
A Multi-Agent Stacking Ensemble Hybridized with Vaguely Quantified Rough
Set for Medical Diagnosis

Ali M. Aseere1,* and Ayodele Lasisi2

1Department and College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia
2Department of Mathematical Sciences, Faculty of Science, Augustine University, Ilara-Epe, Lagos, Nigeria

�Corresponding Author: Ali M. Aseere. Email: amg@kku.edu.sa
Received: 19 October 2020; Accepted: 20 December 2020

Abstract: In the absence of fast and adequate measures to combat them, life-threatening
diseases are catastrophic to human health. Computational intelligent algorithms
characterized by their adaptability, robustness, diversity, and recognition abilities
allow for the diagnosis of medical diseases. This enhances the decision-making
process of physicians. The objective is to predict and classify diseases accurately.
In this paper, we proposed a multi-agent stacked ensemble classifier based on a
vaguely quantified rough set, simple logistic algorithm, sequential minimal optimi-
zation (SMO), and JRip. The vaguely quantified rough set (VQRS) is used for
feature selection and eradicating noise in the data. There are two classifier layers
in the stacked ensemble, with the simple logistic and SMO being the base classi-
fiers, and JRip being the meta-classifier. The base classifiers learn using training
data, and the individual classifier predictions are merged for input into the
meta-classifier, which makes predictions accordingly. In experiments, the proposed
method was validated by providing improved diagnoses with respect to three clas-
sification operations. The proposed method thus provides more accurate medical
diagnoses to the compared algorithms.

Keywords: Classification; feature selection; medical diagnosis; predictive
analysis; stacking; vaguely quantified rough set

1 Introduction

The purpose of medical diagnosis is to examine key indicators of specific diseases. For a proper
diagnosis, computer-assisted algorithms initiate an accurate decision-making process. Automatic and
intelligent techniques trigger proficient diagnostic identification due to the vast amount of medical data
recorded. Data mining, machine and ensemble learning algorithms fall under the umbrella of intelligent
techniques, and their merits are improved accuracy in diagnosing diseases. This ultimately assists
physicians in arriving at a definite and precise decision, and reduces errors in diagnoses [1,2]. Medical
datasets have a vast number of features [3,4], which can hinder analytic performance. Selecting relevant
feature subsets that summarize the true meaning of the dataset will boost performance. In addition, the
presence of noise and insignificant features can pose a problem [5–7]. Thus, it is essential for a feature
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selection process to address noise in the data. The merits of feature selection include enabling graphical
analysis and data interpretation, decreasing computational time, and reducing overfitting. It should be
emphasized that although previous research on medical diagnosis has been promising, it is necessary to
devise other intelligent methods for diagnosis. This research paper recognizes the advantages of using
vaguely quantified rough sets (VQRS) in feature selection and to combat noisy data. Furthermore, three
machine learning methods—a simple logistic algorithm, sequential minimal optimization (SMO), and
JRip—are integrated into a multiple classifier system called ensemble learning. The strengths of
individual classifier are exploited, while their weaknesses are avoided [8]. A multi-agent stacked
ensemble classifier system is proposed for medical diagnoses based on VQRS, simple logistic algorithm,
SMO, and JRip. Each stage produces an output that serves as input for the next stage until a final,
predictive outcome is reached. Stacked ensembles employ a higher-level classifier to combine lower-level
classifiers to produce superior prediction accuracy [9,10]. The main contributions of the paper are as follows.

a) We propose the prediction and classification of medical diseases through an ensemble algorithm that
is deeply rooted in stacking.

b) We apply the VQRS feature selection method to provide significant insight into the recognition of
subsets. Noise in the data is also handled effectively.

c) The proposed multi-agent system is capable of classifying and distinguishing diseased individuals
from healthy individuals.

The rest of this paper is organized as follows. Section 2 provides a summary of the related literature, and
the contribution gap. The data mining techniques and stacking ensemble used in the proposed methodology
are discussed in Section 3. Section 4 introduces the vaguely quantified rough set, as well as the procedure for
feature selection. The proposed multi-agent stacking ensemble algorithm is presented in Section 5. A
complexity analysis of the proposed algorithm appears in Section 6. Simulations and a discussion of the
results are presented in Section 7, and a conclusion is given in Section 8.

2 Related Works

The plethora of medical datasets, and the need to eradicate life-threatening diseases through early
detection, necessitates an adaptive and efficient approach to diagnosis. Data mining and ensemble
learning are promising avenues in this regard. A k-medoids clustering-based attribute weighting termed
kmAW was used in conjunction with a support vector machine (SVM) for medical diagnoses [11]. The
kmAW determines key features of the dataset, while the SVM performs classifications for improved
accuracy. Experiments indicated that the proposed combination increased accuracy for all datasets. As a
way to prevent blindness resulting from glaucoma, an expert system consisting of an image processing
algorithm such as a canny detector algorithm and the parameter extraction technique of a randomized
Hough transform were infused with fuzzy logic to provide an adequate diagnosis [12]. The fuzzy expert
system surpassed other proposed techniques in terms of performance. Furthermore, a diagnosis of breast
cancer was carried out using an optimized deep convolutional neural network (CNN) by applying a larger
percentage of unlabeled data [13]. This implies that a small amount of label data was used for training,
which goes against the conventional way that CNN uses datasets. A high degree of accuracy and large
area under the curve (AUC) were found following experiments. With regard to the diagnostics for breast
cancer, taking advantage of ensemble properties, an ensemble SVM model was developed based on a
weighted area under the receiver operating characteristic (ROC) curve ensemble (WAUCE) [14].

Furthermore, the parameters of the SVMwere optimally enhanced using two swarm intelligent methods,
particle swarm optimization (PSO) and the fruit fly optimization algorithm (FOA), while the genetic
algorithm (GA) selected optimal feature subsets; the resulting methods are referred to as GAPSO-FS and
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GAFOA-FS [15]. An experimental comparison of these two methods with FOA-SVM, GA-FS, and PSO-FS
revealed that GAPSO-FS and GAFOA-FS were superior. For liver diagnosis, the researchers in Ghoniem
[16] proposed two methods that combined deep learning approaches with a bioinspired artificial bee
colony (ABC) optimization. The first was a combination of the SegNet network, the UNet network, and
an ABC termed SegNet-UNet-ABC; the other was a combination of LeNet-5 and ABC. The proposed
methods proved to be better than other algorithms with respect to different metrics. Other researchers
proposed an ensemble deep learning technique for the prediction of neuromuscular disorders [17]. This
involved the feature selection procedures of a Bhattacharya coefficient and the GA, which were used
either individually or as a hybrid. The selected features were then used with several classifiers, and their
predictions were combined for CNN. Another study integrated a crow search optimization algorithm,
chaos theory, and fuzzy c-means for medical diagnoses [18]. A predictive ensemble model of the self-
organizing map (SOM), non-linear iterative partial least squares (NIPAL), and ANFIS was presented in
Nilashi et al. [19] for combating hepatitis. Furthermore, the CART decision tree was used to select
features. The proposed model (called NIPAL-SOM-ANFIS) was effective for diagnosing hepatitis.

Meanwhile, a deep ensemble sparse regression network (DeepESRNet) for the diagnosis of brain disease
was discussed in Suk et al. [20]. Two sparse regression networks; multi-output linear regression (MOLR) and
joint linear and logistic regression (JLLR); with different regularization control parameters were trained on
the data, and the outputs were combined in a deep CNN. The proposed methods showed improved
performance compared to MOLR, MOLR-SVM, JLLR, and JLLR-SVM. Based on fuzzy set, an
upgraded Pythagorean fuzzy set based on Jensen-Shannon divergence measure was incorporated for
medical diagnoses [21].

The research summarized above has proved significant in medical diagnosis. A limitation that can be
recognized is the ineffectiveness of the feature selection techniques in handling noise in data. This noise
increases the complexity of the model and degrades performance. This is an important factor to consider.
The VQRS provides noise handling characteristics based on fuzzy quantifiers during feature selection.
Furthermore, the research paper taps into alternative algorithmic approaches based on a state-of-the-art
algorithm of stacking ensemble for accurate predictions. The details of VQRS and the stacking ensemble
are described in latter sections.

3 Data Mining Algorithms

3.1 Simple Logistic Algorithm

A logistic regression (LR) [22,23] is a statistical measure used to evaluate the likelihood of a binary
decision by certain reasonable factors. It helps to identify the impact of factors labeled upon dependent
variable under observation. If k classes exist for n cases with m features, the computation of component B
produces anm � ðk � 1Þmatrix. Excluding the class j, the probability is determined in Eq. (1) as follows:

PjðXiÞ ¼ expðXiBjÞPk�1
j¼1 expðXiBjÞ þ 1

(1)

The last class has probability, as shown in Eq. (2).

1�
Xk�1
j¼1

PjðXiÞ ¼ 1Pk�1
j¼1 expðXiBjÞ þ 1

(2)
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Therefore, the negative multinomial log-likelihood is represented in Eq. (3).

L ¼ �
Xn
i¼1

Xk�1
j¼1

Yij � InðPjðXiÞÞ þ 1�
Xk�1
j¼1

Yij

 !
� In 1�

Xk�1
j¼1

PjðXiÞ
 !( )

þ ridge � ðB2Þ (3)

A quasi-Newton approach was utilized to explore the optimal settings of m � ðk � 1Þ parameters to
identify B matrix as L is decreased. Prior to optimization, the matrix B was compressed to an m � ðk � 1Þ
sequence [24,25]. The simple logistic algorithm builds models with underlying foundations on linear
logistic regression [26]. LogitBoost, a boosting algorithm, handles the building of models. Cross-
validation was executed on the number of iterations using LogitBoost.

3.2 SMO

SMO aims to facilitate learning for the SVMs. This aims at resolving SVM problems associated with
dealing with large-scale problems [27,28]. The principle of the SVM is defined as follows: If there is an
existing collection of data points ðHe;weÞf gpe ; He and p are input vectors and all training data,
respectively, with we 2 f�1; 1g denoting the class label. Training the SVM for classification is similar to
searching for the following solutions [29]:

maximize : QðdeÞ ¼
Xp
e¼1

de � 1

2

Xp
e¼1

Xp
l¼1

dedlwewljðHe;HlÞ (4)

subject to :
Xp
e¼1

dewe ¼ 0; 0 � de � c; e ¼ 1;…; p (5)

where jðHe;HlÞ; de; and c are the kernel function, the Lagrange multiplier, and the user-defined
regularization constant, respectively. The most commonly used kernel function is the Gaussian function.
If the problem in Eq. (4) is resolved, a unique data sequence is identified by the decision function in
Eq. (6) for the class label.

functionðHÞ ¼
Xp
e¼1

dewejðHe;HÞ þ b (6)

Here, b is obtained from Eq. (4).

The SVM cannot solve large-scale QP issues. In order to mitigate this, the SMO breaks the huge QP task
up into subtasks. The optimization of a training data sequence subset occurs in each phase, and is called a
working set. The QP subtasks are mitigated by two working sets using a basic structural technique
[30,31]. A set of rules is vital for specifying two de. SMO adjusts the entire data sequence quadratically.

3.3 JRip

JRip [32,33] is the implementation of a propositional rule learner called Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) [34]. This is a rule-induction algorithm that benefits from global
optimization steps while creating rules that take both the quality and the length of rules into account. A
collection of rules is created for each class value using a sequential covering strategy. Each rule is
reconsidered, and different sequences of rules are produced by reduced-error pruning. When a new
sequence of rules is smaller in length than the previous sequence, the rule is displaced.
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3.4 Stacking Ensemble

It can be useful to use the ensemble paradigm, which effectively increases the speed and accuracy of
prediction and detection [35,36]. A paradigm of this type of learning ensemble is referred to as stacking
or super learning [37]. It takes many machine learning models into account and employs a meta-classifier
to merge the base classifiers’ predictions, thus boosting the overall efficiency. The incorporation of
different algorithms makes improving detection possible [38]. Two stages are typically involved: a
number of baseline models are extracted from the training data during phase one, and the models are
combined to create a single prediction model in phase two. Numerous predictions are thus made and
combined to form a more sophisticated composite model that is superior to simple models.

4 Foundations of VQRS with Its Feature Selection Procedure

The concept of VQRS cannot be discussed without mentioning fuzzy rough sets. This is because VQRS
solves the issues posed by fuzzy rough sets. The preliminaries of both fuzzy rough sets and VQRS are
described in the following subsections.

4.1 Fuzzy Rough Sets

Assuming a crisp set C � P exists, the established Pawlak’s lower and upper approximations [39–41]
relating to equivalence relation Er are defined in Eqs. (7) and (8), as it concerns z in P.

z 2 Er # C iff z½ �Er
� C (7)

z 2 Er " C iff z½ �Er
\ C 6¼ [ (8)

as shown similarly in Eqs. (9) and (10):

z 2 Er # C iff 8p 2 Pð Þ p; zð Þ 2 Er ) p 2 Cð Þ (9)

z 2 Er " C iff 9p 2 Pð Þ p; zð Þ 2 Er ^ p 2 Cð Þ (10)

As C and Er translate into a set and a relation in P exhibiting fuzzy characteristics, the equations in Eqs.
(9) and (10) with the fuzzy implicator and t-norm, represented as I and T, respectively, can evolve into Eqs.
(11) and (12), respectively.

ðEr # CÞðzÞ ¼ inf
p2P
ðIðErðp; zÞ;CðzÞÞ (11)

ðEr " CÞðzÞ ¼ sup
p2P
ðTðErðp; zÞ;CðzÞÞ (12)

4.2 VQRS

The operators inf and sup, equated with the operators in Eqs. (11) and (12), are associated closely with
the 8 and 9 quantifiers in Eqs. (9) and (10) using fuzzy rough sets. Such interconnections will have a
tremendous impact on the approximations if an individual object changes. This renders fuzzy rough sets
vulnerable to corrupted and distorted data.

A decision was thus made to replace 8 and 9with abstract quantifiers, such asmost and some [42,43]. Vague
quantifiers were modeled mathematically using a constantly rising fuzzy quantifier [44]: an ascending [0,1] →
[0,1] maps Q fulfilling the borderline requirements Q(0) = 0 and Q(1) = 1. In Eq. (13), a parameterized
formula is used to build instances defining fuzzy quantifiers, for 0 � @ < �h � 1, and p in [0,1].
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Q@;�hðpÞ ¼

0;
2ðp� @Þ2
ð�h� @Þ2 ;

1� 2ðp� �hÞ2
ð�h� @Þ2 ;

1;

8>>>>>>><
>>>>>>>:

p � @;

@ � p � @ þ �h

2
@ þ �h

2
� p � �h;

�h � p:

(13)

A pair ðQl;QuÞ can be determined by describing the approximations referred to as Ql � lower and
Qu � upper of a fuzzy set C construed in Eqs. (14) and (15) by a relation Er, with all components z in P.

ðEr#Ql
CÞðzÞ ¼ Ql

½z�Er
\ C

�� ��
½z�Er

�� ��
 !

(14)

ðEr"Qu
CÞðzÞ ¼ Qu

½z�Er
\ C

�� ��
½z�Er

�� ��
 !

(15)

4.3 Feature Selection with VQRS

The fuzzy positive region as defined for the fuzzy rough feature selection in Eq. (16), which utilizes the
lower approximation stated in Eq. (11), has high sensitivity to the smallest change in the data.

lPOSBðzÞ ¼ ðlErB
# ½z�lErd ÞðzÞ (16)

To overcome the deficiency in Eq. (16), the # is replaced by #Ql
in VQRS, resulting in Eq. (17) [45].

lPOSVQRSB
ðzÞ ¼ ðlErB

#Ql
½z�lErd ÞðzÞ (17)

As stated in the fuzzy rough sets, the drive toward predictions concerning d of the attributes in B is
estimated by deploying the degree of the dependency of d on B, which is defined as cB ¼ lPOSB j=Pj. This
is applicable in VQRS as cVQRSB , and appears analogous to cB. Thus, the degree of dependency is

cVQRSB ¼ lPOSVQRSB
j=Pj. The order of the relationship between cB and cVQRSB is null and void. The following

conditions for VQRS must be met: cB ¼ 1, cVQRSB ¼ 1 if Ql ¼ Qð@;1Þ and I satisfies p � z, Iðp; zÞ ¼ 1.

4.4 The Benefits of Choosing VQRS Feature Selection

Datasets have mainly crisp or real-valued features, which obstruct many feature selection methods. The
measure of comparability among attributes seems vague. Therefore, it is essential to have a feature selection
procedure that processes crisp or real-valued features, and with knowledge of how similar the attributes can
be [46]. The vaguely quantified rough set possesses inbuilt mechanisms for the reduction of discrete or real-
valued features that contain noise [47]. Continuous and nominal data are handled by VQRS [48], which
ensures compatibility with regression and classification datasets.

5 Proposed Algorithm

The constituents of the proposed stacking ensemble algorithms with VQRS feature selection are
highlighted in this section. The VQRS-based feature selection is used to determine the features in the
datasets that best represent the true meaning of the original feature set. Simple logistic, SMO, and JRip
algorithms are utilized for the stacking ensemble. The simple logistic and SMO algorithms represent the
base (level 0) classifiers, while the meta-classifier (level 1) is the JRip algorithm. The execution of the
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ensemble’s algorithmic steps commences by preparing data for input into each of the base classifiers. Each
individual base classifier is trained using the data to generate predictions, which are then combined into a
single prediction. The meta-classifier is responsible for accepting the combined prediction as input to be
processed accordingly. The meta-classifier produces a final predictive classification outcome.

The preparation of the original data is initiated by VQRS, and executing the generation procedure
depends on a search technique called greedy hill-climbing. This produces a subset of features for
evaluation. The appropriateness of the subsets of features is calculated using the evaluation function

cVQRSB ¼ lPOSVQRSB
j=Pj. By relying on this evaluation function, the stopping criterion is attained upon

accumulating the optimal subsets. The VQRS process concludes, and the selected subsets constitute the
training data for the ensemble method. The detailed strategies implemented by the proposed algorithm are
outlined in Fig. 1. The pseudocode for the stacking ensemble is shown in Algorithm 1.

1. The training data T, having u instances and v attributes, and having undergone feature selection by
VQRS, are prepared for the base classifiers.

2. Cross-validation is applied to the training data by splitting the data into equal sizes.

3. The base classifiers comprising a simple logistic algorithm and SMO are trained on T.

4. Predictions obtained from the simple logistic and SMO algorithms are arranged as a single data Tlevel2

(which are second-level data) with u instances and U attributes.

5. The meta-classifier (JRip) that invokes a final predictive outcome for proper classification acts on the
second-level data.

Algorithm 1: Stacking Ensemble

Input: Training Data T ¼ tj1; tj2; tj3;……; tjv½ �
Output: Final Prediction Outcome gout

Step 1: Apply cross-validation to the training data

Step 2: Split T into n equally sized data

Step 3: for t  1 to T do

Learn the simple logistic and SMO base classifiers

end for

Step 4: The predictions of the base classifiers are combined and constructed as single data
Tlevel2 ¼ gw1; gw2; gw3;……; gwU½ �

Step 5: Data Tlevel2 serve as input for the meta-classifier JRip

Step 6: for gwi in Tlevel2 do

Learn the JRip meta-classifier

end for

Step 7: return gcut
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6 Complexity Analysis

The VQRS implements greedy hill-climbing as its search algorithm. This process resembles that of
QuickReduct. For a dimensionality of n, the QuickReduck algorithm executes an (n2 + n)/2 evaluation of
the dependency function. Taking n = 2, a complexity with order of 3 or (n2 + n)/2 is achieved. Assuming
n = h, the order of the algorithm’s complexity becomes (h2 + h)/2. Generally, as a method of establishing

Figure 1: Proposed algorithm for multi-agent stacking ensemble
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best features, QuickReduct conducts h + 1 initial evaluations of the dependency function with respect to h + 1
features. Therefore, the total number of evaluation steps for n = h + 1 is:

h2 þ h

2
þ ðhþ 1Þ ¼ h2 þ 3hþ 2

2
¼ ðhþ 1Þ2 þ ðhþ 1Þ

2
(18)

The worst-case complexity of the VQRS algorithm is O((h2 + h)/2).

In measuring the complexity of the simple logistic algorithm, the dimensionality d of data is considered
as well as the data points n. Then, a complexity of O(nd) is derived. Concerning sequential minimal
optimization, the complexity is O(n3) since it is able to handle large problems of n data points. JRip has a
complexity of O(n2) because it comprises two stages, namely, building and optimization, with processes
executed multiple times.

The proposed algorithm’s complexity is the summation of all complexities of each algorithm. The total
complexity is thus as follows:

Oðððh2 þ hÞ=2Þ þ ðndÞ þ ðn3Þ þ ðn2ÞÞ (19)

7 Experimental Setup and Results

We employed a staking ensemble mechanism in combination with VQRS feature selection to classify
medical datasets. The VQRS method was used to select the best features, thus improving the performance
classification after training on an ensemble model with simple logistic, SMO, and JRip algorithms.
Popular algorithms within the domain of medical classification were selected for comparison, namely, IBk
or the k-nearest neighbor algorithm, J48, random forest (RF), fuzzy rough k-nearest neighbor (FRNN),
simple logistic algorithm, SMO, and JRip. All the experiments were run in the Waikato environment for
knowledge analysis (WEKA). A 10-fold cross-validation was used for training and evaluation. The
process entailed dividing the dataset into ten subsets of equal size, with nine subsets serving as
the training data and one subset as the test data. The results were averaged. The parameters selected for
the stacking ensemble are the simple logistic and SMO base classifiers, JRip as the meta-classifier, the
number of execution slots equal to 1, the number of folds equal to 10, and the number of seeds equal to 1.
The default parameters in WEKA for the simple logistic, SMO, and JRip classifiers were retained.

7.1 Assessment Measures

The metrics for validating the robustness and performance of the algorithms were sensitivity (SN), the
false positive rate (FPR), specificity (SP), and the Matthews correlation coefficient (MCC). These are
presented in Eqs. (20)–(23).

SN ¼ TP

TP þ FN
(20)

FPR ¼ FP

FP þ TN
(21)

SP ¼ TN

TN þ FP
(22)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (23)
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Here, TP and FP are the number of true positives and false positives, respectively; FN and TN are the
number of false negatives and true negatives, respectively.

7.2 Description of the Datasets

The medical datasets used for experiments were retrieved from the UCI Machine Learning [49] and Arizona
State University (ASU) repositories [50]. The datasets contain heart-statlog, lsvt voice rehabilitation, and
leukemia data. The heart-statlog contain information about heart disease in patients and have 13 attributes
with one class label, as well as 270 instances. One hundred and fifty instances were categorized as absent
(negative confirmation of heart disease) and 120 instances as present (positive identification of heart disease).
With regard to lsvt voice rehabilitation, the 126 instances were broken down into 42 instances of acceptable
phonations and 84 instances of unacceptable phonations. The repository contains samples from 14 patients
with Parkinson’s disease to evaluate whether voice rehabilitation improved phonation, with 310 input
variables. The leukemia data consisted of 72 instances and 7130 attributes (including the class attribute). The
repository describes the classification of patients as having either acute myeloid leukemia (AML) with
25 instances, or acute lymphoblastic leukemia (ALL) with 47 instances.

7.3 Simulation Results

Simulations were conducted using WEKA on a 3.40 GHz Intel® Core i7 Processor with 4 GB of RAM.
The results for each dataset were tabulated and graphed after a series of experiments. Information about the
data is presented in Tab. 1.

The features retrieved when incorporating VQRS were 3, 6, and 8 for leukemia, lsvt voice rehabilitation,
and heart-statlog, respectively. Diverse predictive outcomes were produced. With regard to the heart-statlog
dataset (Tab. 2 and Fig. 2), IBk, FRNN, and J48 had sensitivity rates of 75.20%, 75.60%, and 76.70%,
respectively. These were followed by the JRip, RF, and simple logistic algorithms, the reported rates of
which were 78.90%, 81.10%, and 83.30%, respectively. The proposed model showed superiority over the
other algorithms, with a rate of 84.10%. This is on par with that of SMO. The FPR must be at its
minimum to be considered as best performance. In line with this, the proposed algorithm produced a
17.40% false positive rate. Only the simple logistic and SMO algorithms were better, with false positive
rate of 17.30% and 16.70%, respectively.

In terms of specificity, the proposed model surpassed some other algorithms, with a rate of 82.60%.
Moreover, the proposed ensemble model proved its superiority over the comparison algorithms as far as
the MCC is concerned. The proposed model attained an MCC of 67.70%. Overall, the proposed model
performed extremely well in comparison to other algorithms.

With regard to the lsvt voice rehabilitation dataset (Tab. 3 and Fig. 3), FRNN had a sensitivity rate of
72.20%, with both IBk and J48 producing rates of 75.40%. The proposed model surpassed JRip with a
rate of 84.10%, which was on par with that of RF. The highest sensitivity was attributed to SMO, with a
rate of 85.70%. The proposed algorithm had a false positive rate of 21.00%, and was ranked third.
J48 had the poorest false positive rate (33.70%), and SMO had the best (16.70%).

Table 1: Dataset information

Datasets Attributes Instances Extracted features by VQRS

Heart-Statlog 13 270 8

Lsvt Voice Rehabilitation 310 126 6

Leukemia 7129 72 3
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In terms of specificity, the proposedmodel surpassed some other algorithms, with a rate of 79.00%. Similarly,
the proposed model proved its superiority with its MCC of 63.90%. Ultimately, these results on the lsvt voice
rehabilitation dataset revealed that the proposed model performed on par with the rest of the algorithms.

Table 2: Heart-statlog

Algorithms SN (%) FPR (%) SP (%) MCC (%)

IBk 75.20 25.20 74.80 49.90

J48 76.70 24.00 76.00 52.70

RF 81.10 20.90 79.10 61.80

FRNN 75.60 25.20 74.80 50.40

Simple Logistic 83.30 17.30 82.70 66.20

SMO 84.10 16.70 83.30 67.70

JRip 78.90 22.60 77.40 57.10

Proposed Algorithm 84.10 17.40 82.60 67.70

Figure 2: Results for the heart-statlog data

Table 3: Lsvt voice rehabilitation

Algorithms SN (%) FPR (%) SP (%) MCC (%)

IBk 75.40 24.20 75.80 48.90

J48 75.40 33.70 66.30 43.10

RF 84.10 22.20 77.80 63.60

FRNN 72.20 30.60 69.40 40.30

Simple Logistic 84.90 20.60 79.40 65.60

SMO 85.70 16.70 83.30 68.30

JRip 81.00 29.80 70.20 55.40

Proposed Algorithm 84.10 21.00 79.00 63.90
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Finally, with regard to the leukemia dataset (Tab. 4 and Fig. 4), J48 and the RF produced sensitivity rates of
83.30% and 86.10%, respectively. This was followed by the algorithms IBk and JRip, with rates of 87.50%
each. The proposed model showed superiority over the other algorithms, with a rate of 97.20%. The simple
logistic and SMO algorithms also fell within the 94%–96% range. With regard to the false positive rate, the
proposed model had the best rate (3.30%). In comparison, RF had the poorest false positive rate (24.20%).

Figure 3: Outcomes for the lsvt voice rehabilitation data

Figure 4: Results for the leukemia data

Table 4: Leukemia

Algorithms SN (%) FPR (%) SP (%) MCC (%)

IBk 87.50 17.90 82.10 72.00

J48 83.30 22.00 78.00 62.70

RF 86.10 24.20 75.80 69.40

FRNN 88.90 15.30 84.70 75.20

Simple Logistic 94.40 6.70 93.30 87.70

SMO 95.80 6.00 94.00 90.80

JRip 87.50 10.40 89.60 74.50

Proposed Algorithm 97.20 3.30 96.70 93.90
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For specificity, the proposed algorithm again surpassed the other algorithms, obtaining a specificity of
96.70%. The proposed algorithm’s superiority was also reflected by its MCC of 93.90%. In summary, the
proposed model performed best overall.

7.4 Receiver Operating Characteristic

The receiver operating characteristic (ROC) curves for all the algorithms obtained following
experiments on all datasets are presented in Figs. 5–7. They are analogous to the corresponding receiver
operating characteristic (AUC) values generated by the ROC curves presented in Tab. 5. For the heart-
statlog data, the proposed model had a better AUC (0.8335) than all other algorithms except for SMO
(0.8370). The simple logistic algorithm followed closely, with an AUC of 0.8300, while IBk produced
the lowest AUC value (0.7500). For lsvt voice rehabilitation, the proposed model performed better than
five of the algorithms. Only two algorithms, the SMO and simple logistic algorithms (with AUC values
of 0.8215 and 0.8450, respectively), were superior to the proposed model (AUC of 0.8155). The result
for the leukemia data confirms the superiority of the proposed algorithm, which obtained an AUC of
0.9695. None of the other algorithms fell below the 0.8000 AUC range, and the lowest AUC value was
obtained by J48 (0.8065).

Figure 5: ROC curves for heart-statlog data

Figure 6: ROC curves for lsvt voice rehabilitation data
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8 Conclusion

This paper proposed the concatenation of three diverse and unique machine learning algorithms as a
multi-agent classifier system that relies on a stacked ensemble for medical diagnoses. The simple logistic,
SMO, and JRip algorithms were used. VQRS proved useful for extracting subsets to reduce the large
dataset features and eradication noise. Combining VQRS and an ensemble algorithm improved
prediction. The base classifiers trained on the medical datasets, and the combined prediction was acted on
by the meta-classifier. The selection of features improved the performance of the ensemble algorithm. For
the heart-statlog and leukemia data, the best sensitivity was achieved by the proposed algorithm, with
84.10% and 97.20%, respectively. An enhanced sensitivity result for the lsvt voice rehabilitation data was
also noted. Overall, the proposed multi-agent ensemble can increase the accuracy and decrease false
positive rates for medical diagnoses.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Figure 7: ROC curves for leukemia data

Table 5: AUC for all the algorithms for the datasets

Algorithms Heart-Statlog Lsvt Voice Rehabilitation Leukemia

IBk 0.7500 0.7560 0.8480

J48 0.7635 0.7085 0.8065

RF 0.8010 0.8095 0.8095

FRNN 0.7520 0.7080 0.8680

Simple Logistic 0.8300 0.8215 0.9385

SMO 0.8370 0.8450 0.9490

JRip 0.7815 0.7560 0.8855

Proposed Algorithm 0.8335 0.8155 0.9695
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