Fig. 4.

Figure 3: Spark framework

Figure 4: Benefits of RDDs
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1.3 Spark Machine Learning

Spark has its own library, MLlib, which supports many languages and APIs. Usually, Spark has two
packages of machine learning [9]: Spark MLlib, the original API build on RDDs; and Spark.ml, a new
build on data frames (Spark SQL) and pipelines.

Spark machine learning has two data types: local vectors, which are in the form of sparse and dense
vectors; and labeled points, which contain a class label (predictor) and a list of features [10].

Spark machine learning includes all classification, regression, and clustering models in regular machine
learning [11]. Apache Spark MLlib 2.0 is an open-source, distributed, scalable, and platform-independent
machine learning library [12]. MLlib runs in parallel on clusters. Moreover, it can access all machine
learning models and all programming languages [13].

The rest of the paper is organized as follows. Section 2 offers a literature review. Section 3 presents a
methodology with subsections on data acquisition, data exploration, data engineering, and predictive
modeling. Section 4 describes the experimental results and evaluation. Section 5 contains our conclusions.

2 Related Work

There has been relatively little research on sales prediction and forecasting. The first machine learning
model was based on the forecasting tool of Support Vector Regressor (SVR) and measured the sales of
computer servers through k-means clustering, where minimax similarity provides better results than other
models of clustering [14]. Another paper [15] forecasts Amazon sales predictions through a statistical
method for time series decomposition called ARIMA, which predicts quarterly sales. The data were
collected for the period from 2000 to 2013. Errors were measured by the root-mean-squared error
(RMSE) method. However, these methods carry previous data for forecasting, which is a problem. The
product sales forecasting predicts browning to purchases (B2P) in e-commerce sites. However, this model
browses the sites and predicts online sales based on customer browsing history, which is time consuming
[16]. In this paper support vector machine (SVM) method [17] is suggested to improve a customer’s
purchasing behavior based on the time spent on a specific area in a single store instead of the entire mall.
The data are taken from RFID, and the accuracy of linear SVM is 81%.

There are many applications for making sales predictions in e-commerce, including recommendation
systems of products, time series prediction, and online promotion of products. The work related to items
[18] explored multi task-based dynamic features through a deep item network, focusing on the online
advertisement of global shopping festivals presented by Alibaba. The work of online shopping [19]
analyzed Chinese festivals through collaborative filtering recommendations based on the user’s online
browsing behavior and purchasing behaviors to improve sales. One recent study [20] published in
2020 used behavioral analytics through big data in customer invoice payments through logistic regression
and achieved an accuracy of 97%, which was useful in creating a decision support system to determine a
customer’s financial stability and how much credit should be extended to them.

The related work to predicting sales through machine learning algorithms has enormous benefits for
retail companies. The first work [21] used the machine learning regression model, through the use of the
Boosted Decision Tree Regression module in Microsoft Azure Machine Learning Studio, to achieve 97%
better performance in predicting Walmart sales when compared to time series analysis.

Over the past two decades, Black Friday has been the biggest shopping day of the year. Retail stores are
overrun by crowds, and many products are deeply discounted. Patterns have emerged over time for this big
shopping day. The related work [22] provided a model for predicting sales and targeting customers’ behavior
through machine learning regression and neural networks. However, the paper suggested that the model still
faced challenges in accuracy. In article [23], the Apriori association rule learning and set mining algorithm
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was used to analyze customer online buying patterns in order to design marketing strategies for future Black
Fridays. In the last related work [24], market segmentation based on customer zones was performed with k
means clustering using R language. The segmentation was based on age and purchases on Black Friday and
helped determine buyer needs. However, in this work, data cleaning and data enrichment were not used.

Resource management is a challenging task when using the HDFS and YARN components in Hadoop
2.0 in a scalable fashion. In this paper [25], the Apache Spark big data framework showed that running
distributed data analysis in the Spark MLlib could manage CPU resources and memory resources
economically. Moreover, the iterative ML tasks were performed approximately 10 times faster than
Hadoop for iterative schemes.

There have been a few papers on Spark machine learning. Paper [26] compared two classification
algorithms, Naive Bayes and SVM, to determine the behavior of bank customers. The dataset consisted
of 14 million observations. The Naive Bayes algorithm provided much better precision and recalls than
SVM. Another work [27] on unstructured data sentiment analysis of online customers’ reviews used the
Spark ML library on three models: Naive Bayes, SVM, and logistic regression. Here, the accuracy of
SVM was 86% higher than Naive Bayes and logistic regression, but the study did not use an n-gram
sentiment analysis model and did not handle structured data.

Another paper [28] was related to our algorithm, but its focus was on a shared bicycle rental system
where data was collected from riding information on three Spark ML models using linear regression,
which had a better RMSE than the decision tree and random forest methods. The work on song year
prediction used three Spark ML models (linear regression, random forest, and gradient boosted trees) and
obtained better results as compared to one node [29].

This paper focuses on real-time streaming with Spark MLlib linear regression and the open source
Massive Online Analysis (MOA) software environment for data streaming. The linear regression model
showed better execution per minute than MOA [30].

Another paper used Spark ML and Spark MLlib to predict breast cancer [31]. In a comparative study of
predicting churn of potential banking customers, Spark ML achieved better results than Spark MLlib [32].
The work, which combined the machine learning approach and the deep learning model’s long short-term
memory (LSTM) achieved better accuracy (94%) in binary and multiclass problems. The proposed big
data framework using Spark machine learning [33] was able to better process computation and
complexity. In the latest paper [34] published in 2020, the author applied various machine learning
models but not through a big data framework. The rule-based decision tree obtained an RMSE of
2291 far better than the linear model.

However, the results of the above studies suggest that there is a need to calculate customers’ purchases
and the number of customers against various products and product preferences based on different variables.
Moreover, there is a need to analyze customer behavior to create a personalized offer to customers for
purchasing specific products during Black Friday sales, particularly during the COVID-19 pandemic,
using the big data framework using the Spark ML package.

3 Materials and Methods

Our research goal was to build a system that recommends to customers what they usually buy based on
historical data. Moreover, it will help decision makers, data analysts, and data scientists to see the popularity
of product categories through other categories such as the customers’ city/states, age groups, and gender
types. In this way, they can plan future sales, promotions, and extended product lines.

We first used the process of data acquisition, then applied exploratory data analysis (EDA). The next step
was to perform data engineering, in the forms of data preprocessing and data cleaning, to handle missing

IASC, 2021, vol.27, no.3 789



values in the datasets. Finally, we built the machine learning models, both with and without the big data
Spark ML package.

3.1 Data Acquisition

After understanding of business and its objectives, the extracted data is the stage of data acquisition.

3.2 Exploratory Data Analysis (EDA)

One of the critical stages of business intelligence and data science is data exploration or data
visualization. Through these processes, we can see actually what the datasets show and whether specific
kinds of features are essential. The features that helped us in model building are listed below.

a) First, we see the correlation of the number of purchases by different categories or the affinity between
other variables. Here we are interested in purchases with other variables. Accordingly, values are
correlated if they were closest to 1 or −1. Fig. 5. displays the covariance through a heatmap.

b) Fig. 6 below is a graph that shows the various purchase distributions with a maximum of 15 buyers.

c) Fig. 7 below shows that far fewer females took part in Black Friday sales, or we can say that
payments were made by males instead of females.

d) Fig. 8 shows that the age group between 26 and 35 were the most interested in purchases.

e) Fig. 9 shows that when gender is combined with marital status, sales were still dominated by males,
although that was less true for the age group of 46–55.

f) Fig. 10 shows product category 1 purchases with a maximum sale price of nearly $20,000.

g) Fig. 11 shows the breakdown of purchases by males and females regarding product category 2

h) Fig. 12 shows the purchases, by gender, regarding product category 3

i) Fig. 13 shows that city region B has the most sales for the 18–50 age group.

3.3 Data Engineering

Data engineering is an essential step in all fields related to data. We applied data cleaning based on
missing values and used various transformation methods.

Figure 5: Covariance of various features through heatmap
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Figure 7: Sales by gender

Figure 8: Analysis of sales, by age

Figure 6: Purchase distribution graph: X-axis represents the amount spent on purchases; Y-axis represents
the number of buyers
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Figure 9: Histogram of the distributions of various age groups of males and females

Figure 10: Product_Cateogory 1 sales

Figure 11: Product Category 2 sales, by gender
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There are four steps performed during data engineering:

1. Data preprocessing is an essential step for business intelligence and data science applications.
Product category 2 and product category 3 have missing values. There are many imputation
methods to calculate the missing values. Here, we fill the missing values with the mean of
product category two and product category 3

2. Then, we apply the transform-to-numeric function to gender, marital status, and city category, which
have non-numeric values, and convert into afloat.

3. The Spark ML has features of the dense local vector, where we passed the variable of the class and
others feature and then map to the RDD.

Figure 12: Product Category 3 sales, by gender

Figure 13: Sales by city category
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4. Before going into machine learning models, we first need a data frame, which is built on Spark SQL.
The objective of Spark SQL is to convert the dataset into a data frame. Accordingly, there is a need
for another transformation into a labeled point function. Here we applied feature engineering based
on the correlation among variables.

The five steps of our model are shown in Fig. 14.

3.4 Predictive Modeling

Next, we randomly split the data into two portions, with 80% for the training sets and 20% for the test
set. We applied the linear regression model from the Scikit-learn library and then from the PySpark ml API,
where the maximum number of iterations is 10. Next, we built the model on the random forest in Scikit-learn
and then PySpark. The overall process is shown in Fig. 15.

Figure 14: Process of big data analytics for sales predictions

Figure 15: Architecture of our proposed model with Spark ML random forest and linear regression

794 IASC, 2021, vol.27, no.3



4 Evaluation and Results

4.1 Metrics

There are many evaluation measurements for accuracy and computation time, including precision,
recall, F measure, and confusion matrix. Because the data are continuous, we are importing a regression
evaluator from Spark ML, including sum of squares error (SSE), RMSE, and R-squared (R2). Here, we
measured linear regression with R2, and measured random forest through precision. The accuracy of our
model is shown in the bar graph in Fig. 16.

4.2 Results

We applied two Spark MLlib models on data bricks. The linear regression model offered 72% accuracy,
as compared to Scikit machine learning, which offered 68% accuracy. The random forest model provided
81% accuracy on Spark, while single node machine learning offered only 74% accuracy. The results are
shown in Tab. 1.

5 Conclusion

In this paper, we have presented two machine learning models, linear regression and random forest,
which are regarding regression of Black Friday sales data. The dataset has 0.55 million observations,
10 features, and one predictor of purchases and sales. In our proposed work, we used the big data
framework Apache Spark due to the large volume of data. Spark has two packages of machine learning,
Spark MLlib and Spark ML. After applying linear regression and random forest, our accuracy increased
as compared to a single node computer of machine learning on the same datasets. The aim of the research

Figure 16: Bar chart of accuracies of machine learning without Spark and with Spark MLlib in the linear
regression and random forest models

Table 1: Evaluation results of machine learning vs. Spark MLlib for linear regression and random forest

Evaluation Linear Regression Random Forest

Machine Learning 68% (R2) 74% (Precision)

Spark ML 72% (R2) 81% (Precision)
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is to help the decision-makers in retail stores and online shopping websites plan for promotions for their
customers and attract new customers. In the future, we will use a deep learning model with long short-
term memory (LSTM) and real-time Spark streaming to predict sales.

Funding Statement: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.
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