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Forkhead box protein O1 (FoxO1) regulates lipids metabolism and
cell proliferation mediated by insulin and PI3K-Akt-mTOR
pathway in goose primary hepatocytes
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Abstract: In order to explore the role of forkhead box protein O1 (FoxO1) in the lipid metabolism and cell proliferation,
goose primary hepatocytes were isolated and incubated with insulin or PI3K-Akt-mTOR pathway dual inhibitor NVP-
BEZ235, and then transfected with FoxOl interference plasmid. The related parameters of lipid metabolism and cell
proliferation were measured. The results firstly showed that FoxOl interference increased the intracellular TG and
lipids concentration (P < 0.05); and increased the proliferative index (PI), cell DNA synthesis, protein expression of
Cyclin D1 in goose primary hepatocytes (P < 0.05). Secondly, the co-treatment of insulin and FoxOl interference
increased the mRNA level and protein content of Cyclin D1 (P < 0.05); however, there was no significant difference
between the insulin treatment and the co-treatment of insulin and miR-FoxO1l interference in the intracellular TG
and lipids concentration and PI (P > 0.05). Lastly, the decrease of intracellular TG and lipids concentration and PI
induced by NVP-BEZ235 was up-regulated by FoxOl interference significantly (P < 0.05). In summary, FoxO1 could
regulate the lipids metabolism and cell proliferation mediated by PI3K-Akt-mTOR signaling pathway in goose
primary hepatocytes. Further investigations are required to highlight the potential role of FoxOl in the lipid

metabolism and cell proliferation mediated by insulin in goose primary hepatocyte.

Introduction

The transcription factor forkhead box protein O1 (FoxOl) is a
member of the forkhead O family and plays important roles in
different biological processes which includ cell proliferation
and cell lipid metabolism. Previous researches showed that
FoxO1 regulates hepatic lipid metabolism in multiple ways,
including PP2A-AMPK pathway, insulin pathway, glucose
pathway, AKT-FoxO1 pathway (Chen et al, 2020; Shi et al,
20205 Yu et al., 2019; Zangerolamo et al., 2019), from the de
novo lipogenesis via sterol regulatory element-binding
proteins-1 (SREBP-1), fatty acids oxidation and lipids
transportation. Recent study reported that the FoxOl1
deacetylation decreased the fatty acid oxidation in f-cells
(Kim-Muller ef al., 2016). In primary hepatocytes, CA-FoxOl
suppressed SREBP-1c expression, insulin induced SREBP-1c
promoter activity (Deng et al., 2012). FoxOl loss-of-function,
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caused by RNAi-mediated depletion of FoxO1 mRNA in liver
resulted in reduced hepatic VLDL production in diabetic
db/db and FoxOl transgenic mice (Kamagate et al, 2008).
FoxOl also had been found to play a critical role in the cell
proliferation from cell cycle arrest and cell apoptosis (Kapahi
et al, 2010; Zeng et al, 2009). When the FoxOl was
suppressed or silenced, the cell proliferation increased and the
cell apoptosis decreased (Piao et al, 2019). One recent
research indicated that silencing FoxOl attenuated
dexamethasone-induced apoptosis in osteoblastic MC3T3-E1
cells (Xing et al., 2019). In addition, FoxO1 not only acts as a
negative checkpoint on NK cell maturation, but also represses
NK cell specification and proliferation (Huang et al., 2019).
FoxO1 Forkhead proteins are major targets of insulin action.
The insulin signaling through FoxO1 plays an important role in
regulating hepatic microsomal triglyceride transfer protein
(MTP) expression and very low-density lipoprotein (VLDL)
production (Zangerolamo et al, 2019). Our current research
reported that the regulation of lipid deposition by insulin in
goose liver cells was mediated by the PI3K-Akt-mTOR
signaling pathway (Han et al, 2015). A current study
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demonstrated that nicotinamide phosphoribosyltransferase
(Nampt) is a transcriptional target of FoxOl that is under
control of the insulin-PI3K-Akt pathway and the stimulatory
effect of insulin signaling pathways on the Nampt gene
expression is largely due to inhibitory action on FoxO1 (Jeong
et al, 2019). However, whether FoxOl regulated the cell
proliferation and lipid metabolism mediated by insulin in
reverse is unclear.

It was reported that miRNA treatment reduced the
expression of FoxOl, which is the downstream of the PI3K-
Akt pathway in mice hepatocytes (Shu et al., 2020). PI3K-
Akt-FoxOl mediated pathway attenuated the hepatic
glucose output, and the hepatic lipid accumulation was
inhibited (Mutt et al, 2020). PKC epsilon-PI3K-Akt
pathway ameliorated the high fat diet-induced hepatic
steatosis and insulin resistance, suppressed the hepatic
gluconeogenesis (Cheng et al, 2019). Mammalian target of
rapamycin (mTOR) complex controls glucose and lipid
metabolism, and a research showed silent information
regulator 6 (SIRT6) was the FoxO1l deacetylase suppressed
by mTORC2 (Jung et al., 2019). FoxK1 phosphorylation was
increased upon mTORCI suppression. Mechanistically, this
occurs by mTORCI1-dependent suppression of nuclear
signaling by the Foxkl kinase, Gsk3 (He et al, 2018).
However, there has been no report whether FoxO1 regulates
the cell lipid deposition and cell proliferation by PI3K-AKT-
mTOR signal pathway.

Non-alcoholic steatohepatitis (NASH), characterized by
inflammation, represents a crucial step in the progression of
Non-alcoholic fatty liver disease (NAFLD) from simple
steatosis to more advanced stages in mammals. This process is
closely associated with insulin resistance, abnormal expression
of FoxOl as well as uncontrolled PI3K-Akt-mTOR pathway
(Chen et al, 2019; Ding et al., 2020). In overfed geese, their
liver increased in size and weight by 5 to 10 folds in two weeks
due to a large amount of lipid accumulation. Despite severe
steatosis, goose fatty liver (foie gras) showed no obvious
inflammation, fibrosis, and other pathological changes that are
often seen in NAFLD of humans and mice (Liu ef al, 2016).
Overfed goose liver can recover to normal state under certain
conditions (Wei et al, 2021). Therefore, goose fatty liver
provides a unique model of severe hepatic steatosis without
any apparent liver injury, which provide a reference for the
prevention and treatment of NAFLD. FoxOl1 is the potential
treatment molecular target for NAFLD (Elhafiz et al, 2020;
Huang et al., 2019; Puentes et al., 2014). So, further uncovering
the relationship between FoxOl, insulin and PI3K-Akt-mTOR
signal pathway may provide new ideas for developing methods
to prevent and cure NAFLD in humans and other animals.

Overfed goose liver (foie gras) has a special hepatic
steatosis process where lipid deposition accompanied with
cell proliferation. In our previous study, we found insulin and
PI3K-Akt-mTOR signal pathway could stimulate lipid
deposition and cell proliferation in goose primary hepatocytes
(Han et al, 2015; Han et al, 2016). However, the role of
FoxOl in waterfowl hepatic steatosis development is
unknown at present; in addition, whether FoxO1l could
regulate the lipids metabolism and cell proliferation mediated
by insulin and PI3K-Akt-mTOR signaling pathway is unclear.
We hypothesized that FoxOl may regulate the lipids
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metabolism and cell proliferation dependented on insulin and
PI3K-Akt-mTOR signal pathway. In order to demostrated
this hypothesis, we conducted a series of in vitro studies with
cultured goose primary hepatocytes which were taken as in
vitro liver model; and the corresponding indexes and
parameters involveded in lipids metabolism and cell
proliferation were detected. By addressing the hypothesis, this
study may reveal the relationship between FoxO1, insulin and
PI3K-Akt-mTOR signal pathway, provide a reference for the
goose fatty liver (foie gras) formation mechanism. and open a
new approach to preventing the occurrence of nonalcoholic
steatohepatitis suffered by other animals.

Materials and Methods

Cell culture and treatment

Hepatocytes were isolated from three 14-day-old Tianfu Meat
Goose from the Experimental Farm for Waterfowl Breeding at
Sichuan Agricultural University (Sichuan, China) using a
modification of the “two-step procedure” described by
Seglen (1976). Goose primary hepatocytes were isolated and
cultured in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum (FBS). The
culture conditions were 37°C with 5% CO,. As showed in
Suppl. Materials S1, the effective FoxO1 miRNA interference
vector was selected. Control miRNA oligo and selected
effective miRNAs interfering goose FoxOl were designed
and synthesized by BGI (Shenzhen, China). These two pairs
of double-stranded miRNA oligo were inserted into the
plasmid vector pCDNA6.2/MIRNA/AMP to construct two
miRNA recombinant clone vectors, respectively. Before
treatment, the cells were cultured in serum-free media for
12 h. Subsequently, serum-free media change to the media
(contain serum), and then, some cells were treated with
serum-free media supplemented with PI3K-Akt-mTOR
pathway dual inhibitors (1 pmol/L NVP-BEZ235) (Selleck,
HOU, USA) or insulin (150 nmol/L) for 12 h, and then the
selected effective FoxOl miRNA interference plasmid
vectors pCDNA6.2/MIRNA/AMP-miRNA (miRNA-FoxO1)
were added for incubation of 48 h for exploring the lipid
metabolism. Meantime, in order to investigate the cell
proliferation, some goose primary cells were treated with
1 pmol/L NVP-BEZ235 or 150 nmol/L insulin for 24 h; and
then the previous treated goose primary hepatocytes were
transfected with the miRNA-FoxOl and incubated 12 h.
After the incubation, the cells were collected for follow-up
study. Each experiment was performed at least in triplicate.

Concentration measurement of triglyceride (TG) and VLDL
The extracellular VLDL concentration in the supernatant was
measured using a chicken VLDL ELISA kit (GBD, USA). The
concentration of VLDL in the samples was determined by
comparing the optical density (OD) value at 450 nm of the
samples to the standard curve. After cultured cell treatment,
the culture media was collected for detecting extracellular TG
concentration. Cell samples used to measure intracellular TG
concentration were collected. The TG levels were quantified
using a triglyceride GPO-POD assay kit (Biosinc, China).
Measurements will be in accordance with the manufacturer’s
protocol. All assays were performed in triplicate.
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Oil Red O staining

Briefly, after the treatments with goose primary hepatocytes,
staining of intracellular lipids was performed using Oil Red
O (Sigma) according to the manufacturer instructions. Oil
Red O staining images were taken using a light microscope
(Olympus Optical, Tokyo, Japan) at 200x magnification. For
quantification of lipid accumulation, the Oil Red O-positive
cells were extracted using 100% isopropanol for 10 min. The
absorbance of the extracted dye was analyzed at a
wavelength of 510 nM (BIO-RAD, USA).

Flow cytometry assay

Goose primary hepatocytes were seeded in the 24-well culture
dish at a density of 2 x 10* cells. To investigate the proportion
of cells in the GO/G1, S, and G2M phases of the cell cycle,
flow cytometric analysis were conducted. After the treatment,
cells were collected and centrifuged (800 x g for 10 min) to
obtain the cell pellet (10° cells/mL), which was resuspended in
100 pL of PBS (pH 7.4) with 10 uL RNase A (250 pg/mL) and
10 pL propidium iodide stain (100 pg/mL), followed by
incubation at 4°C in the dark for 30 min. Subsequently, flow
cytometry was performed using a FACScan (Becton-
Dickinson, Franklin Lakes, NJ) with an argon laser (488 nm),
and the data was collected and displayed using the FL2
channel. Cell proliferative index (PI) was calculated using the
following formula: PI = (S + G2M)/(GOG1 + S + G2M) x 100.

Investigating DNA synthesis rate using BrdU assay

To assess DNA synthesis, we performed bromodeoxyuridine
(BrdU) assay using ELISA kit of 5-Bromo-2-deoxyuridine cell
proliferation assay (Roche, Indianapolis, IN). The detailed
procedure followed as the previous experiment (Bashash et al,
2013). In brief, after the treatment, the cells were incubated for
24 h with 10 pM BrdU in culture medium. After the cells were
washed and fixed. The cells were exposed to rabbit anti-BrdU
antibody (1:100, Beijing Biosynthesis Biotechnology, China),
then incubated with goat anti-rabbit Cy3-conjugated secondary
antibody (1:300, Beijing Biosynthesis Biotechnology, China),
and counterstained with 4’,6-diamidino-2-phenylindole (DAPI)
finally. Cell were examined by the upright BH2 microscope
system (Olympus, Tokyo, Japan), 3 visual fields of each
experiment were randomly selected at 200x magnifications.
Cell were quantified by counting BrdU-positive cells (green)
and DAPI-positive cells (blue). The experiments were repeated
three times.

Measurement of protein content in culture cells

Protein content of ACCa, FAS, Carnitine palmitoyltransferase 1
(CPT1), MTP, Cyclin D1 and p21 in culture cells was measured
using ELISA kit (GBD, USA). Briefly, goose primary hepatocytes
were seeded in the 96-well plates and treated with insulin,
NVP-BEZ235 and pCDNA6.2/MIRNA/AMP-miRNA vectors.
Subsequently, the cells were collected, further measurements
will be in accordance with the manufacturer’s protocol. All
assays were performed in triplicate.

Isolation of total RNA and real-time RT-PCR

Cultured cells total RNA was extracted using extraction kit
(TRIzol Reagent) (Invitrogen, USA), and then RNA was
transcribed into ¢cDNA via reverse-transcription using the

Primer Script TM RT system kit for real-time PCR
(TaKaRa, Japan) as described by the manufacturer. The
fluorescence quantitative PCR was performed on the CFX
96 instrument (Bio-Rad, USA), using a Takara ExTaq RT-
PCR kit and SYBR Green as the detection dye (Takara,
Japan); qRT-PCR reaction system contained the newly
generated cDNA template (1.0 pL), SYBR Premix Ex Taq
TM (6.0 pL), sterile water (4.0 pL), upstream primers of
target genes (0.5 pL) and downstream primers of target
genes (0.5 pL). After initial denaturation at 95°C for 5 min,
40 cycles were carried out: 95°C for 10 s, 60°C for 20 s,
72°C for 15 s and 72°C extension for 10 min. Fluorescence
quantitative PCR Primers (BGI, Beijing, China) designed
according to the goose gene sequences in current
experiment were summarized in Suppl. Tab. S1. Fold change
in the expression of target gene was analyzed using the
272 method (Livak and Schmittgen, 2001). B-actin and
18S used as the internal reference gene. Each test included 3
biological samples and each sample was analyzed in triplicate.

Protein analysis by western blotting

Following the incubation with the different treatments, SDS
buffer was used to extract total proteins from the harvested
cells which were washed twice and collected in ice-cold PBS.
The untreated cells were used as control. Equal amounts of
total proteins (100 pg/lane) were separated by SDS-PAGE
gel (6%) electrophoresis and transferred to a PVDF
membrane. After blocking with a mixture of 5% skimmed
milk/Tris-buffered saline Tween 20 (TBST), the membranes
were incubated overnight at 4°C with the primary antibody
rabbit against FoxOl, P-FoxOl(Ser256), Aktl, P-Aktl
(Thr34), acetyl-CoA carboxylase (ACCa), carnitine
palmitoyl-transferase (CPT1A), MTTP or Cyclin D1
antibodies (1:1,000; Beijing Biosynthesis Biotechnology,
China); antibody information was listed in Suppl. Tab. S2.
Following three consecutive washes in TBST (0.05%), the
membranes were incubated with the goat anti-rabbit
horseradish peroxidase-conjugated IgG at 1:2000 (Beijing
Biosynthesis Biotechnology, China) for another 2 h at room
temperature. The results were normalized to a-tubulin
(Beijing Biosynthesis Biotechnology, China) protein levels.
Protein expression levels were finally visualized using
enhanced chemiluminescence (ECL) reagents (Beyotime
Institute of Biotechnology, China). The western blot gray
value was measured by integral optical density (IOD)
measurement via Image Pro Plus 6.0 (Media Cybernetics,
Bethesda, MD, USA); and western blot quantification was
performed as the ratio of IOD value of treatment to IOD
value of reference protein.

Statistical analysis

By using SAS 9.13 package (SAS Institute Inc, Cary, NC), the
comparisons of multiple groups were analyzed by GLM, and
the means were assessed for significant differences using the
SNK-q test. All data were presented as means + SD and
showed with graphs created with GraphPad Prism
5.0 software (GraphPad Prism Software, Inc., USA). We
considered P < 0.05 as statistically significant. Each detection
was repeated with 3 biological samples, and each sample was
performed thrice.
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Results

Effect of miRNA-FoxOl1 interference on lipids metabolism and
cell proliferation in goose hepatocytes

miRNA-FoxOl interference increased the intracellular and
extracellular TG concentration (P < 0.05), decreased the
extracellular VLDL concentration (P < 0.05), and increased
the lipids deposition in goose primary hepatocytes (Figs.
1A-1D; Suppl. Fig. S2). After miRNA-FoxO1 treatment, the
mRNA expression level and protein content of ACCa and
fatty acid synthetase (FAS) decreased (P < 0.05) (Figs. 1E,
1H, and 1I), the western blot result also showed the protein
expression of ACCa decreased (Fig. 1L; Suppl. Fig. S6A), the
mRNA expression level of liver X receptor a (LXRa)
decreased (P < 0.05) (Fig. 1E). miRNA-FoxOl1 interference
decreased the mRNA expression level of CPT1 and acyl-
CoA oxidase 1 (ACOX1) (P < 0.05) (Fig. 1F). The results of
ELISA and western blot showed miRNA-FoxO1 interference
decreased the protein content and protein expression of
CPT1 (P < 0.05) (Figs. 1] and 1M; Suppl. Fig. S6B).
miRNA-FoxOl interference  decreased the mRNA
expression level of MTP and apolipoprotein B (ApoB) (P <
0.05), increased the mRNA expression level of diacylglycerol
acyltransferase-1 (DGAT1) (P < 0.05) (Fig. 1G). The protein
content of MTP decreased after FoxOl1 interference (P <
0.05) (Figs. 1K and 1M; Suppl. Fig. S6C).

As shown in flow cytometric analysis (Fig. 2A), miRNA-
FoxOl1 interference increased PI from 48.47% to 59.86%. And
it was consistent with the result of BrdU-incorporation assay,
after the FoxO1 interference, the DNA synthesis rate and the
BrdU-positive cells of treated cells increased (Figs. 2B and 2C;
Suppl. Figs. S3 and S4). Figs. 2D and 2E summarized the
effect of FoxOl on protein content of Cyclin D1 and p21,
miRNA-FoxOl interference significantly increased the
protein content of Cyclin D1, and significantly decreased the
protein content of p21 (P < 0.05). The result of quantitative
PCR showed the mRNA expression levels of Cyclin DI,
Cyclin D2, Cyclin D3 increased significantly after the
miRNA-FoxO1 interference (P < 0.05), and the mRNA
expression levels of p21 and p27 decreased significantly (P <
0.05) (Figs. 2F and 2G). The result of western blot indicated
the miRNA-FoxOl interference increased the protein
expression of Cyclin D1 (Fig. 2H; Suppl. Fig. S7A).

Role of FoxOl in regulation of lipids metabolism and cell
proliferation mediated by insulin

The results showed that insulin could significantly decrease
the mRNA expression level of FoxO1 (P < 0.05) (Fig. 3A).
The results of western blot indicated insulin decreased the
protein  expression of FoxOl and increased the
phosphorylation level of FoxOl (Fig. 3B; Suppl. Fig. S5A).
After the single insulin treatment, the lipids deposition
increased (Figs. 4A-4D). However, in our present study,
there was no significant difference in TG concentration and
lipids drops between the insulin treatment and the co-
treatment of insulin and miR-FoxO1 (Figs. 4A-4D; Suppl.
Fig. S2). There was no significant difference in expression
level of genes (CPT1, ACOX1, PPARa, PPARY, MTP, ApoB,
DGAT1 ) and protein content of CPT1 and MTP between
the insulin treatment and the co-treatment with insulin and
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miR-FoxO1 (P > 0.05) (Figs. 4E-4K); The protein content
and protein expression (ACCq, CPT1 and MTP) measured
by ELISA and western blot was in accordance with the
results of mRNA expression levels (Figs. 4L-4N; Suppl.
Figs. S5D-S5F).

As shown in Fig. 5A, the addition of insulin increased the
PI from 42% and 58.25%, thus insulin played a role in the
regulation of cell proliferation. The result of the DNA
synthesis rate of treated cells and BrdU stain all verified this
viewpoint (Figs. 5B and 5C; Suppl. Figs. S3 and S4). The
mRNA levels of Cyclin D1, Cyclin D2 and Cyclin D3 of the
co-treatment with insulin and miRNA-FoxOl were
significantly higher than those of single insulin treatment or
miRNA-FoxO1 (P < 0.05) (Figs. 5F and 5G). There was no
significant difference in PI and protein content of p21 and
p27 between the single insulin treatment or miRNA-FoxO1
and co-treatment of insulin and miRNA-FoxO1 (P > 0.05)
(Figs. 5D and 5E). The result of western blot verified that
the above three treatments all increased the protein
expression of Cyclin D1 (Fig. 5H; Suppl. Fig. S7B).

Role of FoxOl in regulation of lipids metabolism and cell
proliferation mediated by PI3K-Akt-mTOR signal pathway
Compared with the control group, NVP-BEZ235 treatment
increased the mRNA level and protein expression of FoxOl
(P < 0.05) (Figs. 6A and 6B; Suppl. Fig. S5B); miRNA-FoxOl
interference increased the mRNA expression level of mTOR
(P < 0.05) (Fig. 6C); the result of western blot indicated
miRNA-FoxOl1 interference decreased the phosphorylation level
of Aktl and increased the protein expression of Aktl and
mTORCI (Figs. 6D and 6E; Suppl. Figs. S5C-S5D). Compared
with the control group, NVP-BEZ235 increased the extracellular
VLDL concentration, and decreased the lipids deposition in
goose primary hepatocytes (P < 0.05) (Figs. 7A-7D). Compared
with the NVP-BEZ235 treatment, the co-treatment of NVP-
BEZ235 and miR-FoxOl increased the lipids deposition, the
intracellular and extracellular TG concentration (P < 0.05) and
decreased of the extracellular VLDL concentration in
hepatocytes (P < 0.05) (Figs. 7A-7D; Suppl. Fig. S2). The
expression level of genes (FAS, SREBP-1, CPT1, ACOXI,
PPARa, PPARY, MTP, ApoB, DGAT1, and DGAT?2) in the co-
treatment with NVP-BZE235 and miRNA-FoxO1 were higher
than those of the single NVP-BZE235 treatment (P < 0.05)
(Figs. 7E-7G). The protein content and protein expression
(ACCa, CPT1 and MTP) measured by ELISA and western blot
was in accordance with the results of mRNA expression levels
(Figs. 7H-7K and 7L-7N; Suppl. Figs. S6G-S6I).

As shown in Fig. 8A, compared with the control group,
the treatment with dual inhibitor of PI3K-Akt-mTORI1
signal pathway, NVP-BEZ235, decreased the PI from 42% to
15.85%, and the treatment of miRNA-FoxOl decreased the
PI from 15.85% to 24.56%. The DNA synthesis rate of
treated cells and the result of BrdU stain all indicated the
NVP-BEZ235 treatment decreased the stimulating effect of
miRNA-FoxOl treatment (P < 0.05) (Figs. 8B-8C; Suppl.
Figs. S3 and S4). As shown in Figs. 8D and 8E, the effect of
co-treatment of NVP-BEZ235 and miRNA-FoxO1 on the
protein content of Cyclin DI and p21 was between the
single NVP-BEZ235 treatment and the single miRNA-
FoxOl treatment (P < 0.05). Meanwhile, Figs. 8F and 8G
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showed that the mRNA expression levels of Cyclin D1, Cyclin
D2 and Cyclin D3 were higher in the co-treatment of NVP-
BEZ235 and miRNA-FoxO1l compared with the inhibiting
effect of the NVP-BEZ235 treatment (P < 0.05); the mRNA
expression level of p21 and p27 of the co-treatment with

NVP-BEZ235 and miRNA-FoxO1 were lower than those of
the NVP-BEZ235 treatment (P < 0.05). The change of
protein expression of Cyclin D1 measured by western blot
was in accordance with the result of mRNA expression level
(Fig. 8H; Suppl. Fig. S7C).
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PPARY, peroxisome proliferators-activated receptor-y; ApoB, apolipoprotein B; MTP, microsomal triglyceride transfer protein; DGATI,
diacylglycerol acyltransferase-1; DGAT?2, diacylglycerol acyltransferase-2.

Discussion Wei et al., 2021). FoxOl is a critical regulator of hepatocyte

lipid deposition, FoxOl can regulate hepatic lipid
When the content of TG produced far exceeded the transport  metabolism from the lipid lipogenesis, fatty acids oxidation
capacity of apolipoproteins, and the fatty acid produced far and lipids transportation (Liu et al, 2019). In current
exceeded the degraded fatty acid by pf-oxidation, research, miRNA-FoxOl interference decreased the relative
the accumulation of lipids occurred (Mun et al, 2019; gene expression and the protein content of CPT1 and
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ACOX1, which indicated that fatty acid oxidation decreased
after FoxOl1 interference, which is in line with a previous
study that FoxO1 proteins exerted important effects on fatty
acid oxidation via the regulation of adipose triacylglycerol
lipase reported by Zhang et al. (2016). Zha et al. (2017)
reported that regulating PI3K-Akt-Foxol signaling pathway
mediated by insulin receptor substrate alleviated VLDL
overproduction. In this study, FoxO1 interference decreased
the gene expression of MTP and ApoB, decreased the
protein content of MTP, decreased VLDL-TG secretion and
increased the intracellular TG content, which led to
excessive fat accumulation in the liver cells. Zhang et al.
(2021) reported that FoxOl mediated the lipogenesis and
promoted the liver steatosis. Although the miRNA-FoxO1

interference decreased the expression of lipogenic genes
(FAS, ACCa, and LXRa) and decreased the protein content
of FAS and ACCa, the lipid deposition increased in goose
primary hepatocytes in this study. The reason may be that
the inhibition of the fatty acid oxidation and the
intracellular TG outward transportation induced by FoxO1
interference was far more than the inhibition of lipogenesis
pathways. Thereby, the miRNA-FoxOl interference
increased the lipids deposition in goose hepatocytes. A
finding suggested that the forced Fox01:5249V suppressed
the cell growth through G2/M cell cycle arrests and
increased the apoptosis in glioma (Piao et al, 2019).
Transfection with siRNA for FoxOl cancelled metformin-
inhibited cell growth, indicating that FoxOl mediated
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metformin to inhibit endometrial cancer cell proliferation (Zou
et al., 2016). One report indicated that the hyperproliferation of
mesangial cells in diabetic nephropathy rats was probably
associated with FoxO1l (Ji et al, 2014). In this study, the
specific inhibition of FoxO1 by miRNA-FoxO1 decreased the
gene expression of cell-cycle negative regulators (p27 and
p21) and increased the gene expression of cell-cycle
regulators (Cyclin D family), resulting in the increase of the
DNA synthesis and the cell proliferation in goose primary
hepatocytes. Our findings suggested that the increased cell
proliferation by inhibition of FoxO1 was consistent with its
greater inhibitory effects on the expression of multiple cell
cycle proteins (Yuan ef al., 2014).

Hepatic insulin signaling plays a pivotal role in lipids
metabolism. The formation of non-alcoholic fatty liver or
goose fatty liver accompanies with the insulin resistance
(Correnti et al, 2020; Wei et al., 2021). In this current
study, insulin increased lipids deposition, which is
consistent with the previous research reported by Han et al.
(2015). As reported by Gao et al. (2018), insulin promoted
the cell proliferation, and the result of this study was
consistent with it. We also found the effect of the co-
treatment of insulin and FoxOl interference on the mRNA
level of Cyclin D family was more evident than the other
two single treatments. One research indicated that FoxOl
was reciprocally regulated to FoxK1/K2 following insulin
stimulation and played a critical role in the control of
apoptosis, metabolism, and mitochondrial function
(Sakaguchi et al., 2019). These results indicated that insulin
and FoxOl interference might have a synergistic regulation
of cell proliferation. FoxO1 integrated the insulin signaling

and mediated the insulin-dependent regulation of MTP in
regulating the hepatic VLDL-TG secretion (Kamagate and
Dong, 2008; Kamagate et al., 2008). Skarra and Thackray
(2015) reported that insulin administration in vivo induced
the phosphorylation of FoxOl. Estradiol-17 (E2) increased
the FoxOl phosphorylation and promoted the cell
proliferation (Shaklai et al., 2018). In this current study, we
also found insulin increased the phosphorylation level of
FoxOl. These results suggested that FoxOl regulated the
cell proliferation mediated by insulin, and there was an
interaction between FoxOl and insulin in goose primary
hepatocytes. However, there was no significant difference in
PI between insulin treatment and co-treatment of insulin
and miR-FoxO1 interference, in addition, in our present
study, there was no significant difference in the TG and
lipids concentration between the insulin treatment and the
co-treatment of insulin and miR-FoxOl interference. The
reason may be that the promotion on cell proliferation and
lipid deposition by the miRNA-FoxOl was similar to the
promotion by insulin, there is a kind of competition
between them (Onuma et al., 2006). In addition, previous
research reported that in insulin-resistant high-fat-fed mice,
FoxO1 phosphorylation was impaired, and insulin increased
the lipogenic enzyme expression by activating SREBP-Ic,
and the insulin resistance increased selective impairment of
the Akt-dependent FoxO1 phosphorylation in mice (Sajan et
al., 2015; Sajan et al., 2018). Thereby, whether FoxO1 could
regulate insulin-mediated lipids deposition and cell
proliferation remains to be further researched.

There was an interaction between FoxO1, PI3K, Akt and
mTOR in regulation of lipid metabolism and cell cycle.
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Previous analysis indicated that long non-coding RNA HCV ~ (Li et al, 2018). A previous study showed that orexin-A
regulated 1 (IncHR1) participates in the lipid metabolism protected cells from apoptosis by regulating FoxO1l and
in vivo and regulated the level of SREBP-lc protein mTORCI through the OX1R/PI3K/AKT signaling pathway
through the phosphorylation of the PDK1-Akt-FoxOl axis in hepatocytes (Ju et al, 2014). In lipid metabolism,
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miRNA-FoxOl interference up-regulated the gene and
protein expression of genes involved in the lipogenesis
inhibited by NVP-BEZ235, down-regulated the protein
expression of genes involved in the lipid transportation
activated by NVP-BEZ235 and restored the intracellular
lipid concentration to a normal level. In cell proliferation,
the miRNA-FoxOl1 interference up-regulated the gene and
protein expression of cyclin D inhibited by NVP-BEZ235,
down-regulated the gene and protein expression of p21 and
p27 activated by NVP-BEZ235, increased the DNA
synthesis rate and PI suppressed by NVP-BEZ235. These
results indicated that FoxOl1 regulated the lipid metabolism
and cell proliferation mediated by PI3K-Akt-mTOR
pathway. Phosphorylation of FoxO1l is one of the most
important way how FoxOl regulates cell metabolism
pathway. In this current experiment, we also found PI3K-
Akt-mTOR signal pathway dual inhibitor NVP-BEZ235 up-
regulated the relative expression of FoxOl, and decreased
phosphorylation of FoxO1 (Figs. 6A and 6B). Our previous
study showed that PI3K-Akt-mTOR signal pathway played

an important role in the lipid deposition in goose primary
hepatocytes, and phosphorylated FoxOl translocated from
the nucleus to cytosol and lost its transcriptional activity in
liver (Han et al., 2015). The cell proliferation, apoptosis and
the cell cycle regulated by FoxO1 was part of the PI3K and
MAPK signaling network, while this regulation was mostly
activated by phosphorylation of FoxO1 (Wang et al., 2018).
In this present study, we also found that three single sites,
PI3K, Akt and mTOR, were influenced by the miRNA-
FoxOl1 interference (Figs. 6C-6E). These findings indicated
that FoxO1l regulated the lipid metabolism and cell
proliferation mediated by PI3K-Akt-mTOR pathway via the
interaction between FoxO1l and PI3K-Akt-mTOR signal
pathway in goose primary hepatocytes.

Conclusion
In summary, FoxO1 interference promoted lipid deposition

and cell proliferation in goose primary hepatocytes; FoxOl
could mediate lipid metabolism and cell proliferation
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dependent on PI3K-Akt-mTOR signaling pathway in goose
primary hepatocytes. However, whether FoxOl could
regulate insulin-mediated lipids deposition and cell
proliferation remains to be further researched.
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