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ABSTRACT

Structural health monitoring (SHM) is recognized as an efficient tool to interpret the reliability of a wide variety of
infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezo-
electric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM
applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs).
The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal
performance of the damage inspection process. In this framework, an experimental setup is developed in current
research to identify the presence of fatigue crack in stainless steel (304) beam using EMI approach and estimate
the effect of temperature variations on the electrical impedance of the piezoelectric sensors. A regular series of
experiments are executed in a controlled temperature environment (25°C-160°C) using 202 V1 Constant Tempera-
ture Drying Oven Chamber (Q/TBXR20-2005). It has been observed that the dielectric constant (337) which is
recognized as the temperature-dependent constant of PZT sensor has sufficiently influenced the electrical impe-
dance signature. Moreover, the effective frequency shift (EFS) approach is optimized in term of significant tempera-
ture compensation for the current impedance signature of PZT sensor relative to the reference signature at the
extended frequency bandwidth of the developed measurement system with better outcomes as compared to the pre-
vious literature work. Hence, the current study also deals efficiently with the critical issue of the width of the fre-
quency band for temperature compensation based on the frequency shift in SHM. The results of the experimental
study demonstrate that the proposed methodology is qualified for the damage inspection in real-time monitoring
applications under the temperature variations. It is capable to exclude one of the major reasons of false fault diag-
nosis by compensating the consequence of elevated temperature at extended frequency bandwidth in SHM.
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1 Introduction

The implementation of structural health monitoring (SHM) in any mechanical or civil infrastructure is
important to identify the abnormalities and ensure its optimal performance. There are several notable SHM
methods to measure the integrity and safety level of in-service structures, including, wave propagation [1],
acoustic emission, comparative vacuum monitoring, and electromechanical impedance (EMI) [2-5]. To
identify the structural abnormality by using the electromechanical coupling characteristic of piezoelectric
sensors, the EMI approach is regarded to be one of the most favorable approaches. It can locate the
incipient damage using the piezoelectric sensors which are light in weight and smaller in size [6]. These
sensors are bonded on the monitored structure to notice the abnormal behaviour under the operational
conditions and ensure its integrity. To detect the presence of a crack, the EMI approach measures the
mechanical impedance of structure by using the electromechanical coupling property of piezoelectric
sensors because the electrical impedance of piezoelectric sensors is precisely correlated to the mechanical
impedance of the monitored specimen. In the next step, the measured impedance is compared with a
baseline impedance measurement to evaluate the intensity of damage [7-9]. The electrical impedance
should be estimated at higher frequencies to achieve accurate inspection results.

The EMI method has got the attention of a lot of researchers to improve its effectiveness, and numerous
research studies [10,11] have depicted that it’s possible to implement EMI method not only in lab-scale work
but also in complex configurations. Liang et al. [12] have worked on the theoretical expansion of EMI
approach and its application in SHM. Yang et al. [13] analyzed the impact of sensor bonding thickness
on the electrical impedance signature by performing the numerical analysis on contact between the
monitored structure and bonded PZT. Hamzeloo et al. [14] conducted finite element modelling (FEM) of
a hollow cylinder to investigate the effect of crack location and its type on EMI spectrum. However, the
requirement of small element size in FEM, particularly in a high-frequency range, has hindered the
effectiveness of their work in practical applications in terms of the high cost. Park et al. [15] proposed a
spectral element method (SEM) to signify the effective characteristics of a coupled PZT patch and beam
structure. To construct stiffness matrices and element mass, SEM utilizes the frequency-dependent shape
functions. Therefore, it presents precise dynamic features of a monitored specimen and achieves accurate
interpretations even in the high-frequency range [16]. Wongi et al. [17] and Zuo et al. [18] utilized the
EMI signals and individually examined the crack breathing phenomenon in pipelines. Zhu and Qing et al.
[19,20] worked on composite material structures and analyzed the disbond within the honeycomb
sandwich composite material components. Li et al. [21] developed an electromechanical-based analytical
approach to investigate the presence of nonlinear vibration in corrugated graphene/piezoelectric (CGP)
laminated infrastructures. Despite the fact, the EMI method utilizes small and low-cost sensors, the
estimation of the electrical impedance signature, which is the primary step of the whole procedure, is
generally achieved by some commercial impedance analyzers, namely, the 4192A and 4294A. However,
these high-cost impedance measuring tools cannot be used in real-world applications because of their
slow working efficiency. Based on the concept of conventional impedance analyzers, in which each
measurement is obtained under steady-state condition within the defined frequency range, numerous
researchers have introduced low-cost instruments for overall impedance measurements. Steady-state
measurement systems for specific applications in SHM have also been proposed. In a steady-state
measurement scheme presented by Panigrahi et al. [22], a function generator was utilized to generate the
excitation signal at each frequency step and the corresponding output response at each excitation
frequency was observed by an oscilloscope. It is obvious that the proposed steady-state measurement
scheme yields accurate and authentic results, however, the measurements normally take a long time
because the frequency of the pure sinusoidal signal should be gradually increased step-by-step for the
crack identification. This time consumption might be very important if the damage inspection is
performed for a wide frequency range with numerous steps.
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For over-all SHM utilization, the test setup does not need to measure accurately the electrical impedance.
Since the recognition of structural damage is achieved by comparing the two impedance signatures, it is only
significant that the test setup should have excellent repeatability between the measured values and high
sensitivity for the variations caused by different parameters, such as temperature, in the mechanical
impedance of the monitored structure. From these aspects, it is compulsory to develop such EMI-based
test setup which not only measures the damage sensitivity but also insensitive to temperature variations.

1.1 Effect of Temperature Variations on PZT Sensors

The impedance-based method is indeed qualified to implement it in complicated infrastructures to
identify incipient damage, but some particular factors have hindered the integrity of EMI to real-world
applications. In most cases, the component that is being examined is continuously exposed to the several
varying environmental and operating conditions (EOCs) and unfortunately, it is considered normal in
regular inspections. Environmental parameters that affect the EMI inspection system include variations in
applied loading conditions, humidity, temperature and moisture. These variations can impede the
inspection process and cause misperception to quantify the damage index. Since the piezoelectric sensors
used in the EMI method are also significantly pyroelectric, the temperature is considered as a major
environmental factor influencing the EMI inspection procedure. The effect of temperature on the
electrical impedance signatures has been measured one of the most serious complications once the
electrical impedance signature of the PZT sensor undergoes different changes because of environmental
temperature variations. The behaviour of electrical impedance signature of a transducer relies both on the
properties of the piezoelectric material and the properties of the examined structure. Therefore, the
appearance of any abnormality in the usual trend of impedance signature is the result of changes in both
the properties of the piezoelectric material and the mechanical properties of the examined structure due to
temperature variation. It has been investigated in the literature that the temperature variations not only
influence the geometry of the monitored structure but also the mechanical properties of the material such
as Young’s modulus, affecting its dynamic properties. The most significant dynamic variations are the
natural frequencies of the examined structure because the electrical impedance signatures exhibit
resonance peaks associated with these natural frequencies. Safaeifar et al. [23] studied the fluctuations in
the natural frequencies of a monitored structure due to temperature variations. It has been observed that
the natural frequency of a structure decreases with the increasing temperature.

Numerous approaches have been proposed for the compensation of temperature variations in SHM.
Bhalla et al. [24] examined the impact of environmental temperature on the impedance signatures. A
temperature compensation method based on cross-correlation is developed by Sun et al. [25] to optimize
the horizontal shift in the electrical impedance signature. Park et al. [26] introduced the appropriate shifts
in the vertical and horizontal directions and presented an impedance-based SHM approach under variable
operational temperature conditions by taking the root mean square deviations of the acquired signatures
into account. Further, Koo et al. [27] reviewed the approach presented by Park et al. [26] and proposed
an efficient technique named effective frequency shift (EFS) to compensate for the impact of
environmental temperature. However, all of these above-mentioned approaches have been executed in a
specific narrow range of temperature with certain limitations. Such as in the case of the wide frequency
range, it has been recognized that the higher value of correlation coefficient between the two impedance
signatures causes the inaccuracy in the metric indices. Moreover, it is suggested to assume the smaller
value of the frequency step in relative to the frequency shifts caused by the structural damage and
environmental temperature variations.

To deal with these limitations, the proposed research includes the identification of fatigue crack using
electrical impedance signatures of PZT sensors at the evaluated temperature (25°C—-160°C) and extended
frequency bandwidth (25 kHz—175 kHz). Further, the effective frequency shift (EFS) technique is
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modified in the current research for the compensation of elevated temperature effect over the electrical
impedance signature of the PZT sensor. A series of experiments are conducted using specialized
202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005) to verify the effectiveness of
the adopted procedure in the presence of temperature variations. The acquired experimental results at the
extended range of operating conditions confirm the accuracy of the developed measurement system in
terms of higher damage sensitivity and temperature compensation as compared to previous research work.

The article is categorized as follows: Section 2 explains the fundamentals of the EMI method including
the governing equations for damage sensitivity. The complete description of the experimental setup is
provided in Section 3. The results regarding the localization of fatigue crack and parametric analysis of
temperature effect are discussed in detail in Section 4. The conclusions of the proposed test methodology
and improved temperature compensation approach are described in Section 5.

2 Fundamentals of EMI Scheme

The electromechanical interconnection between the mechanical impedance of the examined specimen
and the electrical impedance of the bonded PZT sensor is the fundamental concept of EMI technique.
Therefore, the piezoelectric patch works as a sensor and actuator simultaneously in it, and the acquired
electrical impedance signature lies in the defined range of operational conditions.

The piezoelectric materials are assumed as a parallel plate capacitor with reference to the impedance
model presented in the previous studies, while the dielectric is a piezoelectric material. Because of
possessing the property of piezoelectricity, the excitation signal generates both the electric field and
mechanical deformation. However, in case of low voltage of the excitation signal, the piezoelectric effect
is considered almost linear [28].

Normally, the thin sized piezoelectric patches are used in the EMI technique. Consequently, as compared
to other directions, a small deformation is measured in the thickness direction of PZT which can be neglected.
Therefore, only the lengthwise distortion of the examined specimen is evaluated in the case of a one-
dimensional problem. According to this assumption, the electrical impedance of the PZT (Lead Zirconate
Titanate) sensor derived by Baptista et al. [29] is expressed in Eq. (1):

U (su\ 1, (K 1 Z,
Z =——|jZr|— | |ztan| = | ————+— 1
£(0) = soc, T<d311> 22 “sinw) T 220 M
where Zg(w) shows the electrical impedance, o represents the angular frequency, Cy displays the static
capacitance for a square-shaped PZT of size /, d3; shows the piezoelectric constant, s;; displays the
compliance at a constant electric field, £ expresses the wave-number, Z; exhibits the mechanical

impedance of the PZT sensor, || indicates a parallel connection, j shows the unit imaginary number and Z;
demonstrates the mechanical impedance of the monitored structure.

Eq. (1) shows that the electrical impedance (Zg(w)) of the PZT patch depends on the mechanical
impedance (Z;) of the inspected specimen. Hence, the presence of any abnormality causes the fluctuation
in the mechanical impedance of the examined specimen which influences the electrical impedance of the
PZT sensors. Thus, it would become easy to examine the structural health by simply evaluating the
electrical impedance signatures of the PZT sensors using Eq. (1).

2.1 Governing Equations for Damage Sensitivity

In the EMI method, the damage sensitivity is determined by utilizing suitable metric indices. Correlation
coefficient deviation metric (CCDM) and Root mean square deviation (RMSD) are recognized as most
generally used indices. Two measured electrical impedance signatures are compared in these indices. The
first signature is achieved during a healthy condition which is termed as a reference or baseline, while
another signature is achieved in case of structural damage [25,26].
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The characteristic of both indices RMSD and CCDM are different from each other. The CCDM index
has higher sensitivity for the variation in the shape of the impedance signatures, for example, frequency
shifts. Conversely, the RMSD index is considered to be more sensitive to the changes in the amplitude of
the impedance signatures. Meanwhile, both indices are considerably influenced by the operational
temperature variations [30]. Based on literature assumptions, the CCDM index is chosen in the current
research analysis to quantify the sensitivity of fatigue crack as it is less subjected to the amplitude
variations caused by sudden instabilities in a measurement system such as inaccurate probes connections,
etc. The CCDM index based on the correlation coefficient [31] can be defined as:

CCDM =1 - C, @)

where C, represents the correlation coefficient which can be calculated by Eq. (3):
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where Zg (k) and Zg p (k) represent the electrical impedance signatures (i.e., the magnitude, the real part or
the imaginary part) that are known by Eq. (1) for the structure under healthy and damaged conditions,
respectively; @ and oy exhibit the initial and final frequency, respectively; Zg i represents the averaged
signatures under healthy conditions, while Zp , shows the averaged signatures under damaged conditions.

The variation in temperature results in significant changes in the dynamic response of both the PZT
sensor and monitored specimen. FElectrical impedance of the sensor is greatly influenced by the
temperature variations because the piezoelectric materials are considerably pyroelectric. Hence, the
temperature can be estimated by analyzing the electrical impedance of the PZT sensors [32,33]. It has
already been mentioned that the natural frequency of monitored specimen is also influenced by the
temperature variations and its value decreases with the temperature. The presence of resonance peaks in
the electrical impedance signatures represent frequency shift caused by the change in natural frequency of
structure [34], and it has been verified in the next section. To ensure the integrity and optimal
performance of impedance-based SHM measurement systems, the temperature variations must be
compensated. The properties of PZT material at room temperature are provided in Tab. 1.

3 Development of Experimental Setup

Experiment setup contains stainless steel (304) beam of dimensions 350 mm x 30 mm X 4 mm, PZT
sensors, signal wires, function generator, digital phosphor oscilloscope (Tektronix DPO 3014), and
202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005) to provide a controlled heating
environment. Internal view and specifications of Drying Oven Chamber are demonstrated in Fig. 1 and
Tab. 2, respectively.

To actuate and measure the propagating signal, two PZT patches were bonded at both surface ends of the
intact beam and it was excited by five cycle’s sinusoidal wave modulated by Hanning window function. To
generate a fatigue crack, a steel beam of a bit larger width (350 mm x 35 mm x 4 mm) was selected. Firstly, a
triangular-shaped notch of 5 mm was incised in the middle of the beam as an instant crack. The depth and
width of the notch were kept the same. In the next step, the specimen was undergone to a high-cycle fatigue
processing provided by fatigue testing platform of MTS with the sinusoidal tensile load of 8 Hz in the range
of 0 kN to 15 kN. After approximately 68000 cycles, a slightly visible fatigue crack of 10 mm was generated
in the beam. Next, the notch was eliminated by the milling machine. Hence, a beam of required dimensions
(350 mm x 30 mm x 4 mm) with fatigue crack was achieved. A slightly visible fatigue crack of 10 mm and
the location of PZTs bonded on the beam are shown in Fig. 2.



Table 1: Material properties of PZT sensors [35]
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Property Symbol  Value Unit
Young Modulus E 6.5 x 10" N/m?
Density ) 7750 Kg/m®
Mechanical Quality factor Om 80 o
Piezoelectric voltage coefficient  g33 24 x 1073 V.m/N
Piezoelectric strain coefficient d33.d31 374 x 10712 m/volt
—171 x 107"
Dielectric constant (e337) 1.504 x 10°®  F/m
Elastic compliance constant (S11%) 164 x 107> m*N
Initial depolarization field E, 5% 10° V/m
Polarization field E, 2 % 10° V/m
Thermal expansion coefficient e 4% 10° oc™!
Curie Temperature — 350 °C

Table 2: Specifications of 202 V1 Constant Temperature Drying Oven Chamber

Specification Value Unit
Voltage 220 v
Frequency 50 Hz
Input power 550 W
Maximum operational temperature 200 °C
Heating time limit <60 min
Weight 45 kg

202 V1 Constant Temperature Drying Oven Chamber

-

Figure 1: (a) Internal view of Constant Temperature Drying Oven Chamber; (b) Transmission & reflection

signals probs network
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Figure 2: (a) Fatigue testing using MTS; (b) A slightly visible fatigue crack of 10 mm in the beam; (c) Beam
geometry with the exact location of bonded PZTs

To examine the effect of temperature on crack opening and closing, the temperature ranging from 25°C
to 160°C was assumed in the view of initial experimental results of an intact beam. Both surface-ends of the
beam were glued to four PZT sensors including one actuator and three receivers. The diameter of each PZT
sensor was 8mm. To create excitation and receive reflection signal, the actuator and one receiver were fixed at
one surface end of the beam, respectively. On the other hand, to measure the transmission signal, the
remaining two receivers were located at the opposite surface end of the beam. The beam was excited by
five cycle’s sinusoidal wave modulated by Hanning window function. Under the variable operational
temperature (25°C-160°C) and frequency (25 kHz—175 kHz) conditions, the effect of the central
frequency with the step of 25 kHz was analyzed. The complete data of measured signals were received
and saved by the digital phosphor oscilloscope (Tektronix DPO 3014), and all the signals were observed
after achieving the steady-state temperature. The inside heating oven temperature was monitored by a
thermometer. The complete measurement test setup is shown in Fig. 3.

Once the temperature in the heating oven is reached to steady-state, it can be controlled automatically
within a certain period by the means of electrical control lines according to the required experimental
conditions. Each signal is recorded and analyzed after achieving the corresponding steady-state of desired
temperature value during the regular series of experiments. The measurements recorded at room
temperature were recognized as a reference. The applied temperature was uniformly distributed with a
period of 100 ms, while the length of the received signals was 0.6 ms. Later all the measured voltage
variables were converted into resistance variables to calculate the electrical impedance of PZT sensors
using math formulations. The process diagram of the proposed research is presented in Fig. 4.
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Figure 3:
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Figure 4: Process diagram
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4 Results and Discussion

In this section, experimental findings and corresponding results are discussed and interpreted in the
following three phases.

4.1 Phase-1: Real-Time Diagnosis and Localization of Fatigue Crack

The capability of the measurement system to accurately identify and locate the real-time damage using
the multiple sensors under temperature variations has been investigated in the several experiments performed
in controlled temperature environment (25°C-160°C). The presence of fatigue crack was examined by
estimating the CCDM indices in an adequate frequency range. As it is recognized, higher damage indices
are achieved when the frequency is below 100 kHz. However, it is still quite difficult to select a suitable
frequency band because some structural damages are more sensitive to higher frequencies. To approach
this issue, the frequency bandwidth of the developed measurement system is increased in the proposed
research for the real-time diagnosis and localization of fatigue crack as compared to the previous work
[30]. In the current experimental analysis, signal amplitude and its corresponding group velocity are used
as indicators to distinguish the performance of the measured signals at normal operating temperature and
excitation frequency under different kHz. It has been observed that with the increase of a certain range of
excitation frequency (25 kHz-175 kHz), the amplitude of measured signals increases, while the shifting
of the signal’s peaks gradually towards the right direction signifies the slight reduction in the magnitude
of group velocity. After performing several experiments, it was concluded that the increment in excitation
frequency above 100 kHz caused the further reduction in group velocity of measured signals. Hence, the
measured voltage signals for both intact and cracked beam at normal operating temperature (25°C) and
the excitation frequency of 100 kHz are analyzed in Fig. 5. The amplitude of the measured signal for the
cracked beam is found to be smaller than the amplitude of the intact beam because the transmission
energy of the signal is decreased due to the presence of a crack.

0.16 — Intact beam

Cracked beam

Amplitude/V

T T T T T T T T T
-0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
Time/s

Figure 5: Measured signals at normal operating temperature and excitation frequency of 100 kHz

Furthermore, an obvious advancement of measured signals in the cracked beam reveals the two main
facts of this investigation, including, the existence of fatigue crack and the noise of the measurement test
setup. The region demonstrated by the blue color signifies the noise and it can be controlled by
recognizing the difference of measured signals more instinctively. Hence, the presence of fatigue crack
causes the fluctuation in the mechanical impedance of the examined specimen which influences the
electrical impedance of the PZT sensors. Thus, it would become easy to examine the structural health by
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simply evaluating the electrical impedance signatures of the PZT sensors using Eq. (1). To this purpose,
measured voltage variables are converted into the resistance variables, and any variation in the electrical
impedance of the PZT sensor will be the resultant of fluctuation in the resistance variable caused by the
fatigue crack or by some environmental source such as temperature, etc. In this framework, Fig. 6 displays
the electrical impedance signatures acquired for intact (baseline) and cracked beam at room temperature.

450

4 T Intact beam
440 — Cracked beam
" 430 —
=
@ -
=
= 420 —
=
=
® .
E
3 410 —
c
[} -
2
400 —
E
390 —
380 I > T i
25 50 75 100

Excitation Frequency [kHz]

Figure 6: Measurement for the impedance magnitude in case of a fatigue crack

The presence of damage in a structure influences its different properties such as stiffness, mass,
damping, etc. Consequently, the mechanical impedance of the structure would be changed. Therefore, any
variations in the electrical impedance signatures are associated with the damage or change in monitored
structure. Hence, Fig. 6 illustrates the variations in the electrical impedance signatures caused by the
presence of fatigue crack in the monitored specimen with respect to the baseline signatures. In the next
step, the fatigue crack was identified and quantified by measuring the CCDM indices for the real part of
the impedance signatures using Eq. (2) as shown in Fig. 7. The real part of the impedance signatures was
supposed to be more sensitive to crack identification [29]. Indices for intact beam were normalized,
resulting CCDM = 1.

Figure 7: Normalized CCDM indices for the real part of the impedance signatures
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In Fig. 7, it can be noticed that the value of the CCDM index for the cracked beam is 350,000 times
higher than that obtained for the intact beam. This result not only reveals the higher sensitivity of the
measurement system for the identification of structural damage but also encourages measuring the
thermal sensitivity of EMI-based structural health monitoring. Electrical impedance of the PZT sensor is
greatly influenced by the temperature variations because the piezoelectric materials are considerably
pyroelectric. Hence, the fluctuation in temperature consequences the major variations in the dynamic
response of both the PZT sensor and monitored specimen. To this purpose, the effect of temperature on
measured impedance signatures is analyzed in the following phase.

4.2 Phase-2: Parametric Analysis of Temperature Effect

To evaluate the impact of temperature on impedance signature, next series of experiment was performed
in the controlled heating environment (25°C—-160°C) using 202 V1 Constant Temperature Drying Oven
Chamber (Q/TBXR20-2005). The inside heating oven temperature was monitored by a thermometer.
Each signal is recorded and analyzed after achieving the corresponding steady-state of the desired
temperature value. To evaluate the impact of applied temperature, only the S, and A, modes were
selected in the specified range of excitation frequency (25 kHz—175 kHz). The magnitude of impedance
signatures acquired at variable temperature and excitation frequency is shown in Fig. 8. The impedance
signature measured at 25°C is assumed as a reference in the current analysis.

Impedance Magnitude [Q]

150

T T T T T T 7
25 50 75 100 125 150 175
Excitation Frequency [kHz]

Figure 8: The magnitude of impedance signatures under operational conditions

Fig. 8 demonstrates that the amplitude of impedance signatures declines with the increment in applied
operational conditions (temperature and excitation frequency). It can be noticed that decreasing trend in the
amplitude of impedance signature is more obvious after 130°C because sensor bonding’s characteristics are
also affected by the further increment in the temperature and consequently it would become difficult to
illuminate the sole impact of temperature on the magnitude of impedance signature. Ailete 502 adhesive
is used in the current experimentation to bond the PZT patches at both surface ends of beam to actuate
and receive the propagating wave signal. The glass transition temperature of this adhesive is
120°C-130°C but this value can be slightly varied in different applications depending upon the applied
heating conditions. The elastic properties of Ailete 502 for steel after curing 24 hours are mentioned in Tab. 3.
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Table 3: Elastic properties of Ailete502 (adhesive) for stainless steel-grade 304

Property Value Unit
Tensile strength 12-25 MPa
Shear strength 18-26 MPa
Thermal expansion coefficient 80 x 10°° c!
Glass transition temperature 120-130 °C
Thermal Conductivity 0.1 W/m.K

It was observed that the dielectric constant (e337) which is recognized as the temperature-dependent
constant of PZT sensor has sufficiently influenced the electrical impedance signature.

On the other hand, Young’s modulus and the piezoelectric coupling constant also caused the baseline
shift in the impedance signature, but this effect was minute as compared to dielectric constant and it
might be neglected. The variation in the impedance signature of the PZT sensors is due to the
consequence of fluctuating impedance of inspected specimen with temperature. Moreover, it has already
been discussed that the natural frequency of the monitored structure is also influenced by the temperature
variations and its value decreases with the temperature [34]. The presence of resonance peaks in the
impedance signatures represent the frequency shift caused by the change in the natural frequency of the
structure. The natural frequency of the beam is examined in the current study at operational temperature
values and results are illustrated in Fig. 9.

\’/1/}4
Ul /H”\\'
\\\\

el 25°C
Ii| pe

40°C
55°C
70°C
85°C
100°C
115°C
130°C
145°C
160°C

Figure 9: Variation in natural frequency of beam with temperature
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Fig. 9 reveals that the natural frequency of beam is significantly declined with temperature due to
variations in material properties, in particular, the modulus of elasticity. This variation in natural
frequency of beam with temperature results in maximum normalized amplitude of stresses induced in it
which instantly influences the phenomenon of crack breathing. Consequently, it affects the arrival time of
the signal due to the elongation or shortening of the path between actuator and sensor which leads to a
decreasing trend in impedance signature peaks in terms of left frequency shifts as shown in Fig. 8.
Hence, the frequency shifts (Af) of each resonance peak at a different temperature is tabulated in Tab. 4.
The resonance peaks acquired at a temperature of 25°C is taken as reference.

Table 4: Frequency shifts in electrical impedance signature peaks at variable temperature

Peak Excitation Temperature (°C)

Frequency at room

temperature (kHz) 40 55 70 85 100 115 130 145 160
62 —225 245 275 395 625 =770 -930 -1150 —1380

Af (Hz) 100 —-400 —420 —470 -600 —950  —1440 -—1890 —2430 -—2870

150 —720 745 —805 —1012 —-1330 —1845 2215 —2861 —3495

It can be observed that the frequency shifts become more critical with the increment in applied
operational conditions (temperature and excitation frequency). One of the major reasons of this deviance
is the sensor bonding’s characteristics that are also affected by the further increment in temperature and
consequently, it would become difficult to illuminate the sole impact of temperature on impedance
signature of PZT sensors. Moreover, it’s not convenient to process the signals and control the number of
modes at higher frequencies. Therefore, the accurate selection of excitation frequency range and
implementation of a suitable temperature compensation technique is compulsory for the reliable and
efficient electromechanical impedance-based SHM, especially in detecting lower damage levels.

4.3 Phase-3: Temperature Compensation Technique

Effective frequency shift (EFS) is supposed to be one of the ideal methods for the compensation of
temperature effect in electromechanical impedance-based SHM. In this approach, the correlation
coefficient is maximized by shifting the impedance signature at the present temperature with respect to
the impedance signature acquired at room temperature (25°C). However, its effectiveness was utilized in
a narrow range of applied temperature and excitation frequency in previous literature [30,36]. In the
current research work, EFS technique is implemented for a wide range of temperature compensation
(25°C-160°C) at the extended frequency bandwidth (25 kHz—175 kHz) of the developed measurement
system with efficient outcomes as compared to previous literature results [30]. The temperature
compensation process is performed in the following steps:

a) To maximize the correlation coefficient, Eq. (4) is utilized to shift the impedance signature acquired at
different temperature in the opposite (right) direction.

Zgp, (k) = Zgp, ,(k—ds),Af <0 “)

where dr signifies the frequency step whose value is 2.5 Hz in current analysis assigned by the developed
measurement system, and the subscript (7) demonstrates the number of the iteration executed to achieve
the maximum value of correlation coefficient in Eq. (3).

b) According to Eq. (5), the impedance signature should be shifted in the left direction for a reduction in
the operational temperature.
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ZEJ)“> (k) = ZEaD(i—l) (k + df), Af >0 %)

Hence, the maximum correlation coefficient was achieved and illustrated in Fig. 10 by using the above-
mentioned compensation procedure of EFS technique under the operational conditions. Again, impedance
signature acquired at 25°C is considered as a reference here.

1.0 - 0.999 0.990 0.980

0.8 <

0.72 0.708
7 0.697

0.6 - B oc
B s5ec
Bl 7oc
0.4 - [ ss5c
B 100°c
] B 1 15c
0.2 - B 130°c
] B 145°c
B 160c

Maximum correlation coefficient

0.0

50 60 70 80 90 100 110 120 130
Excitation frequency [kHz]

Figure 10: Maximum correlation coefficients acquired by using the real part of the impedance

It can be analyzed that the value of the maximum correlation coefficient is sufficiently reduced as both
the frequency and temperature are increased. However, in the framework of previous literature, Fig. 10
illustrates that the correlation coefficient is approximately within the range of 0.990 (at 40°C) to 0.708 (at
160°C) even at excitation frequency of 100 kHz which verifies the accuracy of the developed
measurement system for the wide range of temperature compensation at the extended bandwidth of
excitation frequency. In the next step, the compensated impedance signature is evaluated under
operational conditions using maximized correlation coefficients.

¢) A comparison between the compensated and uncompensated real part of the impedance signature is
demonstrated in Tab. 5. These impedance signatures were acquired at 70°C and 130°C with reference to the
baseline signature obtained at 25°C under the excitation frequency of 50 kHz—130 kHz as shown in Figs. 11
and 12. Compensated Impedance signature at elevated temperature of 130°C illuminates the practicality of
developed measurement system and optimized EFS technique.

From above comparisons, it can be observed that that EFS technique has been optimized in terms
significant compensation for current impedance signature relative to the reference signature within the
extended range of 100 kHz excitation frequency and elevated temperature of 130°C. Further increment in
excitation frequency and applied temperature decreases the correlation coefficient and consequently
affects the compensation process. This result verifies the effectiveness of optimized EFS technique and
developed measurement system for the compensation of elevated temperature effect in electromechanical
impedance-based SHM at the extended range of excitation frequency as compared to previous research
results [30]. Moreover, in the proposed research work, the identification of fatigue crack and estimation
of its sensitivity is achieved by comparing the two impedance signatures, which has revealed that the
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developed experimental setup has good repeatability between the measurements and high sensitivity for the
variations in the mechanical impedance of the monitored structure.

Table 5: Comparison between the compensated and uncompensated real part of the impedance signature

Excitation Reference Uncompensated Compensated Uncompensated ~ Compensated
Frequency Impedance Impedance Impedance Impedance Impedance
[kHz] Signature at Signature Signature at Signature at Signature at
25°C [Q] at 70°C [Q] 70°C [Q] 130°C [Q] 130°C [Q]
50 420 425 415 435 400
70 415 400 400 380 395
90 440 405 427 385 425
110 400 370 385 330 350
130 320 301 305 265 260
500 500
—Refrence signatur? at25°C Refrence signature at 25°C
Tics - tincomparisated 5|gnaturie at 70°C Optimized compensated signature at 70°C
450
g g
2 g
8 4004 s
g ] |
g £ Compensated region
v E
2 350 - E_ 350
300 300 |
T T | : T T T T T T T
50 75 100 125 50 75 100 125
Excitation Frequency [kHz] Excitation Frequency [kHz]
(a) (b)

Figure 11: A comparison between the impedance signature acquired at 70°C with respect to the reference
signature at 25°C (a) Uncompensated; (b) Compensated
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Figure 12: A comparison between the impedance signature acquired at 130°C with respect to the reference
signature at 25°C (a) Uncompensated; (b) Compensated

5 Conclusion

In this research work, an experimental setup was developed to identify and quantify the structural
damage using electromechanical impedance-based SHM and meanwhile perceive the effect of
temperature on the electrical impedance signatures of the PZT sensor. A series of experiment was
performed for stainless steel (304) beam in a controlled temperature environment (25°C—160°C) using
202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005) at the extended frequency
bandwidth (25 kHz—175 kHz). It has been observed that temperature variation significantly affects the
impedance signature in terms of frequencies shifts which leads to inaccurate inspections results. Further,
it was noticed that the frequency shifts become more critical with the increment in applied operational
conditions (temperature and excitation frequency). One of the major reasons of this deviance is the sensor
bonding’s characteristics that were also affected when applied temperature exceeds 130°C and
consequently, it would become difficult to illuminate the sole impact of temperature on impedance
signature of PZT sensor. In the current research work, EFS technique has been optimized in term of
significant temperature compensation for the current impedance signature of PZT sensor relative to the
reference signature at extended frequency bandwidth of the measurement test setup with better outcomes
as compared to the previous work. The achievement of compensated Impedance signature of PZT sensor
at an elevated temperature of 130°C and excitation frequency of 100 kHz has illuminated the practicality
of developed measurement test setup and optimized EFS technique for the real-time health monitoring of
complex structures. Hence, the current research also approaches efficiently the critical issue of the width
of the frequency band for temperature compensation based on the frequency shift in SHM.
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