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Abstract: An organism’s survival depends on its ability to adapt to stress. Mitochondria are the cellular integrators of

environmental stressors that ultimately translate their responses at the organismal level, and are thus central to the

process whereby organisms adapt to their respective environments. Mitochondria produce molecular energy via

oxidative phosphorylation that then allows cells to biosynthetically respond and adapt to changes in their

environment. Reactive oxygen species (ROS) are by-products of oxidative phosphorylation that can be either

beneficial or damaging, depending on the context; ROS are hence both the conveyors of environmental stress as well

as cellular “adaptogens”. Mitohormesis refers to the process whereby low levels of oxidative stress spur survival

adaptations, whereas excessive levels stymie survival. Low energy and frequency pulsing electromagnetic fields have

been recently shown capable of stimulating mitochondrial respiration and ROS production and instilling

mitohormetic survival adaptations, similarly to, yet independently of, exercise, opening avenues for the future

development of Magnetic Mitohormetic interventions for the improvement of human health. This viewpoint explores

the possibilities and nuances of magnetic-based therapies as a form of clinical intervention to non-invasively activate

magnetic mitohormesis for the management of chronic diseases.

Introduction

Human health and mitochondrial function are inextricably
coupled statuses (Nunnari and Suomalainen, 2012; Louzada
et al., 2020). Nearly all of life’s processes require cellular-
based energy production to be executed. These include
growth, repair, and immunological defense. The requisite
energy for biosynthesis is predominantly supplied by the
mitochondria with the participation of molecular oxygen
to serve as the final electron acceptor during cellular
respiration. The capacity of molecular oxygen to successfully
accept respiratory electrons (to form water) places an upper
limit on the respiratory capacity that, when exceeded,
results in the production of potentially deleterious
respiratory by-products. In this respect, mitochondria are
the greatest producers of reactive oxygen species (ROS)
(Oyewole and Birch-Machin, 2015). Approximately 0.2–2%
of the electrons processed via the mitochondrial electron
transport chain are unable to fully reduce molecular oxygen

and ultimately produce superoxide or hydrogen peroxide, the
two most predominant ROS species (Geto et al., 2020). In
cases where the existing antioxidant defenses of the
mitochondria are inadequate to neutralize constitutive ROS
production, or under circumstances where energy requirement
exceeds the antioxidant capacity of the mitochondria, ROS
levels can rise sufficiently to oxidatively damage proteins and
nucleic acids or cause lipid peroxidation within cellular
membrane-delimited domains that, on one level, compromise
the functioning and viability of the directly implicated cell,
while on another level result in the release of mitochondrial
DNA and mitochondrial breakdown products into the
extracellular environment. Due to its close proximity to the
source of ROS production and the absence of nuclear-like
DNA repair mechanisms, the mitochondrial genome is
particularly susceptible to oxidative damage wherein mutations
are not corrected and perpetuated, ultimately compromising
energy production, cellular repair, and membrane integrity and
result in the escape of mitochondrial components into the
general circulation where they induce systemic inflammation.
Systemic inflammation, in turn, undermines tissue
regeneration and maintenance as well as disrupts systemic
metabolism and immunity. Accordingly, a deterioration in
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mitochondrial respiratory and antioxidant efficiency is
associated with accelerated aging (Wang and Hekimi, 2015;
Gallage and Gil, 2016; Ferri et al., 2020; Lima et al., 2022).

The muscular mitochondrial pool is critically important
for organismal health and longevity (Russell et al., 2014;
Hood et al., 2019; De Mario et al., 2021; Fealy et al., 2021).
Indeed, metabolism, systemic inflammatory status and
resilience to disease all have mitochondrial origins that can be
linked back to skeletal muscle (Smith et al., 2018; Louzada et
al., 2020; Fealy et al., 2021; Amorim et al., 2022). Moreover,
as immunity is a function of systemic inflammation, it also
links back to the muscular mitochondrial pool (Ubaida-
Mohien et al., 2019; Wallings et al., 2020; Lisci et al.,
2021). Cancer progression is also influenced by systemic
inflammatory status and hence, is also subject to modulation
by the muscular mitochondrial response (Geto et al., 2020;
Stine et al., 2021). Indeed, organismal health, in general,
parallels muscle health.

Mitohormesis

Counter to conventional wisdom, ROS are not exclusively evil. In
a microcosmic parallel to physical exercise, whereby muscular
activity improves physical performance, mitochondria adapt to
their own usage. In essence, mitochondria respond to the same
ROS they produce during oxidative energy production by
enhancing mitochondrial function, and moreover, they
underlie exercise adaptations on the organismal level. Key to
this adaptive process is Pparg coactivator-1α (PGC-1α), the
ROS/Redox-responsive master gene involved in
mitochondriogenesis and exercise-based physical adaptations
(Thirupathi and de Souza, 2017; Louzada et al., 2020).
Stimulated mitochondrial energy production during physical
activity hence, reinforces mitochondrial respiratory fitness by
increasing mitochondrial number and expanding the
interconnected mitochondrial network (Hood et al., 2019; Geto
et al., 2020; Philp et al., 2021). Mitochondrial fusion facilitates
the sharing of mitochondrial metabolites, energy substrates,
and mitochondrial DNA, enhancing mitochondrial resistance
to oxidative stress as well as forestalling mitochondrial
fragmentation in preparation for clearance via mitophagy.
Routine aerobic exercise also enhances the mitochondrial
antioxidant defenses and efficiency of oxidation
phosphorylation (ATP production) and results in a shift in
substrate utilization towards lipids, all of which are
metabolically beneficial conditions. By contrast, low levels of
physical activity are associated with the reduced mitochondrial
number, attenuated respiratory efficiency, mitochondrial
fragmentation, mitophagy, and extracellular expulsion. A
sedentary lifestyle is hence characterized by mitochondrial
molecular profiles known to be associated with systemic
inflammation and metabolic imbalance.

Mitohormesis refers to the process whereby an organism
adapts to mitochondrial ROS (Ristow and Schmeisser, 2014).
Energy-consuming processes that are not pathologically
inflammatory in nature, generally promote organ health and
maintenance with functional consequences. In this manner,
normal exercise benefits muscle energetics and systemic
health. This adaptive process is short-circuited in persons
that are physically incapacitated due to frailty, age, disease, or

trauma. Developing methods to re-engage muscular
mitochondrial-based adaptations in the clinically immobilized
has thus been a major focus of the physical rehabilitation
sciences. A noted caveat to these efforts is the fact that
mitochondrial energy expenditure is more metabolically
relevant than mere movement per se, and therefore, assisted
movement of the body by a physical therapist would not be
sufficient to fully re-engage the response. A manner to non-
invasively activate mitochondrial respiration would be
beneficial.

Muscular Mitohormesis: Harnessing the Innate Endocrine
Function of Skeletal Muscle

Muscle, as our largest unified tissue mass, is also our greatest
unified source of mitochondria. Exercise or physical
movement, by virtue of their requirement for mitochondrial
energy production, is thus the most natural manner to
induce systemic mitohormesis with a positive consequence
over systemic inflammation. This role of muscles is largely
mediated via the actions of its secretome (Louzada et al.,
2020). The production of mitochondrial ROS has been
shown to be a key stimulus in activating growth factor
pathways within muscles (Auten and Davis, 2009; Scheele et
al., 2009). Energy-dependent muscle secretome release and
distribution to peripheral tissues (and muscle) is a key
reason behind the described healthful benefits of exercise. In
these collateral tissues, the muscle secretome influences
tissue as well as mitochondrial homeostasis (Romanello,
2020), particularly in adipose and bone tissues (Kirk et al.,
2020; Gomarasca et al., 2020). Adipose tissue in sedentary
individuals releases proinflammatory cytokines (adipokines) into
the systemic circulation, and via this pathway, adipose tissue
inflammation gives rise to system-wide metabolic disorders. On
the other hand, myokines released from the muscle in response
to exercise promote adipose browning characterized by
enhanced mitochondriogenesis, thermogenesis, lipolysis, and a
shift in adipokine secretory profile. Adipose tissue responds to
myokine conditioning by attenuating inflammatory adipokine
secretion, thereby reinforcing muscle and systemic metabolism.
In this manner, cytokine-mediated muscle-adipose crosstalk is a
major regulator of systemic inflammatory status, metabolic
balance, and microbiome diversity (Li et al., 2017; Leal et al.,
2018, 2021; Gomarasca et al., 2020; Suriano et al., 2020; Zhang
and Sun, 2021). Accordingly, evidence supports the role of the
muscle secretome in immunometabolism and its importance for
the control of tumor growth and chronic inflammation (Bay
and Pedersen, 2020). A detailed discussion of the muscle
secretome components mediating systemic immunomodulation
and anti-inflammatory roles is beyond the scope of this
viewpoint and has been comprehensively discussed elsewhere
(Bay and Pedersen, 2020; Louzada et al., 2020).

Muscular Magnetic Mitohormesis & Muscle Secretome
Activation

Low amplitude and extremely low-frequency pulsed
electromagnetic fields (PEMFs) were shown capable of
inducing mitochondrial respiration and mitohormetic
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responses in muscle, both in vitro (Yap et al., 2019) and in vivo
(Tai et al., 2020), downstream of PGC-1α activation. The
employed Helmholtz coil systems create a three-dimensional
volume of field uniformity (Crocetti et al., 2013; Wong et
al., 2022) that is essential for achieving optimal biological
efficacy (Parate et al., 2017; Yap et al., 2019; Madanagopal et
al., 2021). Muscle was found to be most responsive to
PEMFs at an amplitude of 1.5 milliTesla (mT) delivered
once a week for 10 min (Yap et al., 2019), whereas smaller
or greater amplitude PEMFs, shorter or longer duration, or
more frequent exposures, did not render additional benefits
or were even less effective. These weak magnetic fields are
only ~20–30 times greater in amplitude than the standing
geomagnetic field of the Earth and are in the extremely low-
frequency range (Hz–kHz) and hence, are non-ionizing.
Analogous PEMFs were shown to protect against
inflammatory stress (Parate et al., 2020). Moreover, as the
fields work on the quantum physical level to stimulate
mitochondrial electron transport (Usselman et al., 2016),
they are too weak to act as a vicarious form of mechanical
stimulation. That is, by inadvertently causing muscle fiber
or cell contraction, they exert no mechanical stress.
Nonetheless, as they do activate mitochondrial respiration
and downstream ROS production, generating mitohormetic
levels of oxidative stress, prudence is advised, and
overexposure should be avoided.

In isolated muscle cells, Magnetic Mitohormesis was
associated with increased mitochondriogenesis, mitochondrial
respiration, and reduced apoptosis (Yap et al., 2019). In mice,

muscular Magnetic Mitohormesis was shown to improve
running performance after as little as five weeks of weekly
exposure (10 min/wk for a total of 50 min of exposure),
enhance muscle oxidative capacity (increase type muscle fiber
expression governing aerobic/endurance activities), increase
muscle and adipose mitochondriogenesis, induce adipose
browning, improve insulin sensitivity, augment fatty acid
oxidation, and induce shifts in the microbiome indicative of
leaner phenotype as previously described with exercise
training (Tai et al., 2020). The observed effects are correlated
with the magnetically-induced activation of the muscle
secretome (Wong et al., 2022), as previously demonstrated in
the stem cell niche with anti-inflammatory attributes (Parate
et al., 2020). Indeed, Magnetic Mitohormesis recapitulates
many of the hallmark metabolic indices typically associated
with habitual exercise (Fig. 1).

Mitochondrial Fitness and COVID-19 Vulnerability

Measures are currently being urgently sought to curtail the
damaging consequences of the global COVID-19 pandemic.
COVID-19 is commonly associated with damage to the
respiratory system, endothelial inflammation, and multiple
organ failure that are triggered by excessive production of
proinflammatory cytokines (Filgueira et al., 2021). On the
other hand, physical activity induces the production of
myokines that mitigate low-grade systemic inflammation.
Moreover, long COVID is similarly linked to systemic
inflammatory status and is likewise ameliorated by muscular

FIGURE 1. Magnetic mitohormesis, mechanisms, and responses. Adapted from NUH Médico (MCI (P) 121/03/2020).
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respiratory fitness (Burtscher et al., 2020; Ranasinghe et al.,
2020; Sies and Ursini, 2021). Available evidence thus
supports that vulnerability to COVID-19 is improved by
physical and mitochondrial fitness.

Therefore, the development of safe and non-exertional
methods to improve mitochondrial fitness may serve to
manage persistent COVID-19 symptoms. Although this notion
is provocative to contemplate, it remains to be shown in large-
scale randomized clinical trials whether analogous magnetic
therapies will one day prove a viable COVID-19 intervention.

Conclusions

The magnetic paradigm discussed here has been shown to
invoke mitohormetic responses in muscle cells and stem cell
classes associated with the production of ROS and the
correspondent cellular responses, including enhanced
mitochondriogenesis, improved survival, and enhanced
tissue differentiation (Yap et al., 2019; Parate et al., 2020;
Tai et al., 2020; Celik et al., 2021; Madanagopal et al., 2021;
Wong et al., 2022). It is widely agreed that actively
stimulating muscular mitochondrial energy production has
clear health benefits. Physical exercise is the best method to
achieve this objective as it also gives rise to a fuller breadth of
collateral responses, contributed by the mechanobiological
stimulation of muscle and bone, as well as the direct
neurological and endocrine engagement during the execution
of the exercise. However, if one is limited in physical capacity
due to age, disease, or general frailty, then magnetic
mitohormesis may serve as a valid and safe alternative to
help sustain metabolic balance; treatment in animals and
humans requires only 10 min per week. Moreover, the
absence of mechanical stress afforded by Magnetic
Mitohormesis may be a valuable asset in some clinical
scenarios where muscle loading is ill-advised or unfeasible.
The provocative implications are that analogous magnetic
field therapies may one day be exploitable as a manner to
forestall the onset, or in the management, of chronic diseases
and await clinical validation.
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Note Added in Proof: Since the publication of this viewpoint
a manuscript has been published in support of the metabolic
attributes of Magnetic Mitohormesis. Stephenson MC,
Krishna L, Selvan RMP, Tai YK, Wong CJK, Yin JN, Toh
SJ, Torta F, Triebl A, Fröhlich J, Beyer C, Li JZ, Tan SS,
Wong CK, Chinnasamy D, Sivappiragasam S/O Pakkiri L,
Drum CL, Wenk MR, Totman JJ, Franco-Obregón A (2022),
Magnetic field therapy enhances muscle mitochondrial
bioenergetics and attenuates systemic ceramide levels
following ACL reconstruction: Southeast asian randomized-
controlled pilot trial. Journal of Orthopaedic Translation.
https://doi.org/10.1016/j.jot.2022.09.011.
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