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Abstract: Soybean agglutinin (SBA) is an important anti-nutritional factor in soybean. SBA can induce animal growth

inhibition, cause pathological changes of intestinal tissue, and decrease in the immune system functioning. Recently, a

great deal of research has been done on the effects of SBA on cell morphology, division, apoptosis, autophagy, as well

as the correlated signal transduction pathway. This review mainly covers the chemical and biological characteristics of

SBA, describes the multifaceted aspects of SBA anti-nutritional functions, and highlights the possible cellular and

molecular mechanism of anti-nutritional effects of SBA. This review has important implications for the prevention

and treatment of SBA-induced diseases, drug development, processing techniques of plant products, prevention of

food- borne toxins, as well as human and animal health protection.

Introduction

Soybean agglutinin (SBA), also known as lectin, is a major
anti-nutritional factor (ANF) in soybean seeds and
products. Such substance represents about 10% of the total
protein in mature soybean seeds. SBA can resist the
enzymatic digestion and keep its biological activity
throughout the entire intestinal tract due to its stability of
the structure (Carbanaro et al., 1997; Draaijer et al., 1989).
SBA can interact with the mucosal cells of the digestive
tract, and finally leading to a series of anti-nutritional
effects on animals. At present, a large number of studies
have been carried out to describe the chemical and
biological characteristics of SBA and the anti-nutritional
mechanisms of SBA.

Therefore, the herein review aims to describe the main
chemical and biological functions of SBA, describes the
multifaceted aspects of SBA anti-nutritional functions, and
highlights the anti-nutritional mechanisms of SBA. This
review provides some help for the systematic understanding
of the related progress of SBA.

The main chemical and biological characteristics of SBA

The chemical characteristics of SBA

SBA has a typical four-stage structure of legume agglutinin
with a molecular weight of 120 kDa, an isoelectric point of
5.81, a sedimentation coefficient of 6.05, and sedimentation
with 7S protein in ultracentrifugation.

SBA is composed of four subunits, each of which has a
molecular weight of about 30 kDa. Each subunit has a
covalently linked oligosaccharide chain containing
9 mannose and 2 N-phthaloyl-glucosamine (Man9GlcNAc2).

The sugar chain of each subunit in SBA is covalently
linked with the amino-N of the 75th aspartame residue of
the peptide chain (Asn-75) in the form of an N-glp-
glucosamine bond. The sugar chain is located at the atypical
interface of the subunit and interacts with the amino acid
residue of the adjacent subunit. Each subunit of SBA also
contains a closely bound Ca2+ and Mn2+ (De Boeck et al.,
1984). Additionally, there have a lot of hydrogen bonds and
hydrophobic forces between the two monomers in the SBA
molecule. Therefore, SBA is more stable than other legume
family lectins.

Based on the structure characteristic of SBA, it can form
specific binding with N-acetyl-D-galactosamine or galactose
(Vojdani et al., 2020). Such specific-binding of SBA to the
sugar is not targeted at the sugar molecules in plant cells
but on the surface of microorganisms or animal cells. This
specific binding of SBA is also the prerequisite and

*Address correspondence to: Mohammed Hamdy Farouk,
mhfarouk@jlau.edu.cn; Guixin Qin, qgx@jlau.edu.cn
Received: 15 September 2020; Accepted: 21 December 2020

BIOCELL echT PressScience
2021 45(3): 451-459

Doi: 10.32604/biocell.2021.014289 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:mhfarouk@jlau.edu.cn
mailto:qgx@jlau.edu.cn
http://dx.doi.org/10.32604/biocell.2021.014289


necessary condition for SBA to induce anti-nutritional effect
(Dam and Brewer, 2010). Therefore, the residual SBA binds
to the surface of intestinal epithelial cells and negatively
affects the secretion and absorption of mucus in the
digestive system (Kim et al., 2015).

Ubiquitous biological activities of SBA
Like other plant lectins, the basic biological function of SBA is
to agglutinate animal red blood cells and promote cell division.

The understanding of SBA begun with its agglutination
discovery. SBA possesses species-specific on erythrocyte
agglutination activity (Liu, 2006). For instance, the most
sensitive agglutination reactions are detected against rabbit
and human red blood cells than the other species (Pereira et
al., 1974). Liu confirmed that swine had less responsive than
rabbits, and bovine erythrocytes can be only agglutinated at
a specific concentration (Liu, 2006). In addition to the
differences in animal species, the agglutination degree of
SBA to erythrocytes is also affected by some physical or
chemical factors. When SBA is polymerized due to chemical
or physical factors, the monomers can cross-link with each
other, and the sites of reactions with erythrocyte are also
increasing, which enhance the agglutination activity of
erythrocyte (Guesdon et al., 1979). Moreover, the degree of
agglutination between red blood cells and SBA is greatly
enhanced after trypsin or streptomycin treatment (Liu, 2006).

Another biological activity of SBA is promoting mitogenic
activity. SBA can promote lymphocyte division, and
enrichment of erythroblasts (Pusztai et al., 1991; Hivrale and
Ingale, 2013). SBA can be bound to glycoprotein receptor on
macrophage membrane in rat erythrocyte, and consequently
enhances the differentiation and metabolism of macrophage.
SBA binds to Caco-2 cells during the differentiation stage,
rapidly enters into Caco-2 cells, changes the metabolic state
of such cells, and finally stimulates the DNA for protein
synthesis (Draaijer et al., 1989).

Effects of SBA on animal growth and health
As one of the main anti-nutritional factors in soybean, the
content of SBA in mature soybean seeds is up to about 10%
of the total protein. Although its biological activity can be
removed by some appropriate methods (Huisman and
Tolman, 1992), there will still be a certain amount of
residues. Additionally, SBA can resist the degradation of
protease in vitro and gastrointestinal tract (Carbonaro et al.,
1997), which will be combined with gastrointestinal epithelial
cells, be engulfed into the blood circulation system, and
induce a wide range of systemic anti-nutritional responses.
These responses are exhibited in different mammalian organs
and the immune system (Greer and Pusztai, 1985; Pusztai et
al., 1993). This leads to the decrease feed utilization, low
growth, pathological changes, and even death.

In general, the effects of SBA on animal growth and
health are mainly manifested in the inhibition of animal
growth and development, the destruction of animal intestine
structure and function, and the decrease of immune function.

Effects of SBA on animal growth and development
SBA causes growth inhibition and negatively effects on animal
health. The effects of SBA on the growth performance of

animals vary with the animals’ age, species, and SBA dose
(van der Poel et al., 1992). The addition of high-dose SBA
in pig diet can increase the total nitrogen output of ileum
and increase the loss of nitrogen in piglets, resulting in
weight loss and diarrhea (Makinde et al., 1996; Matthew et
al., 2015). When the SBA content in the diet was 0–1.2 mg/
g, there was no adverse effect on the growth performance of
rats fed for 20 days, but when the SBA concentration
increased to 2.0 mg/g, the growth performance of rats
decreased by 23% (Li et al., 2003).

The effect of SBA on monogastric animals was
significantly greater than that on ruminants. This may be
due to the fermentation of rumen microorganisms in
ruminants, which reduces the biological activity of SBA. The
effect of SBA on pigs was significantly greater than that on
chickens. SBA in the diet can cause intestinal damage in
piglets (Makinde et al., 1996; Schulze et al., 1995; Zhao et
al., 2011; Pan et al., 2013). Although SBA used as a
phospholipid source in larval fish diets, it decreases growth
and survival rate in marine species (like Salmo gairdneri,
fingerling channel catfish and rainbow trout (Oncorhynchus
mykiss), and affect gene expression (Wilson and Poe, 1985;
Buttle et al., 2001; Steven et al., 2010). Muscle histology
observations showed hindered growth in SBA-fed larvae
(Alves Martins et al., 2010).

SBA-induced structural and functional destruction of animal

intestine

SBA with intestinal structure
SBA can damage the brush border, reduce the surface area of
intestinal absorption, and affect the digestion and absorption
of nutrients (Bardocz et al., 1995). The height of jejunal villi
was significantly shortened, and the morphology of jejunum
mucosa was changed after feeding with SBA (Grant et al.,
1989; Meilinah and Jeanny, 2012). A high dose of SBA can
also cause atrophy of intestinal microvilli, reduce cell
viability, cause brush border membrane disorder, and
increases the weight of the small intestine (Pusztai and
Bardocz, 1996; Zang et al., 2006; Meilinah and Jeanny, 2012;
Babot et al., 2016). SBA induces the atrophy of the
microvilli, reduces the viability of the epithelial cells.
Intestinal permeability and the morphology of the brush
border are also impaired after the combination of SBA to
the intestinal tract (Liener, 1986; Safa et al., 2013).

After the damage of the intestinal structure caused by SBA,
the nutrient digestive and absorptive capabilities are also
damaged. SBA can significantly impact the transportation of
macro-nutrients (most notably glucose and amino acids)
through the intestinal membrane (Huisman and Jansman,
1991; Casaubon-Huguenin et al., 2004; Babot et al., 2016).

SBA with digestive enzyme
SBA can reduce the number of intestinal brush border epithelial
cells, inhibit the activity of various enzymes (Salgado et al.,
2002), by mucosal cells through specific binding with the
surface receptors of intestinal wall epithelial cells.

A little amount of SBA in a normal diet may decrease the
trypsin activity and increase the amylase activity of amylase in
the pancreatic juice (Pereira et al., 1974). SBA can inhibit the
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activities of duodenal brush border enterokinase (Rouanet et
al., 1983), brush border maltase and sucrase of duodenum,
jejunum and ileum, and the enterokinase and alkaline
phosphatase secreted by intestinal mucosa (Fasina et al.,
2006). Li et al. (2003) confirmed that the addition of SBA to
the diet decreases the activity of brush border enzyme in the
duodenum, jejunum, and ileum of turkey. SBA affects the
proliferation of intestinal epithelial cells, the amount of
mucin secretion, and the composition of mucin by binding
with the membrane cells of porcine large intestine epithelial
cells, thus affecting the digestion and absorption of nutrients
(Pan et al., 2013).

Effects of SBA on immune system
Lagarda-Diaz et al. (2017) suggested that all lectins can
interact with the immune system in varying degrees. SBA
promotes the immune defense of the host by stimulating
immune responses, influencing protein kinases, and
manifesting chemopreventive properties.

SBA can induce a local inflammatory reaction. SBA
increases the population of mononuclear cells, the numbers
of CD4+/CD8− lymphocytes, the expression of CD11/CD18
surface molecules, and the number of circulating neutrophils
and by inhibiting neutrophil migration in rats. An
inhibitory effect on neutrophil migration is also observed in
the absence of SBA present in the blood circulation
(Benjamin et al., 1997). The continuous feeding of SBA
leads to a decreased immunological response in rats
by inhibiting the intestinal mucosal immune system
(Rohe et al., 2017).

Cellular and molecular mechanism of anti-nutritional effects of
SBA
Toxic effects of SBA on the cellular biological process in
intestinal epithelial cell
SBA has a specific binding with the gastrointestinal tract. This
specific binding is a precondition for deleterious toxic or side
effects (Babot et al., 2016). SBA can affect a variety of
biological processes in the gastrointestinal epithelial cells,
such as cell permeability, cell proliferation, apoptosis,
autophagy, and signal transduction, etc. (Ramdath et al.,
2017; Lagarda-Diaz et al., 2017; Xiao et al., 2018).

SBA has been investigated in poultry diets, and it has the
ability to bind to the intestinal epithelium and to induce
cytotoxic damage on intestinal epithelial cells of broiler
chicks (Babot et al., 2016).

Pan et al. (2013, 2018a) have shown that SBA damages
the integrity of the cell membrane, increases the
permeability of the cell membrane, lowers the relative
protein expression of occludin and claudin-3, damages the
cell morphology, as well as lower the proliferation rate of
the cells through the perturbation of cell cycle progression
in IPEC-J2.

In other cell lines, SBA induces DNA laddering in a dose-
dependent manner and causes DNA fragmentation in HeLa
cell lines (Dey, 2013). SBA mediates autophagy, apoptosis,
DNA damage in a dose-dependent manner in HeLa cells
(Panda et al., 2014). SBA induces autophagy and apoptosis
of tumor cells in Dalton’s lymphoma-bearing mice (Panda
et al., 2014).

The possible pathway of SBA-induced cell apoptosis and
autophagy
In addition to the direct effects on the structure and biological
function of intestinal epithelial cells, SBA can also affect the
expression and function of cellular membrane proteins of
the gastro-epithelial cells. These effects can be extended to
cause cell apoptosis, autophagy and signal transduction.

SBA can use a mechanism to alter cell activity through
the mitochondria-mediated pathway. SBA induces apoptosis
and autophagic death through ROS generation in HeLa cells
(Mukhopadhyay et al., 2014b; Panda et al., 2014). SBA
induces cell apoptosis and decreases the mRNA expression
of Bcl-2 in IPEC-J2F (Pan et al., 2018b).

In addition, SBA induces some structural proteins to
alter the cellular biological function. The integrins are
involved in SBA-induced IPEC-J2 cellular viability. SBA can
indirectly change the expression and function of integrins
by binding with α-actinin-2, and then affect the
proliferation, cycle and apoptosis in IPEC-J2 cells (Pan et
al., 2017, 2018b). In addition to integrin, there may be other
proteins involved in the pathway of SBA-induced cell
biological function change. As described before, the specific
binding of SBA to intestinal epithelial cells is the premise
for its anti-nutritional effect. Pan et al. (2018b) have
identified a variety of SBA-specific binding proteins on
IPEC-J2 cell membrane. According to the functional
differences of these binding proteins, they can be divided
into cytoskeletal proteins (such as keratin, actin, annexin,
ankyrin, etc.) and kinases. Some of the cytoskeletal proteins
are not only the framework of cells but also the role of
messenger transmission. Additionally, some cytoskeletal
proteins also play an important role in maintaining the
morphology and function of cells. Therefore, these
cytoskeletal proteins may be also involved in cell biological
function alterations caused by SBA. However, further
studies are needed to confirm such problems.

There is limited data available about the similarities
among the structure of lectins. However, Liener (1986) has
found that lectins are common toxic in most legumes. Grant
and van Driessche (1993) also presented that there are some
common structural and functional characteristics among
SBA, other legumes or, plant lectin. Nowadays, the
mechanisms of apoptosis and autophagy induced by SBA
still need further research. Therefore, we can refer to the
mechanism of other legume or a specific plant agglutinin to
the causes of induced apoptosis and autophagy. Therefore,
we can gradually improve the relevant mechanism, which
leads to a change in biological functions caused by SBA.

Mechanism of apoptosis and autophagy induced by other
legume lectins
Other legume lectins can also cause cell apoptosis and
autophagy. Haemagglutinin (PHA-E) of dark red kidney
bean can inhibit the proliferation of leukemia L1210 cells.
Pea lectin induces apoptosis and cell cycle arrest in
colorectal cancer SW480 and SW48 cells (Islam et al., 2018).
The production of apoptotic bodies can be induced by
autumn purple bean lectin, and the apoptosis of breast
cancer MCF-7 cells is induced by French bean
haemagglutinin. Also, small glossy black soybean lectin can
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obstruct the spread of breast cancer MCF-7 cells and
hepatoma HepG2 cells (Lin et al., 2008).

The pathways of other legume lectins-induced apoptosis,
autophagy, or both biological processes, are mainly occurred
through the mitochondria-mediated pathway, death receptor
pathway, and sugar-binding specificity pathway.
Concanavalin A (Con A, a lectin, originated from the jack-
bean) induces apoptosis in human melanoma A375 cells
through the caspase-dependent pathway and induces
autophagy in hepatoma cells through internalization and
mitochondrion-mediated pathway (Lei and Chang, 2007).
Con A induces cell apoptosis by down-regulating different
signaling pathways mediated through NF-kβ, ERK, JNK,
and Akt survival signaling (Amin et al., 2007; Helal Uddin
Biswas et al., 2006; Sina et al., 2010). Con A can induce
autophagic cell death in hepatoma cells through a
mitochondria-mediated pathway (Fu et al., 2011). Peanut
agglutinin induces apoptosis and autophagic death through
ROS generation in HeLa cells (Mukhopadhyay et al., 2014a;
Panda et al., 2014). Sophora flavescens lectin (SFL) has been
reported to induce tumor cell death through a caspase-
dependent apoptotic pathway, and its apoptotic mechanisms
are speculated to be the death-receptor pathway (Liu et al.,
2008). Lectins from Phaseolus coccineus L. induce the
caspase-dependent apoptosis in L929 cells by a sugar-
binding specificity (Chen et al., 2009).

Mechanism of apoptosis and autophagy induced by other plant
lectin
Plant lectin, a class of highly diverse non-immune origin and
carbohydrate-binding proteins, can induce apoptosis,
autophagy, or both biological processes. Lectins from
Tragalus membranaceus, Astragalus mongholicus, Bauhinia
forticata, Griffonia simplicifolia, and Lotus corniculatus have
the ability to inhibit cell proliferative activity and to induce
cell apoptosis (Huang et al., 2012; Rafiq et al., 2013; Silva et
al., 2014; Yan et al., 2009). Del Monte banana lectin delays
the proliferation of L1210 cells (a mouse lymphocytic
leukemia cell line) and HepG2 cells (a human liver cancer
cell line) (Allen et al., 2009). Moreover, Ricinus agglutinin
(RA) showed both anti-proliferative activity and autophagic
cell death in Glioblastoma (the most malignant intrinsic
glial brain tumor) cells (Sahoo, 2015). Sclerotium rolfsii
lectin strongly inhibits cell proliferation and induces
apoptosis of MCF-7 and ZR-75 human breast cancer cells
(Savanur et al., 2014). Solanum tuberosum lectin inhibits
Ehrlich ascites carcinoma cell growth by inducing apoptosis
and G2/M cell cycle arrest (Kabir et al., 2016).

Based on an enormous amount of research, the plant
lectins eliminate various types of cancer cells via different
major pathways, that including direct ribosome inactivating,
endocytosis-dependent mitochondrial dysfunction, sugar-
containing receptors binding (Shi et al., 2017), also the
death-receptor mediated pathway (Shi et al., 2013). In detail,
the possible mechanisms related to the induction of
apoptosis and autophagy by plant lectins may be due to the
effects of lectin on the protein expression of Bcl-2,
autophagy molecules, caspases, p53, ERK, Ras-Raf, BNIP3,
and ATG families (Jiang et al., 2015; Yau et al., 2015).
Sephora flavescens lectin with mannose specificity causes

apoptosis through a death receptor-mediated caspase-
dependent pathway in HeLa cells. Polygonatum odoratum
lectin (POL) induces cell apoptosis and autophagy in human
MCF-7 breast cancer cells by the Ras-Raf-MEK-ERK
signaling pathway (Ouyang et al., 2014). Korean mistletoe
lectin (Viscum album L. var. coloratum agglutinin) causes
apoptosis in human hepatocarcinoma cells via the
mitochondrial controlled pathway, which is independent of
the p53 pathway and the p21 pathways (Lyu et al., 2002).

These related studies indicated that legume lectin and
plant lectin have similar pathways in inducing apoptosis and
autophagy. Such pathways are involving mitochondria-
mediated, death receptor, sugar-binding specificity, and
direct ribosome inactivating pathway, and other critical
impacts such as apoptosis, and autophagy of intestinal cells.

Apoptosis, autophagy and their relationship
In addition to the pathway described above, to further reveal
the signal transduction pathway of apoptosis and autophagy
induced by SBA, we need to thoroughly analyze the
pathway of cell apoptosis, autophagy, and the relationships
between them. Apoptosis and autophagy are important
indicators of animal health, since they are programmed cell
death processes. Consequently, many studies have been
conducted on the signal pathway for apoptosis and
autophagy, as well as their mutual interactions.

Apoptosis and its pathway
Apoptosis, is defined as cellular Type-I programmed cell
death. It is a conservative and orderly process of cell death.
Such an active cell death process involves gene activation,
expression and regulation. The character of apoptosis is the
condensation of the cytoplasm and nucleus, DNA
fragmentation, migration of chromatin to the nuclear
periphery, cell contraction, dynamic membrane blebbing,
and phagocytosis (Hengartner, 2000).

Apoptosis removes aging and abnormal cells in time, and
plays a scavenger role. Apoptosis is triggered by three ways,
including extrinsic apoptotic pathway, intrinsic apoptosis
pathway, and endoplasmic reticulum pathway. The first one
is surface death receptors (DR), as called extrinsic apoptosis.
In the extrinsic apoptotic pathway, after the binding of cell
surface receptors to specific ligands, apoptotic signals are
subsequently activated and transmitted, finally enabling the
cleavage of caspase-3, 6, and 7. The second way is the
mitochondrial release of cytochrome c, called intrinsic
apoptosis. In the intrinsic apoptosis pathway, mitochondrial
outer membrane permeabilization (MOMP) is induced by
the dimerization of pro-apoptotic proteins (Bax and Bak),
then cytochrome c is released into the cytosol from the
mitochondrial membrane. Subsequently, apoptosome is
initiated by the binding of cytochrome c to apoptotic
protein activating factor-1, the activates caspase-9, followed
by the activation of caspase-3 (Gamie et al., 2017; Richa and
Kristin, 2015; Safa, 2019). The third pathway is the
endoplasmic reticulum pathway. Endoplasmic reticulum
stress (protein misfolding or unfolding, endoplasmic
reticulum stress) can lead to intracellular calcium overload
or calcium homeostasis imbalance. On the one hand,
caspase-12 was activated, and caspase-12 further activated
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caspase-9 to promote apoptosis. Yet, Bax and Bak, the pro-
apoptotic proteins in the Bcl-2 family, are activated to
induce apoptosis (Ghavami et al., 2009; Wang et al., 2019).

Autophagy and its pathway
Autophagy, known as Type-II programmed cell death, refers
to an evolutionarily conserved, multi-step lysosomal
degradation process in which a cell degrades long-lived
proteins and damaged organelles (Saha et al., 2018). The
autophagy process includes the recycling of materials and
energy, degrading damaged organelles or removing
macromolecular substances in cells, participating in the
renewal of endoplasmic reticulum, peroxides and
mitochondria. Autophagy is involved in cell differentiation,
cell development, and cell remodeling at the subcellular
level, etc. Therefore, autophagy is essential for cell growth,
differentiation, and metabolism, and for the maintenance of
homeostasis (Levine, 2005).

Autophagy can regulate cell death with dual natures
(mild or severe). Mild autophagy can protect cells from
harmful conditions to some extent and promote cell
survival, while severe or rapid autophagy can induce
programmed cell death. Nowadays, the autophagy pathway
includes the autophagy-dependent on the membrane target
of rapamycin (mTOR) pathway, and the autophagy-
independent of the mTOR pathway.

There are PI3K-Akt-mTOR signaling pathway, MAPK
signaling pathway and other signaling pathways in the
upstream of dependent mTOR signaling molecules, that
regulate mTOR molecules and form complex network
signaling pathways. Zhang et al. (2014) found that
exogenous expression of apelin gene can inhibit the
proliferation of pulmonary artery smooth muscle cells
(PASMC) by the activation of the PI3K-Akt-mTOR signal
molecule. When the intracellular energy decreases, LKB1
can phosphorylate and activate AMP-activated protein
kinase (AMPK), which finally inhibits the activity of
mTORC1 and then induces autophagy (van Veelen et al.,
2011). Activated P38 MAPK (p38 mitogen-activated protein
kinase) can also regulate the autophagy pathway in two
ways after activation (Bak et al., 2016). Ammonia represents
the independent mTOR autophagy, such as which can
activate autophagy and prevent TNF-α induced apoptosis.
In the liver, glucagon can also induce autophagy
(Rabinowitz and White, 2010). In addition, there are also
autophagy pathways that have been proved to be
independent of the mTOR pathway, such as Beclin1, PI3K
and Gai3 protein pathways.

The relationships between cell apoptosis and autophagy
There are positive or negative interconnections between
apoptosis and autophagy (Huang and Klionsky, 2007), and
this relationship between them may vary depending on their
biological context (Cheng et al., 2008). Many classical
apoptotic signaling pathways or proteins possess complex
interactions with autophagy regulation (Gump and
Thorburn, 2011; Su et al., 2013; He et al., 2018).

Both apoptosis and autophagy are regulated by some
common factors and have some same biological functions.
Interestingly, the activity of the apoptosis may be regulated

by the autophagic pathway. The main relationships between
apoptosis and autophagy may have different possible points.

First, apoptosis and autophagy promote each other. The
expression of apoptosis gene and autophagy gene was up-
regulated at the same time, and there were many regulatory
molecules between apoptosis and autophagy (Wu et al.,
2018). Bcl-2 family proteins play a key dual regulatory role
between apoptosis and autophagy (Mariño et al., 2014).
Second, autophagy is a necessary condition for apoptosis.
For instance, inhibition of autophagy can delay apoptosis
(Yang et al., 2011). Third, apoptosis and autophagy are
antagonistic to each other as the induction of autophagy in
melanoma can protect cells from chemical-induced
apoptosis (Liao et al., 2011). Rabdosia rubescens (a Chinese
herb) can play a toxic role through apoptosis and protect
cells from apoptosis by autophagy pathway (Hassan et al.,
2015). Zeng et al. (2012) investigated the interference of
Atg5, 10, 12 and Beclinl which can significantly enhance the
apoptosis induced by starvation. Such interference proves
that autophagy may participate in the inhibition of
apoptosis in the absence of nutrition. Fourth, autophagy and
apoptosis are inhibited at the beginning and then are
activated. At the early stage of some drugs, autophagy can
protect cells from apoptosis. With the extension of time, the
effect of apoptosis and autophagy can increase at the same
time, and activate cell death (Kanzawa et al., 2003). Fifth,
apoptosis and autophagy are the premise of each other.
Inhibition of either side will lead to inhibition of the other
side’s action process. Therefore, autophagy and apoptosis at
least interact in five biological points.

Prospects
Based on the structure and toxic effects of SBA on the cells
(apoptosis and autophagy), it can be used in differentiating
markers to study cancers and metastatic cell lines, helping in
detecting the carbohydrate residues present on the cell surface
(Dey, 2013; Lagarda-Diaz et al., 2017). Therefore, some positive
effects of SBA are considered anti-cancerous. Hernández-
Ledesma and Hsieh (2017) have demonstrated that SBA can
inhibit the proliferation of human cancer cell lines such as BT20,
HBL100, MCF-7, T47D, HepG2, and melanoma A375 cells.
Because of its chemopreventive activity, SBA can be used to
induce apoptosis and autophagy in future studies (Yau et al., 2015).

The specific binding of SBA with small intestinal epithelial
cells is the prerequisite for its anti-nutrition effect, which will lead
to apoptosis and autophagy. We can use these SBA characters to
identify the SBA-specific binding proteins on the intestinal
epithelial cell membrane. We can constantly uncover the signal
transduction vector and possible signal pathway of SBA induced
apoptosis and autophagy through in vitro nutrition environment
and related gene expression cell control test, in order to achieve
the purpose of preventing SBA from tissue damage.

In addition, the development of new technologies related
to blocking or reducing the SBA anti-nutritional toxicity
needs further investigation.

Summary
SBA is a major anti-nutritional factor in soybean, which may
induce abnormalities in the biological and metabolic patterns
of intestinal cells. It can be inferred that SBA acts in different
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anti-nutritional mechanisms that including damaging the
structure of the intestinal epithelial cells, blocking the cell
cycle, promoting apoptosis, autophagy, altering the
metabolic and related signal transduction pathways.
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