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Abstract: Dengue virus infections are increasing worldwide generally and in Asia, Central and South America and Africa,

particularly. It poses a serious threat to the children population. The rapid and accurate diagnostic systems are essentially

required due to lack of effective vaccine against dengue virus and the progressive spread of the dengue virus infection. The

recent progress in developing micro- and nano-fabrication techniques has led to low cost and scale down the biomedical

point-of-care devices. Starting from the conventional and modern available methods for the diagnosis of dengue

infection, this review examines several emerging rapid and point-of-care diagnostic devices that hold significant

potential for the progress in smart diagnosis tools. The given review revealed that an effective vaccine is required

urgently against all the dengue virus serotypes. However, the rapid detection methods of dengue virus help in early

treatment and significantly reduce the dengue virus outbreak.

Introduction

The dengue virus (DENV) belongs to the Flavivirus genus to
the Flaviviridae family and is transmitted from Aedes spp.
mosquitoes to humans. The spread of virus is by a human
to mosquito to human cycle transmission (Simo et al.,
2019). Global climate change has influenced the interactions
of mosquito species with their hosts (Tabachnick, 2016).
There are various environmental and social changes are
involved that have affected the epidemics of DENV. Several
factors including climate change, poverty, public sanitation
policy, and improper rural–urban gradient (Ali et al., 2017).
Dengue virus has infected more than 100 countries all over
the world. Every year, around 400 million people get
infected with dengue virus, and 96 million people show
severe symptoms with 20,000 deaths, approximately
(Durbin, 2019; Kumar et al., 2020). The World Health
Organization (WHO) distributes the Dengue Haemorrhagic
Fever (DHF) in four different categories (I–IV). DHF
categories I and II signify comparatively mild cases without
shock, whereas cases with categories III and IV are more
severe and accompanied by shock (Martina et al., 2009).

Till 2013, dengue fever was believed to be caused by four
serotypes of DENV (DENV-1, DENV-2, DENV-3, and
DENV-4) that can spread the DENV infection, ranging
from asymptomatic infection to dengue fever (DF)
(Whitehead et al., 2007). The four serotypes are
antigenically distinct and are genetically similar, with
approximately sharing 65% of their genome sequence
(Darwish et al., 2018). DENV-5 is the newest serotype
reported by Dennis Normile in October 2013 (Normile,
2013). The symptoms of the patient infected by DENV-5
were attributed to sylvatic DENV-4 strains (Mustafa et al.,
2015). Some of the serotypes can cause severe diseases than
others. Early serotyping can give early warning of dengue
epidemics for providing better management of patients and
public health surveillance (Tsai et al., 2019).

The dengue was conventionally divided into four main
categories: non-classical DF, classical DF, dengue
hemorrhagic fever (DHF), and dengue shock syndrome
(DSS) (Ajlan et al., 2019). The new classification of dengue
by World Health Organization (WHO) classifies the dengue
into two main categories: severe and non-severe dengue.
The severe dengue includes DHF and dengue shock
syndrome (DSS) and are the most severe form of DENV
infections (Pang et al., 2017). The non-severe dengue is
further divided into dengue with warning signs and dengue
without warning signs (Kuo et al., 2018). Any of the DENV
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serotypes can cause different infections that may be
asymptomatic in many of the cases. The most symptomatic
infections are known as classic DF with an incubation
period of 3-14 days but is generally 4–7 days (Chumpu
et al., 2019; Hsieh, 2017). DF causes a high fever with
general symptoms of headache, nausea, vomiting, muscle
pain, generalized myalgias and arthralgias, and anorexia
(Azeredo et al., 2018; Lee and Rose, 2018). Approximately
50–100 million DENV infections are causing more human
diseases than any other arbovirus (Darcy et al., 2020;
Meyding-Lamadé and Craemer, 2018). The numbers of
DENV infected cases are continuously growing in endemic
areas of Africa, Southeast Asia, Central, and South America,
the Caribbean, and the Pacific (Halstead, 2006; Jelinek,
2009; Linn et al., 2020). Recent studies have shown that
children with 5–15 years of age are more susceptible to DSS
due to weak immune system (Rahmasari et al., 2020). It
remains a leading cause of hospitalization in at least eight
Southeast Asian countries (van Panhuis et al., 2015).

No approved dengue vaccine is currently available
because it is complicated to develop a DENV vaccine
causing Antibody-Dependent Enhancement (ADE) (Shukla
et al., 2020). The cross-reactive sub-neutralizing antibodies
in ADE increase the viremia levels. In ADE, non-
neutralizing antiviral protein facilitates receptor-mediated
enhanced entry into host cells to replicate the infected cells
(Billings et al., 2007; Chen et al., 2016). The higher number
of infected cells in the human body can trigger life-
threatening infections (Cabezas et al., 2018). A chimeric
dengue virus vaccine based on yellow fever has been
employed and has shown some effective results against all
four dengue serotypes. The vaccine has been evaluated in
Phase III efficacy trials (Coudeville et al., 2016). Several
other candidate vaccines are under clinical trials of phase
I–III that have been assessed for different serotype
immunity (Liu et al., 2016; Schwartz et al., 2015). Therefore,
it is necessary that a successful DENV vaccine should
produce a protective immune response against all serotypes.

Before the approval of clinical vaccine and its production,
the development of an early diagnostic system plays a vital
role in reducing the DENV infection fatality rate. Dengue is
a pyretic disease that causes fever in human body.
Therefore, it is essential to provide a differential diagnostic
system between dengue infection and other pyretic diseases
(Beltrán-Silva et al., 2018). The wrong diagnosis is also risky
for patient health and further treatment (Tchuandom et al.,
2019). The incorrect diagnosis of the fever could lead to
misleading results as malaria or pneumonia, which can
cause ineffective and expensive overtreatment (Chong et al.,
2017). Recently the increase in dengue virus infection
among various countries has led to developing a rapid and
miniaturized point-of-care (POC) test for dengue diagnosis
(Jain et al., 2021). The POC tests are essential, especially in
remote areas with limited resource settings, where the highly
cost diagnostic tests are not possible to perform (Hussain
et al., 2020a; Hussain et al., 2020b; Hussain et al., 2020c)
(Eivazzadeh-Keihan et al., 2020). The development of
dengue diagnostic tools is improving with the advancement
in micro- and nanofabrication bioelectronic devices. Many
studies are being performed, and some are under the clinical

trial phases for the development of diagnostic prototypes
(Nazemi et al., 2019).

The antigen-based assays have been proven to be useful
for the detection of the dengue NS1 protein. The diagnosis
of the dengue virus is dependent on the phase of infection.
In recent years, lateral flow or immunochromatographic
strip tests have been successfully developed in developing
countries because its sample preparation is not complicated.
These devices can be manufactured at low costs and reliable
diagnosis without any use of electronic devices. However,
there are some disadvantages associated with LFAs
including complicated steps, time consuming, and requires
skilled operator. Although LFAs are known as POCT
methods but various existing LFAs lack sensitivity (Chen
et al., 2018). Therefore, researchers are trying to find a
suitable solution for creating rapid point-of-care (POC)
diagnostic devices to detect DENV markers at various
DENV infection levels. The given review article focuses on
different established and latest technologies for detecting
DENV infection, including emerging diagnostic tools (Tab. 1).

Virus Isolation
The conventional methodologies for DENV infection
detection include virus isolation, virus RNA or antigen
detection, and serological tests. Virus isolation and culture
are regarded as the standard gold method for virus
detection. Virus isolation is a very specific and reliable
method for viral infection diagnosis. The detection of a
virus by an isolation method requires a culturing technique,
a very lengthy process that needs a week or more for
completion. The culturing of the sample requires specialized
laboratory equipment and a skilled person. However,
isolation requires high-level equipment and technical skills.
The virus culturing process is time-consuming to grow
dengue viruses on cell lines that take a lot of time, from 7 to
10 days. The culturing method is more conventional and
less sensitive (Kumarasamy et al., 2007; Wasik et al., 2017).

Serological Tests
DENV diagnostic devices must diagnose the infection at an
early stage. These methods must be designed specifically to
detect the DENV antigen or antibodies. The dengue virus
detection is dependent on the initial infection caused by the
virus. The response of dengue virus causes the initial
infection that replicates the virus and infects immune,
dendritic, and endothelial cells. The rapid replication
exhibits peak viremia and leads to the onset of symptoms.
The required serological tests to be performed are
dependent on the dynamics of infection, whether the
infection is primary or secondary. The presence of dengue
non-structural protein 1 (NS1) antigen signifies the acute-
phase infection with the dengue virus. The dengue virus and
its associated components such as RNA or NSI antigens are
detectable in serum, plasma, blood cells, and infected tissues
within 1–2 days following infection up to 9 days with
symptoms appearance (Flipse et al., 2016; St. John and
Rathore, 2019). The serological tests can be performed
during the viremic phase for the early serotype identification
of the virus. The diagnosis is based on detecting the host
immune response caused by dengue infection. The
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serological reaction patterns are different for primary and
secondary infections, as illustrated in Fig. 1 (Hunsperger
et al., 2016; Shan et al., 2017). In acute phase dengue
infection, NS1 concentration has been estimated within the
range of 0.04–2 µg/mL for primary infection, while for
secondary infection within the range of 0.01–2 µg/mL
(Alcon et al., 2002). The immune system develops the IgM
antibodies to fight antigens after the primary infection.
Therefore, the presence of IgM signifies the occurrence
of recent viral infection (Cárdenas-Perea et al., 2020;

Halstead and Dans, 2019). Clinically, different serological
detection methods are used to detect anti-dengue
immunoglobulin M (IgM). The IgM can be detected for 5 or
more days after the appearance of symptoms in infected
patients, with high-level detection at 2 weeks post-infection
and declined to undetectable levels within 2–3 months
(Caraballo et al., 2020; Waickman et al., 2020). The IgM level
could lead to false-positive results unless the consecutive
samples were tested. The cross-reactivity of anti-dengue IgM
with other flaviviruses can affect the virus detection results.

TABLE 1

Laboratory diagnostic methods for dengue infection

Platform type Advantages Disadvantages Biomarkers

Virus Isolation Confirmation test
Specific
Serotyping

Require laboratory equipment
Skilled person
Time taking

Virus

Serological Tests Easy
Rapid testing (4–6 h)
Economical

Expensive
Cross-reactivity causes false-positive

NS1, IgG or IgM

Molecular Assays Confirmation test
Rapid testing (24–48 h)
Serotyping
High sensitivity
High specificity

Sample contamination
Complicated equipment

RNA

Quartz Crystal Microbalance Label free
Easy
Inexpensive
High sensitivity

Interaction of external noise
Air fluctuations affect
Contamination

NS1,
E-protein, viral genome

Surface Plasmon Resonance Label free
Less sample require
High sensitivity
High throughput

Bulky apparatus IgM,
viral protein (NS1)

Electrochemical Impedance Spectroscopy Label free
Easy
Inexpensive

Time taking
Less sensitivity

Virus, oligonucleotide

Lateral flow assay Rapid (15–20 min)
Easy
Inexpensive

False-positive due to cross-reactivity
Less sensitivity
Less specificity

NS1, IgG or IgM

FIGURE 1. The progression of
dengue virus, NS1 antigen, and
IgM/IgG for a primary and
secondary infection.
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The diagnosis of dengue virus at an initial 5–8 days of the
viremic period for a dengue patient can only be made using
PCR. The early diagnosis of dengue virus is crucial for
proper clinical treatments. Dengue-specific IgG appears at
the end of the first week with low titers and increases slowly
by a further titer increase. However, IgG is the long-term
response of the body that can be detectable over several
months to several decades, which complicates the
serodiagnosis of current and past infections (Coarsey et al.,
2019; Jang et al., 2019; Nascimento et al., 2018; Ortega et al.,
2016). Indeed, serological tests can be affected by cross-
reactivity issues in areas where multiple Flavivirus are
circulating. However, the risk of false-positive results can be
reduced when IgM/IgG testing is paired with NS1 antigen
(Muller et al., 2017).

Serological assays are widely used to diagnose DENV
infections because they are cost-effective and easy to operate.
A magnetic immunoconjugate nanoplatform developed for
easy colorimetric detection of the NS1 protein of dengue
virus using infected serum (Maleki et al., 2020; Ramírez-
Navarro et al., 2020). There are various serological kits
available for detecting anti-DENV-specific immunoglobulin
M (IgM) and immunoglobulin G (IgG) antibodies. The IgM
antibodies can be detectable in plasma, saliva, and whole
blood samples but cannot be detected in urine (Chien et al.,
2018; Lai et al., 2019; Lee et al., 2019). An antigen-capturing
anti-DENV IgA (ACA) ELISA can diagnose the DENV using
saliva in an assay. The detection of primary dengue infection
gives the sensitivity above 36%. Whereas the secondary
infection detection showed a significant value with 100%
sensitivity (Yap et al., 2011). ACA-ELISA provides an
economical platform for performing rapid tests without
intruding samples. A Colorimetric ELISA is based on optical
sensing and measuring the absorbance of light. The detection
results showed a 95% sensitivity and 100% specificity when
compared with commercially available ELISA. The method is
automated, rapid, and can be performed at resource-limited
settings (Thiha and Ibrahim, 2015). Zhang et al. (2014) has
performed the NS1-based dengue diagnostic tests by using
various ELISA kits. The resulted sensitivities and specificities
of techniques are; Panbio Dengue Early ELISA Kit (63% and
99%), NS1 Ag ELISA Kit (71% and 91%), and Platelia
Dengue NS1 Ag-ELISA Kit (69% and 99%). However, the
detailed analysis shows that Dengue NS1 Ag STRIP Kit is
more suitable for identifying and discriminating against
DENV serotypes.

The ELISA and other serological tests are comparatively
economical and easy to do tests compared to virus isolation
and other methods. There are also some drawbacks associated
with ELISA tests as cross-reactivity with other flaviviruses.
Moreover, the efficiency of the serological tests depends on the
level of infection. However, the current commercially available
NS1 antigen detection kits cannot differentiate the serotypes of
DENV, and results can be affected by the presence of previous
virus-IgG immunocomplexes (Abe et al., 2020; Alejo-Cancho
et al., 2020; Kathiresan et al., 2017).

Molecular Assays
The molecular methods based on reverse transcription-
polymerase chain reaction (RT-PCR) are the latest standard

methods for detecting virus RNA, over the conventional
virus isolation. Several methods have been developed to
amplify and detect the dengue serotypes in serum samples
(Eivazzadeh-Keihan et al., 2019). The quantitative reverse
transcription-polymerase chain reaction (Q-RT-PCR or
Q-PCR) is a rapid and sensitive assay to identify four
dengue serotypes using a clinical sample. However, the
testing results show some complications when all or some
serotypes were present in a single sample (Sadon et al.,
2008). RT-PCR has shown promising results for detecting
dengue virus in blood, saliva, and urine samples. RT-PCR is
more feasible to perform when the blood sample is not
enough or complicated to acquire, such as infants and
patients with hemorrhagic syndromes (Poloni et al., 2010).
The paper-based device that works with RT-LAMP (reverse
transcription loop-mediated) was developed for detecting
DENV-2 RNA in a buffer system. The amplified dengue
virus using RT-LAMP can be detected with a concentration
of 60 PFU/mL (Lo et al., 2012).

The multiplex reverse transcriptase-PCR (rRT-PCR) is
more sensitive to quantifying the dengue serotypes by
quantifying viral RNA compared with real-time PCR
methods (Waggoner et al., 2013). The clinical testing was
performed using single-tube multiplex RT- PCR and two-
step nested RT-PCR to compare the output sensitivity and
serotyping. The results revealed that single-tube multiplex
RT-PCR is more promising for dengue detection and
distinguishing serotypes (Mishra et al., 2011). Lai et al.
(2007) have developed a rapid RT-PCR for DENV RNA
detection utilizing SYBR Green I as the evaluation dye. The
given method only detects the small number of samples
because of the requirement of a pair of generic primers and
four pairs of serotype-specific primers. The number of
samples can be processed at the same time for serotyping.
Similarly, the fluorogenic probes have been used in real-time
assays to determine the dengue serotypes.

The current commercial diagnostic methods are
expensive, require trained personnel, and not feasible to
move to impoverished areas. These methods provide rapid
detection, distinguish serotype, be highly sensitive, and be
used for reproducible diagnosis for dengue. However, the
detection sensitivity varies among serotypes. Limitations in
PCR detection involve expensive instrumentation, the
requirement of temperature-controlled conditions, and a
highly-skilled operator. These methods can easily
contaminate the sample and require a complex laboratory
setup (Lardo et al., 2016; Luan et al., 2016).

Quartz Crystal Microbalance (QCM)
The QCM is an analytical tool susceptible to mass changes,
measuring nanogram to microgram level variations in mass
per unit area (Beißner et al., 2017; Torad et al., 2019). The
piezoelectric effect is an intrinsic feature of certain materials,
enabling mass detection by frequency monitoring (Speight
and Cooper, 2012). The frequency response (Δf) of
oscillations can be affected by the change in mass (Δm)
onto the electrode surface of the quartz crystal due to
molecular interactions taking place at the electrode in real-
time (Fig. 2) (Lim et al., 2020; Neumann et al., 2018; Park
and Lee, 2018; Thies et al., 2017). The QCM device is
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label-free and mass-sensitive over the other transducer devices.
A circulating-flow QCM was developed by combining the
oligonucleotide-functionalized gold nanoparticles with target
sequence of DENV genome. The established method was able
to detect dengue RNA from the serum. The acquired linear
correlation was 0.987 with virus titration between 2–2 × 106

PFU/mL. The method is more sensitive, rapid, label-free, and
does not require an expensive setup (Chen et al., 2009).
Another piezoelectric sensor was developed by coating
bacterial cellulose film for linking the monoclonal
immunoglobulin G (IgGNS1), which will detect the NS1
protein of DENV. The device can detect the NS1 protein in
the serumwithin the range of 0.01–10 µg/mL (Pirich et al., 2017).

Molecularly imprinted polymers (MIPs) are the
biomimetic materials created to sense the specified target
species. MIPs have been developed for targeting the dengue
virus. MIP-based QCM sensors are used to detect the
variation that occurs due to biological interaction of MIPs
with dengue virus. The copolymer of methacrylic acid
(MAA) and vinyl pyrrolidone (NVP) was optimized and
cross-linked with ethylene glycol dimethacrylate (EGDMA)
for creating MIPs for dengue virus. The QCM was coated
with acquired MIPs to get the DENV detection
measurements. The acquired linear correlation was 0.9959
for the target DENV. The research results indicate the
possibility of future development of DENV biosensors using
low-cost MIP (Lieberzeit et al., 2016). Another MIP has
been developed using screen-printed carbon electrode
modified with electrospun nanofibers of polysulfone. The
fabricated material was coated with dopamine using NS1.
The sensor showed linear response from 1–200 ng/mL
with minimum selectivity of 0.3 ng/mL (Arshad et al.,
2020; Maleki, 2018). Tai et al. (2006) developed artificial
receptors by coating QCM with MIPs specific for NS1.
The acquired correlation of QCM response and ELISA
result was 0.73.

Zainuddin et al. (2019) had developed a portable QCM
device that connects with open-source software and
hardware platform (OpenQCM). The system had achieved a

low limit of detection of 10 ng/mL, and the DENV
identification test can be performed within 30 min. These
results signify POC device development with rapid and
accurate dengue detection in resource-limited settings.
QCM aptasensor was fabricated by thiolated aptamer
immobilized on a gold electrode. Whereas aptamers are
short nucleic acid sequences for binding a specific target
molecule. Aptamers are used in biosensors as a
biorecognition element (Eivazzadeh-Keihan et al., 2018;
Iliuk et al., 2011). The sensor targets the available genome
sequence of the DENV. Further, the surface plasmon
resonance (SPR) was used to determine the molecular
interaction of the virus with material. The QCM aptasensor
can target the dengue genome within the range of 20–100
mg/mL (Sianghio et al., 2020). Another method was
developed by using the DENV RNA obtained from
mosquitos infected by dengue. The silver nanocluster
strands were created by DNA acquired by DENV RNA to
probe hybridization that can be visualized under UV light.
The specific DENV DNA sequence produced a strong
fluorescence upon the DNA hybridization kinetics. The
DNA detection probe utilizes silver nanoclusters formation
after target assisted isothermal exponential amplification for
the detection of dengue. The method provided lower
detection limits with 100 nM of amplified target DNA of
DENV, with higher fluorescence intensity (Chan et al.,
2018). The fabricated DNA-QCM system utilizes sample
pretreatment and DENV RNA extraction that makes the
system very sensitive. The Nanoscale Optofluidic Sensor
Arrays (NOSAs) were designed for Dengue virus detection.
NOSAs use optical resonant devices, and their resonance
wavelength shifted due to variation in the refractive
index. The combination of a surface-bound molecule and its
liquid phase target variates the refractive index. The
device shows a refractive index sensitivity of 130 nm
(Mandal and Erickson, 2008).

The advantages of QCM renders interesting for POC
technology in early diagnosis of diseases. The QCM
technique for DENV detection has several clinical and
commercial benefits, e.g., economical production, rapid
diagnosing, label-free, and easy to operate. Several
disadvantages include long operation time, non-specific
antigen recognition, natural antibody interactions, expensive
and complicated equipment, sample preparation, and
required dilution for complex samples (serum, blood, or
urine) (Cai et al., 2018; Hong et al., 2017; Pohanka, 2020).
The QCM devices cannot be operated in an open
environment due to the requirement of controlled
conditions. The possible interactions of external noise, air
fluctuations, and contamination can affect the results and
produce wrong results.

Surface Plasmon Resonance (SPR)
SPR is an optical technique that provides a label-free and
highly specific detection of biomolecular interactions in real-
time. The SPR detects the change in refractive index when
the molecular interaction occurs between antigen and
antibody. (Firdous et al., 2018; Hossain and Rana, 2016).
The SPR applications have been employed for the rapid
identification of DENV.

FIGURE 2. Principle of detection in QCM-based immunosensor.
The variation in frequency response of the biosensor at two
different phases: (I) QCM crystal with immobilized antibody
receptor; (II) binding of target molecules to the receptors.
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Loureiro et al. (2017) proposed a simplified immunoassay
for the rapid diagnosis of DENV serotypes. The immunoassay
consists of four layers; the first layer is a gold thin film, the
second layer is a Biotin film with sulfur. The third layer is
composed of Neutravidin (NA), and the fourth layer is a
Biotin mediated antibody attachment. The given approach
has low-cost production and uses disposable polymer biochip.
The outcomes did not show any false positive results for
negative test control samples. The acquired limit of detection
was approximately 2 × 104 viral particles per mm. An
ultrasensitive signal transducer has been developed for DENV
RNA using localized surface plasmon resonance. The
biosensor was fabricated by conjugating alloyed shell
quantum dots with gold nanoparticles. The biosensor can
detect the nucleic acids of DENV1-DENV4 with high
sensitivity and limit detection of 31–260 copies per mL for all
serotypes (Adegoke and Park, 2017).

Austin Suthanthiraraj and Sen (2019) have developed the
Localized surface plasmon resonance (LSPR) biosensor using
silver nanostructures to detect dengue NS1 antigens. The
detection test can be performed within 30 min using 10 µL
whole blood sample. The reported biosensor has detection
reliability of 0.06 µg/mL within the range of clinical detection
limit. The SPR optical sensor has been developed by
fabricating immobilized monoclonal antibodies on the
modified gold thin film. The interaction of DENV E-protein
with fabricated film generated the SPR signal, used for the
DENV detection. The dengue detection concentration values
lie between 0.0001 nM and 10 nM. There is a linear
relationship between the shift in SPR angle and DENV
E-protein concentration up to 0.01 nM. Further studies are
required to improve the sensitivity and selectivity for
detecting DENV in the early stage (Omar et al., 2018). The

change in SPR shift for the PBS solution (without sample)
and different concentrations of analyte give a difference in
resonance angles that signifies the correct detection of DENV
(Fig. 3) (Chen et al., 2016; Omar et al., 2020). Another
optical biosensor has been developed for the rapid and
qualitative detection of the DENV. The biosensor was
fabricated by the combination of graphene-based material
with surface plasmon resonance technique. The results
depict that the sensor can detect the DENV from 0.1 pM
to 100 pM (Omar et al., 2019). Another biosensor has been
reported for the detection and serotyping of dengue virus.
The biosensor was fabricated by using characterized
quantum dots and gold nanoparticles. Four distinct probes
were designed to distinguish the dengue serotypes. The
biosensor can detect the target dengue virus RNA with
virus dilutions from 10−15 to 10−10 M. The device has the
limit of detection within the range of femtomolar, 24.6,
11.4, 39.8, and 39.7 fM for DENV-1 to DENV-4,
respectively (Chowdhury et al., 2020).

SPR has several advantages over conventional methods
because they are economical, label-free, real-time detection,
easy sample preparation, high throughput, and higher
sensitivity (Bai et al., 2019; Wu et al., 2018). The use of
nanoparticles for SPR makes the detection process possible
in resource limited settings and outside laboratories. The
drawback associated with SPR is the nonspecific binding
that reduces accuracy. The conventional SPR devices require
expensive apparatus, complex optical modules, and accurate
arrangement of the constituents (Zhang et al., 2019).

Electrochemical Impedance Spectroscopy (EIS)
EIS-based biosensors evaluate the change in electrical
impedance spectrum acquired by interactions of biomarkers

FIGURE 3. Schematic diagram of the
surface plasmon resonance setup
with description of the SPR curve
and the change in resonance angle
(Omar et al., 2020a).
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with biorecognition receptors. The device is composed of
miniaturized electronic components that have advantages
over the transduction schemes. Each reaction process in EIS
represented by an electrical circuit containing resistance,
capacitors, and combination of these elements in series or
parallel. EIS monitors faradaic and non-faradaic processes in
the interface between the electrode and solution. The
Faradaic Electrochemical Impedance Spectroscopy (f-EIS)
detect biorecognition events occur at the working electrode
by measuring the change in current. Whereas the non-
faradaic Electrochemical Impedance Spectroscopy (nf-EIS),
the process take place at working electrode without any
charge transfer (Bahadır and Sezgintürk, 2016). The output
result shows high sensitivity with low power consumption
and lower production cost. The technique works without
using optical components (Sacco, 2017; Siuzdak et al., 2019).
The adsorption and desorption of analytes change the
resistance value by charge transfer at the surface of electrode.

Biomedical devices are required antifouling surfaces to
avoid non-specific interactions of proteins or cells. A label-
free electrochemical assay was developed with the
antifouling component for dual detection of NS1 and IgG
using a redox capacitive transducer. A low fouling
component (PEG) has been used to avoid non-specific
interactions. The NS1 detection results showed linear range
of target concentration from 5–1000 ng/mL with LOD of
1.2 ng/mL. Whereas the IgG detection showed a linear
range of 1–1000 ng/mL with LOD of 231 pg/mL (Santos et
al., 2018). A label-free immunosensor was developed based
on a recordable compact disk (CD-trode) to detect the
dengue virus. The biosensor was characterized by cyclic
voltammetry and electrochemical impedance spectroscopy
using anti-NS1. The results showed a linear response from
1 to 100 ng/mL of NS1 with a detection limit of 0.33 ng/mL
(Cavalcanti et al., 2012). Another work has been reported
for the detection of protein NS1 using an electrochemical
immunosensor based on antibody-nanoparticle. The
immunosensor provides a wide range of detection from 5 to
4000 ng/mL and coefficient of determination (R2) of 0.94.
An alumina membrane has been fabricated using an
electrochemical setup for the detection of dengue infection.
The device showed good limit of detection for DENV 2 and
DENV 3 with 0.230 PFU/mL and 0.710 PFU/mL values.
The detection time is about 40 min with higher sensitivity.
The given technique can be useful for developing disposable
testing kits at clinical level. But the given method requires
further investigation towards the detection of DENV 1 and
DENV 4 viruses (Peh and Li, 2013).

An impedimetric transducer was successfully developed
for detecting DENV anti-NS1. The transducer fabrication is
based on the specific non-Structural Protein 1 (rNS1)
antibodies immobilized over poly (4-aminobenzoic acid)-
modified screen-printed electrodes. The proposed work uses
a small concentration of rNS1 antigen (0.1 ng/mL) with a
serum dilution of 1:1280 (Santos et al., 2020). EIS has been
used in many applications for diagnosing DENV as a POC
device. One of the EIS biosensors was developed by gold
electrode immobilized concanavalin-A (ConA) for probing
glycoprotein patterns in blood during dengue. The binding
of ConA lectin and DENV positive test sample causes an

increase in the electron transfer resistance (Oliveira et al.,
2009). An impedimetric label-free immunosensor was
developed by an anti-NS1 modified gold electrode for the
detection of NS1. The immunosensor can acquire NS1 in
PBS with LOD of 3 ng/mL, whereas the LOD of 30 ng/mL
was recorded in serum samples (Cecchetto et al., 2015).

Overall, the biosensors based on electrochemical
impedance spectroscopy can detect the antigens from the
actual serum specimens with higher sensitivity and
selectivity. These immunosensors also provide a wide range
of detection, label-free detection with low cost and
operational simplicity. The issues associated with EIS
biosensors include complex experimental setup and the
output results affected with specified virus samples from the
heterogeneous mixture.

Lateral Flow Assay (LFA)
In the early 1980s, with the breakthrough of home pregnancy
tests, the lateral flow assays LFAs have found a wide range of
applications related to human health, food quality control,
and environmental studies (Farka et al., 2020; Kuswandi,
2020). LFA technique is based on the biochemical bindings of
antigen-antibody or probe DNA-target DNA hybridization.
The standard LFA has four parts: a sample pad, on which the
sample is dropped; conjugate pad, on which the labeled tags
combined with biorecognition elements; reaction membrane
that contains test line and control line for target DNA-probe
DNA hybridization or antigen- antibody interaction; and
absorbent pad that reserves waste as demonstrated in Fig. 4
(Bahadır and Sezgintürk, 2016; Chen et al., 2018). After
dropping the sample onto the sample pad, it flows toward the
conjugate pad and then through the nitrocellulose membrane.
First, the target anti-DENV IgG and non-specific IgG of the
sample bind to the labelled antibodies in the conjugate pad.
The target complexes are intercepted as the target-labeled
molecule complexes flow by the test line. The fluorescence-
labeled non-specific IgG complexes flow across the control
line and are linked with antibodies. Finally, the intensity of
fluorescence was recorded based on the technique, and the
results were intercepted accordingly (Chen et al., 2018;
Bahadır and Sezgintürk, 2016).

Kumar et al. (2018) reported the tapered lateral
flow immunoassay for the DENV detection with a testing
time of 10 min. The results showed rapid testing with a
detection limit of 4.9 ng/mL. However, the lower sensitivity of
the device limits the usage for clinical applications. A point-of-
care testing methodology has been developed by recombinase-
aided amplification and lateral-flow dipsticks to detect DENV
rapidly. The detection test was performed by incubating the
testing unit at 37°C for 20 min. The acquired limit of detection
was 10 copies/μL, the sensitivity was 98.2%, and specificity was
100% (Xiong et al., 2020).

Currently, there are several commercial immuno-
chromatographic assays available for DENV diagnosis,
including the Dengue NS1 Ag Strip (Bio-Rad Laboratories,
France), MAC-ELISA (PanBio Diagnostics, Australia), and
Dengue Eden Test Bioeasy (Standard Diagnosis, Korea).
Various studies showed that commercially available kits have
good sensitivity and specificity for diagnosing DENV. These
available kits are easy to use and not expensive. BIOEASY can
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detect the DENV by using blood, plasma, and serum samples,
without any chemical characterization or adding buffer. The
testing will require only sample pipette. BIORAD requires
human plasma and serum samples for testing DENV. Whereas
the PANBIO can detect the DENV by using serum samples
only. Therefore, BIORAD and PANBIO testing kits require
sample centrifugation, additional buffering materials, and
reagents. Hence, these two testing kits require more time and
cost. The tested sensitivities for detecting DENV by BIOEASY,
BIORAD and PANBIO 94.03%, 91.04% and 88.06%,
respectively (Ferraz et al., 2013). Mat Jusoh and Shueb (2017)
have performed the performance evaluation for the
commercially available kits to detect dengue virus. The
sensitivities evaluated from the SD BIOLINE Dengue Duo
(Standard Diagnostics Inc., Korea) and ProDetect Dengue Duo
(Mediven) are 88.9% and 94.4%, respectively. The overall
sensitivity and specificity results from five different LFAs are
presented in Tab. 2.

Future Perspectives and Electrical Biosensors Technologies
The rapid detection of acute dengue virus infection is essential
for its treatment and patient surveillance. Laboratory
diagnosis is not feasible in resource-limited settings,
including many dengue-endemic regions. The POC
diagnosis test must fulfill WHO’s ASSURED criteria that
summarize affordable, sensitive, specific, user-friendly, rapid
and robust, equipment-free, and deliverable to those in need
(Bauer et al., 2017; Jacobsson et al., 2018). The necessity for

quick and miniaturized POC tests for dengue virus
detection has created many methods as an alternative to
heavy lab instruments.

A sensor tip based on carbon nanotube-screen printed
electrode was developed for dengue virus NS1 protein. The
amperometric responses were generated with an applied
potential of −0.5 V vs. Ag/AgCl. The acquired results
showed a LOD of 12 ng/mL (Dias et al., 2013). A separative
extended gate field-effect transistor (SEGFET) has been
designed for label-free detection of NS1. The Au electrodes
were developed with anti-dengue NS1 antibodies and
attached to the gate of MOSFET to create a SEGFET. The
detection range for the recognition of NS1 is from 0.25 to
5.0 µg/mL (Vieira et al., 2014). The fluidic-based memristor
sensor was used for dengue virus detection. The sensor was
fabricated using the sol-gel spin coating technique and
characterized chemically with an anti-dengue virus NS1
glycoprotein monoclonal antibody. The voltage-current
(V-I) curve and characteristics were studied between the
antibody-bound sensor surface with and without the viral
protein. The results showed a sensitivity of 6.53 × 10-3 nM-1

and limit of detection of 5.02 nm/nM based on fluidic-based
characteristics. The output results are based on the change
in electrical conductivity due to specific binding between the
dengue virus antibody and NS1 glycoprotein of DENV
(Hadis et al., 2017). The label-free DENV identification
method has been developed by functionalized tampered
optical fiber sensor and complimentary recombinant

FIGURE 4. The schematic
representation and analytical
mechanism of the LFA strip.

TABLE 2

Sensitivity and specificity of commercial LFAs for dengue NS1 detection in patient sera

Test

Sensitivity Specificity

Samples Outcomes Samples Outcomes

PRODETECT 36 34 (94.4%) 50 48 (96.0%)

SD BIOLINE 36 32 (88.9%) 50 50 (100.0%)

BIOEASY 67 63 (94.03%) 10 10 (100%)

BIORAD 67 61 (91.04%) 10 10 (100%)

PANBIO 67 59 (88.06%) 10 10 (100%)
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antibodies. The detection principle is dependent on the
interaction of waves, and the surface of tapered fiber,
the change in frequency wavelength occurs due to the
presence of the virus at the surface. The tapered fiber is
immobilized with DENV II E-specific antibodies. After
placing the DENV II E proteins, they bound with DENV
II antibodies. The change in surface characteristics of
tapered fiber due to DENV II E proteins tends to variate
the frequency wavelength. The basic prototype was
developed for experimentation and recording the
wavelength variation from sample using a biosensor based
on tapered fiber. The acquired sensitivity of 5.02 nm/nM
and detection limit value of 1 pM was recorded (Mustapha
Kamil et al., 2018). The loop-mediated isothermal
amplification (LAMP) method has been used for
developing a portable device for early detection of dengue
virus. The device can detect 16 viral infection species by
observing fluorescence intensity (Kimura et al., 2019).
Another portable device was fabricated based on reverse-
transcription loop-mediated isothermal amplification
(RT-LAMP) and microfluidic platform for the simultaneous
detection of zika, chikungunya, and dengue virus. The given
POC device uses a commercial smartphone for acquiring
real-time images of the amplification reaction, and a visual
picture displays the read-out of the assay. The acquired limit
of detection was 1.56 × 105 PFU/mL from the sample of
whole blood. Cecchetto et al. proposed the serological POC
and label-free capacitors diagnosis of DENV. The device
works on the principle of variation in electrochemical
capacitance to detect NS1 DENV biomarkers from the serum
samples. The ferrocene-tagged peptide modified surface with
anti-NS1 was used as a receptor. This strategy successfully
differentiated positive control samples from a negative sample
with P < 0.01 (Cecchetto et al., 2020).

Conclusion

The rapid detection of dengue virus is essential at an early
stage due to the unavailability of treatment and any reliable
vaccine for dengue infection. The current DENV diagnostic
tools are virus isolation, ELISA, and RT-PCR. Although
these methods provide high accuracy in dengue diagnosis,
they are time-consuming, expensive, and require skilled
operators to perform detection tests. The commercially
available antigen-based assays have been proven to be useful
for the detection of the dengue NS1 protein. These assays
provide rapid detection, user-friendly, and provides reliable
diagnosis without use of any complicated devices. POC
devices are desirable for DENV identification because it
involves a single sample test with ‘ready-to-use’ reagents
without laboratory vials and equipment. These instruments
are compact, and unskilled person can perform the test at or
near the POC. Therefore, the need for POC devices is
significant, because of low-cost testing and short testing
time. The current research is going on several latest
techniques, and recent publications revealed much better
identification results. Still, these techniques are in the
research phase that requires clinical validation and need
approval for human trials.
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