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Abstract: Most damaging plant diseases have been caused by viruses in the entire
world. In tropical and subtropical areas, the damage caused by plant virus leads to
great economic and agricultural losses. Single stranded DNA viruses (gemini-
viruses) are the most perilous pathogens which are responsible for major diseases
in agronomic and horticultural crops. Significantly begomoviruses and mastre-
viruses are the biggest genus of plant infecting viruses, transmitted though Bemi-
sia tabaci and members of Cicadellidae respectively. Plants possesses some
naturally existing chemicals term as phyto-chemicals which perform important
functions in the plant. Some antioxidant enzymes are used by plants for self-
defense upon foreign invasion of infection. This review explains the present per-
ceptive of influence of viral infections on phyto-chemicals, oxidative enzymes
and biochemical changes occurring in the plant. Viral infection mediated phyto-
chemical changes in plants mainly includes: up and down regulation of photosyn-
thetic pigment, increase in the concentration of phenolic compounds, elevation of
starch content in the leaf and up & down regulation of anti-oxidative enzymes
including (GPX) guaiacol peroxidase, (PPO) polyphenol oxidase, (APX) ascor-
bate peroxidase, (SOD) superoxide dismutase and (CTA) catalase. These changes
lead to initiation of hypersensitive response, by thicken of the leaf lamina, ligni-
fication under the leaf surface, blocking to stomatal openings, systematic cell
death, generation of reactive oxidative species (ROS), activation of pathogen
mediated resistance pathways i.e., production of salicylic acid and jasmonic acid.
Collectively all the physiological changes in the plant due to viral infection sup-
ports the activation of defense mechanism of the plant to combat against viral
infection by limiting virus in specific area, followed with the production of bar-
riers for pathogen, accumulation of starch in the leaf and excess production of
(ROS). These strategies used by the plant to prevent the spread of virus in whole
plant and to minimize the risk of severe yield loss.
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1 Introduction

Plant infecting Gemini viruses are present almost everywhere in the world. Therefore, they became a
center of scientific considerations related to plant diseases [1]. Among all single stranded DNA viruses
‘geminiviruses’ are responsible for most of plant destructive diseases. Specifically, the group
begomoviruses and masteviruses are biggest genus of plant infecting viruses, transmitted by the whitefly
and leaf hopper [2]. Plants possess some naturally existing chemicals known as phyto-chemicals which
are of two types such as primary metabolites and secondary metabolites [3]. Phyto-chemical analysis of
the plant leaf extract, revealed the presence of secondary metabolites i.e., flavonoids, phenols,
polyphenols, some antioxidant enzymes, i.e., POX, PPO, APX, CAT and major biomolecules i.e.,
chlorophyll, carbohydrates, etc. These metabolites are responsible for various important functions in the
plants specifically task related to activation of defense mechanism in plants [4]. Any biotic or abiotic
stress in plants becomes the cause of change in chemical configuration of primary metabolites and alters
the number of phyto-chemicals [5]. Literature confirmed that viral infection affects a lot of physiological
and biochemical changes in plants [6]. In 1970 it was investigated that many viruses in different host
plants were responsible to change the metabolic activities within the plants [7]. In the past few years it
has widely been reported that viruses were not only involved in altering the concentration of phyto-
chemicals but also found responsible to stimulate some compounds in plant which activated its defense
mechanism against the biotic stress [8]. Interactions between virus and plant have been considered to
affect the crop production. Plant virus not only disturbs the secondary metabolites production but also
increases their numbers as well. It affects the enzymatic activity of antioxidant enzymes in the plants [9].
PCR results confirmed that begomoviruses also changed phyto-chemicals concentration resulting in
activation of defense mechanism [8]. It has been reported that virus altered the secondary metabolites
present in the fruit as well. Plant virus involved in increasing the tolerances in plants towards them by
activating the antioxidant defense mechanism through enhancing positive biochemical changes in plants
[10]. Viral infection enhanced the concentration of phenol, proline and activity of the antioxidant
enzymes i.e., CAT, PPO, SOD and POX was also increased due to the viral infection [11] (Fig. 1).
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Figure 1: Virus mediated activation of defense pathways in plant [4,5,10]
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Objective of this review study was:

1. To elaborate the role of viral pathogens in activation of plant defense mechanism.

2. To understand the phyto-chemicals changes occurring in the plants due to viral invasion.

3. Role of antioxidant enzymes in plant defense activation.

This study will help to further investigate the activation of secondary metabolites in plant upon infection
and how they are associated with the activation of plant defense mechanism.

2 Impact of Viral Infection on Phyto-Chemicals

2.1 Chlorophyll
On pumpkin plant, infection of Tomato leaf curl palampur virus (ToLCPMV) affected the chlorophyll

content of leaf, this virus affected both chlorophyll a and b, by reducing their amount in the plant [8].
According to Sinha et al. [12]. Banana bunchy top virus (BBTV) upon infection reduced the
concentration of chlorophyll a and b, maximum reduction was observed in chlorophyll b than chlorophyll
a. Reported reason behind this reduction was the deposition of carbohydrates in the leaf of plant [13,14].
Aucuba mosaic virus in tomato upon infection did not affect the chlorophyll in older leaves; younger
leaves have shown no change. Cucumber mosaic disease was supported by the formation of chlorosis
strips on the leaf which confirmed the change in chlorophyll concentration in the leaf [15]. It is reported
that in tomato, infection of TLCV altered chlorophyll concentration in the plant, decline in chlorophyll
concentration was observed in infected leaf as compared to the healthy leaf, increased concentration of
chlorophyll was measured at high temperature while low temperature reduced the concentration of
chlorophyll [5]. In okra, viral infection decreased the concentration of chlorophyll inside the plant leaf
[16]. According to various researchers the Yellow vein clearing mosaic virus (YVCMV) which was
responsible for vein clearing mosaic disease in okra caused drastic reduction in the amount of chlorophyll
in leaf of okra [17]. It was found that in Egypt (TYLCV) causing infection in tomato reduced the
chlorophyll content leading to the reduction of tomato production causing great economic loss to the
farmer [11]. It was also reported that Moroccan watermelon mosaic virus (MWMV) infection in
Cucurbita moschata caused reduction in both chlorophyll a and b. Their estimation showed that quantity
of chlorophyll a was affected more than chlorophyll b [18]. The quantity of photosynthetic pigment
should reduce in diseased plants compared to the healthy plants. In eggplant, infection of begomovirus
TYLCV which is transmitted by whitefly changed the phyto-chemical and biochemical compounds in
tomato, leaf analysis revealed that mild change in chlorophyll concentration was identified [19]. In
previous studies, TYLCV was responsible for the reduction of Mg++ which is a main component of
chlorophyll [20]. This reduction also led to the decrease of chlorophyll in tomato plant while, high
temperature supported the reduction. On TYLCV infection, tomato plant showed chlorosis at high
temperature, causing reduction in chlorophyll concentration in the plant [21]. Infection of Bean yellow
mosaic virus (BYMV) caused gradual reduction of chlorophyll in Viciafaba infected leaf [22].

2.2 Carbohydrates
Significant impact of pathogenic viruses on the carbohydrate metabolism of infected plant has been

reported. Different viruses caused varied infections in plants such as some completely altered
carbohydrate synthesis, and translocation process while others have mild effect [23]. Carbohydrates play
a significant role in the plant body but accumulation of excessive starch in the leaf produced viral
symptoms [24] Watson [13] reported that sucrose contents increased in infected plant on the incidence of
viral infection. Carbohydrates have major role in the production of antioxidant enzymes [25]. Strong link
between the activation of defense mechanism with carbohydrate concentration has been confirmed by
scientific reports [26,27]. Results of Fryer et al. [28] showed that BBTV infection increased the sugar
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content by interfering with the photo inhibitory processes in the banana plant and symptoms appeared on
infected areas. On the incidence of banana bunchy top infection amount of ROS increased in the plants.
ROS sucrose produced within infected plant resulted in chlorosis [29]. In tomato plant decrease in
insoluble and soluble sugars in stem and leaf was observed due to infection caused by TLCV in infected
plant [30]. Changes in carbohydrates concentration due to viral infection also affect the leaf color, no
change was observed in color of healthy leaf while infected leaf showed dark gray color [21].

2.3 Effect on Polyphenols
Polyphenols are secondary metabolites, which play significant function during host-pathogen

interaction, disease development and activation of defense mechanism in diseased plants. Defense
mechanism got strengthen by the formation of lignin under the leaf surface that acts as a physical barrier
to resist the multiplication of pathogen. This might be due to increased concentration of phenolic
compounds upon viral infection in the plants [20]. Enhanced amount of phenol due to the viral infection
in plant was measured by Rai et al. [31] stating that increased amount of phenol resulted in the elevation
of plant defense mechanism [32]. Increased levels of phenols also suggested an acceleration of phenol
synthesizing pathway following pathogen infection. Anuradha et al. [5] results showed that the level of
total phenols was elevated in P. edulis fruit due to infection of TeMV. Similarly Jaiswal et al. [8] and
Jabeen et al. [33] have reported that Yellow vein mosaic virus (YVMV) infection in pumpkin plant
resulted in increase of phenolic compounds which boasted the defense mechanism in the plant, these
compounds were elevated unto 73% in the infected plant leaf while 300% in the infected fruit as
compared to the healthy plant. Infection of CMV in tomato increased the amount of phenols which
helped in lignifications of cell wall and played role in plant defense by boosting the immunity [34]. The
research studies conducted by Jaiswal et al. [8], Song et al. [29], Khalil et al. [30], and El-Dougdoug
et al. [35] also supported the fact that TYLCV enhanced the amounts of phenol in the plants. Huston
et al. [36] reported that infected tomato varieties have more phenolic compounds that activate the
resistance phenomena against viruses in plant and also boost the antioxidants in plant for further fight
against viral infection. Although, viral infections changed the number of phenolic compounds in plant,
but infection of CTV did not show any change in the phenolic concentration [37]. Secondary metabolites
specially polyphenols and flavonoid compounds were affected due to viral infection in members of
Passifloraceae, results suggested that viral infection enhanced their amounts, in P. edulis fruit by 58.3%
while in leaf this increase observed was 43.1% [9].

3 Effect of Viral Infection of Oxidative Enzymes

3.1 Effect on Peroxidase
First enzyme that is reported to show quick defense against viral infection is peroxidase [37].

Lignification, polymerization, suberification, cell wall elongation, resistance and wound healing are all the
processes which are due to POX enzyme [38]. Banana bunchy top infection caused high peroxidase
activity in bananas cultivar, while healthy crop showed less POX action in the plant, similar results were
observed upon the infection of (TMV) in tobacco plant [39]. Likewise beans infected with (BYMV) [40],
Potato’s infected with potato virus Y [41], TMV and Tomato mosaic virus (ToMV) causing infection in
tomato and bell pepper [42], TMV infecting tobacco plants [43], In tomato plants infection of TYLCV
[44], in banana plants infected with BBTV [45], Capsicum annum infection of Gemini virus [46] and
Cotton leaf curl burewala virus (CLCuBuV) infection in cotton [47] supported these results. Polyphenol
oxidase is involved in AOS process. The accumulation of AOX at the infection site damaged the
membrane and destroyed the chlorophyll in the plant which leads to POX during senescence, in green
leaves there was a correlation which was observed at the time of increase in POX and decrease in
chlorophyll [41]. Peroxidases perform their role in plant defense by the production of pathogenesis-
related proteins. POX helped to remove the hydrogen peroxide from the cell. Peroxidase was also found
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involved in formation of a wall of lignin around the cell which limits pathogens to cross from the place
of penetration [48].

3.2 Effect on Polyphenol Oxidase (PPO)
Plant defense was boosted in the presence of polyphenol oxides, when plant membrane gets damaged on

pathogenic invasion, phenols in the plant produced chlorogenic acid, which create an unfavorable
environment for the pathogen to spread, polyphenol increased the phenol production that leads to restrict
the spread of pathogen [47]. Banana bunchy top infection caused the elevation in PPO activity in banana
cultivars. PPO after combining with phenols shows activation of defense in the plant towards pathogen [49].

3.3 Effect on Catalase
Catalase is an enzyme, which can hold oxygen to protect the cell from peroxides, as peroxides cause

toxic effect on plant health by development of H2O2 from substrate [50,51] BBTV supported the activity
of CAT in banana leaf, likewise in peanuts the infection of Arachis hypogeal increased the activity of
catalase [52] similarly elevation in catalase was observed when cotton was inoculated with CLCuBuV
[47]. The amount of CAT was greater in non-inoculated susceptible cotton variety (CIM-496), in
comparison with the non-inoculated resistant variety (NIAB-11) after with the inoculation of elevation of
CAT activity reported to be maximum. High activity was observed in genotype Ravi, which was resistant
to the CLCuBuV, CAT activity was upto 40%. NIAB-11 showed 34.4% CAT activity, CIM-496 showed
22.22% activity of CAT [47]. In viral infected P. edulis plant the amount of catalase increased upto
52.8% hence the tolerance capacity of plant toward virus also increased said [9].

3.4 Effect on Ascorbate Peroxidase (APX)
Main role of APX is to hold ROS in plants, activity of ascorbate peroxide was high during BBTV

infection in banana, same results were obtained by infection of begomoviruses in Hibiscus cannbinus
[53], Nicotiana benthamiana plant have high APX activity due to infection of Pepper mild mottle virus
(PMMV) [54], Sunflower chlorotic mottle virus (SCMV) infection in sunflower [55]. Over production of
ascorbate peroxide boosted the production of peroxidase, led to grip more reactive oxygen species, in
past reports it has been stated that the compatible relation between host and pathogen increased the
amount of APX in epidermal cells as well as in mesophyll cells, cell itself have no mechanism to restrict
the pathogen spread, increased amount of APX allowed cell to remain viable [56]. This mechanism has
been studied in Plum pox virus (PPV) infection in apricot [57]. Another report showed that APX activity
increased up to 44.6% due to infection of CMV in cucumber plant Jaiswal et al. [8] and Lan et al. [9]
reported that viral infection increased the APX activity upto 100% due to viral infection of ToLCPMV in
pumpkin. In viral infected P. edulis plant the amount of GR increased up to 31.8% hence the tolerance
capacity of plant toward virus also increased said [9].

3.5 Effect on Superoxide Dismutase
SOD reported to be another scavenging enzyme which increases the rate of dis-mutation of SO radical

into active oxygen species. Viral infection increased SOD activity in the plant [50], above statement is
supported by the findings of Hernández et al. [57]. It is reported that decrease of SOD in peaches infected
with Plum pox virus, Phaseolus vulgaris L. infected with White clover mosaic virus (WClMV) [58] black
gram infected with Urdbean leaf crikle virus (ULCV) [59] and Soybean mosaic virus (SMV) infection in
resistant variety of soybean [60]. Plants enhance the SOD quantity for defense against viral infection
[61]. It is reported that Mycosphaerella fragariae infection in strawberry increased the amount of SOD in
the infected leave [61]. In resistant variety of Ravi cultivar showed more SOD in infectious plant parts
[62]. CLCuBuV infection elevated the quantity of SOD in cotton genotype [47]. Viral infected P. edulis
plant the amount of SOD increased up to 66.7% hence the tolerance capacity of plant toward virus also
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increased said Lan et al. [9]. The behavior of anti-oxidative enzymes and their isoforms were checked in
both non-inoculated healthy and infected plants one month later from viral infection. In infected leaf
samples there was a substantial increase in the activities of SOD about 273%, in comparison with the
leaves of uninfected seedlings [8].

4 Effect of Viral Infection on Activation of Defense Mediated Pathways

Infection of CMV induced HR response in the plant, salicylic acid production increased in the plant
which showed resistance towards pathogen, no increase was noticed in susceptible varieties [63]. Cultivar
of tobacco, which was resistant towards TMV produced hypersensitive response, upon infection the level
of salicylic acid in infected plant became several fold more than non-infected plant [64]. Infection of
Turnip crinkle virus (TCV) on Arabidopsis triggered the hypersensitive response in the plant, but HR
response was depended upon the SA but not or JA/ethylene [65]. Infection of cauliflower mosaic virus
(CaMV) in cauliflower plant was investigated by setting three maker genes, for identification of salicylic
acid signaling pathway, reactive oxygen and jasmonic acid pathways respectively, results suggested that
salicylic acid signaling was very low, but RO and JC acid pathways were visible in virus infecting plant
(Fig. 2). PR-1 expression, salicylic signaling was less until 8th post inoculation but then elevated sharply
as the viral infection increased. On the other hand, GST1- and PDF1.2 markers which are for observing
reactive oxygen species and jasmonic acid signaling showed their elevation upon viral infection after 2 h
of post inoculation [66]. It is studied that in tomato, infection of TWV activated plants defense
mechanism by stimulating the production of plant hormones i.e., Jasmonate and salicylate [67] Upon
Infection of TuMV in Arabidopsis, levels of SA and ET were more than doubled than the healthy plant,
on the contrary JA concentration became four fold in infected plant and continue to increase in infected
plants [68] Infection of citrus exocortis virus CEVd and Tomato mosaic virus (ToMV) also elevated the
jasmonic acid production up to 150 folds [69] According to past researches protein C2 that encodes for
Beat beet severe curly top virus (BSCTV) caused the rise of salicylic defense pathway [70] Likewise in
peas infection of Clover yellow vein virus (CIYVV) was responsible for activation of hypersensitive
response in diseased plants ultimately leading towards cell death. Wild strain of CIYVV was responsible
for cell death in peas. Furthermore, the aggressiveness of CIYVV strain in susceptible peas increased due
to SA production [71]. Pathogen identification with the help of R gene was studied; results concluded
that upon infection plant showed hypersensitive response, boost the production of reactive oxygen species
and up regulate salicylic acid which results in activation of local as well as systemic gene involved in
defense. In tobacco activation of N-gene due to infection of TMV produced pathogen related proteins and
establishment of SAR on plant pathogen interaction [72] Citrus leprosis virus C which is responsible for
Leprosis disease in citrus, triggered the production of reactive oxygen species (ROS) upon interaction
with mites which were non viruliferous, plants locally produced ROS and activates the production of the
salicylic acid (SA) and jasmonate pathways. On the other hand, JA pathway activating genes were
suppressed upon viral infection. Viral infection intensified the ROS burst and cell death and enhanced the
expression of genes involved in the RNA silencing mechanism and SA pathway [73].

PR Defense pathway

Salicylic acid pathway Jasmonic acid pathway/ Ethylene 

Induced systemic resistanceSystematic Acquired Resistance

Figure 2: PR-Defense pathway in plant [66,69,73]
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5 Conclusions

From present review it is summarized that upon viral infections in the plants due to the activation of
secondary metabolism pathway based on ecological influence and adaptability of genetic code of the
plant cell, some naturally existing primary metabolites synthesized into secondary metabolites or phyto-
chemicals [3]. Some important secondary metabolites are flavonoids, phenols, polyphenols, some
antioxidant enzymes i.e., POX, PPO, APX, CAT and major biomolecules, i.e., chlorophyll, carbohydrates
etc. These metabolites perform task related to activation of defense mechanism in plants. Upon viral
infection plant activates its defense mechanism to deal with foreign invasion. Generally, two types of
defense responses are shown by the plant towards infection, i.e., structural defense and biochemical
defense [10,34]. Certain enzymes like chitinase, peroxidases help to give structural defense by controlling
the multiplication of virus, furthermore polymerization, suberification, cell wall elongation, resistance and
wound healing are all the processes which provide structural defense and are triggered by POX enzyme.
Viral infection in many plants increased the activity of superoxide dismutase and polyphenol oxidase,
resulting in enhancement of reactive oxygen species that ultimately activate plant defense mechanism
[59]. Along with these enzymes, phenols have association with plant defense and the enzymes play a role
as a biomarker for plant-viral interaction study [5,47,74]. In biochemical defense mechanism specific
pathways are activated which include PR-pathways, PAL pathway, ROS pathways etc., and boost the
plant defense by producing secondary metabolites. Concentration of phenolic compounds increased in
infected plant resulting in lignifications under the infected leaf surface that act as barrier to pathogenic
viruses to multiply in the host cell. Infection of virus induces HR response in the plant cells. Salicylic
acid production increased in the plant having resistanance towards pathogen [63]. Cultivars which have
resistance against viral pathogen produce hypersensitive response, upon infection the level of salicylic
acid became several folds high in infected plants as compare to the non-infected plants [64,68–70]
causing disturbance in primary metabolites and antioxidant enzymes activity within the plant. Viral
infection enhances the enzymatic activity of the antioxidant’s enzymes, i.e., CAT, PPO, SOD and POX
was also increased due to the viral infection [11]. Host plant infected with pathogenic viruses show
severe reduction in photosynthetic pigment and chlorophyll content due to accumulation of carbohydrates
in leaves tissue. Some specific viruses cause decrease in chlorophyll a and some has effects on
chlorophyll b. Due to reduction in chlorophyll, plant undergo chlorosis. Reactive oxygen species
production enhanced at the site of necrosis, showing hypersensitive response against viral infection. This
review suggests that virus induce resistance in plant by altering the primary phyto-chemicals and
antioxidant enzymes to initiate defense mechanism of the host plant. So that plant may thus combat viral
invasion as other type of stresses mostly due to presence of natural antioxidants [75].

This study will help to further investigate that what is the genetic difference among cultivars which
shows more resistance against viral strain as compared to the susceptible cultivars. Is there any gene
involved which is controlling the defense mechanism and making them more resistant? Is there any
gene which is controlling the production of secondary metabolites? Moreover, as secondary
metabolites are boosting defense mechanism in plant, is there any other way to trigger the production
of secondary metabolites other than viral infections? These are the questions which can be addressed
with further research.
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