
BET protein inhibitor apabetalone represses Porphyromonas
gingivalis LPS-induced macrophage M1 polarization via regulating
miR-130a/STAT3 axis
MEIHUA CHEN1,2; HUIHUI WANG3; XIAOFENG CHEN1,2; YAN CHEN1,2; TIANYING BIAN1,2,*

1
Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China

2
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China

3
Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China

Key words: Periodontitis, Macrophage polarization, Porphyromonas gingivalis, BET inhibitor, miRNA

Abstract: Periodontitis is a frequent chronic inflammatory disorder destroying periodontium. Recent studies have

revealed the role of bromodomain and extraterminal domain inhibitor (BETi) and microRNA (miR)-130a in

regulating macrophage polarization and pro-inflammatory response. However, little is known about whether

apabetalone (a novel BETi) and miR-130a are correlated with chronic inflammatory state in periodontitis by

regulating macrophage polarization. Here murine RAW264.7 macrophages were applied as an in vitro inflammatory

model. After treatment with Porphyromonas gingivalis-derived lipopolysaccharide (Pg LPS) and apabetalone, the

expression of macrophage M1 polarization markers and inflammatory cytokines was assessed using real-time PCR,

western blot, and enzyme-linked immuno sorbent assay (ELISA). MiR-130a level was assessed using real-time PCR,

and the target gene was identified using dual luciferase reporter assay. We demonstrated that apabetalone repressed

Pg LPS-induced macrophage M1 polarization in a dose-dependent manner, as evidenced by decreased expression of

inducible nitric oxide synthase (iNOS), CD86, and pro-inflammatory cytokines, and increased expression of Arg-1

and CD206. Mechanistically, Pg LPS increased miR-130a expression in macrophages, whereas apabetalone treatment

repressed the effect. Functionally, forced expression of miR-130a promoted macrophage M1 polarization, and signal

transducer and activator of transcription (STAT)-3 was the direct target gene of miR-130a in the process. Taken

together, apabetalone decreases Pg LPS-induced macrophage M1 polarization via regulating miR-130a-3p/STAT3 axis,

and may be a promising target for the clinical management of periodontitis.

Introduction

Periodontitis is a highly prevalent oral disease characterized
by low-grade inflammation (Nazir, 2017). Periodontitis is
caused by constant periodontopathic bacterial (e.g.,
Porphyromonas gingivalis) infection, and eventually leads to
chronic inflammation-induced tissue destruction and bone
loss (Chen et al., 2021; Papapanou et al., 2018). The local
inflammation in oral mucosa is epidemiologically correlated
with other inflammation-triggering diseases such as
neurodegenerative, autoimmune and cardio-metabolic
diseases (Hamza et al., 2021; Makkar et al., 2018).

Macrophages are activated by recognizing pathogen (or
damage)-associated molecular patterns through pattern-
recognition receptors (Luan et al., 2021a; Takeuchi and
Akira, 2010). Once activation, macrophage can trigger
appropriate or pathogenic inflammatory response (Chen
et al., 2021). Macrophages display phenotypic plasticity and
functional heterogeneity in response to different
environmental signals (Hussell and Bell, 2014). This
capacity enables macrophages to orchestrate specific
immune response to distinct pathogens. Macrophages are
often divided into two subpopulations: classically activated
macrophages (M1) and alternatively activated macrophages
(M2). M1 macrophages secrete pro-inflammatory cytokines
such as interleukin (IL)-6, IL-1β, tumor necrosis factor
(TNF)-α and IL-12, etc. (Arora et al., 2018). Macrophages
are polarized to M2 phenotype after stimulation with IL-4,
IL-10 and IL-13, and generate anti-inflammatory factors
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including IL-10, IL-4, etc. (Kopf et al., 2015; Murray et al.,
2014). In periodontitis, Pg LPS converts macrophages to M1
phenotype to trigger inflammatory response, thus driving
these macrophages to M2 macrophages is an effective
treatment to inhibit inflammation-induced tissue
destruction and bone loss.

MicroRNAs (miRNAs) are a class of approximately
21-nucleotide non-coding RNAs and involve in multiple
physiological and pathological processes (Miranda et al.,
2006; Wu et al., 2021). Given that miRNAs are able to
regulate multiple target genes in different biological processes
(Selbach et al., 2008), the involvement of miRNAs in
macrophage-polarization is interesting. Recent studies also
showed that a great deal of miRNAs participate in the fine-
tuning regulation of immune responses (Li et al., 2021; Wang
et al., 2021). For example, miR-223 is necessary for
macrophage M2 polarization and downregulated miR-223 in
septic patients converts macrophages to M1 phenotype (Ying
et al., 2015). Periodontal miR-125a-5p level is increased and
the miRNA contributes to bone healing through facilitating
macrophage M2 polarization (He et al., 2021).

The bromodomain and extra-terminal (BET) proteins
are a kind of epigenetic adaptors and exert an important
role in cell proliferation, neurological disorders, and
inflammation (Cochran et al., 2019). Previous studies
showed that BET inhibitor (BETi), I-BET151 and JQ1,
represses excessive secretion of pro-inflammatory cytokines
in gingival fibroblasts and epithelial cells from periodontitis
patients (Maksylewicz et al., 2019). Apabetalone, a novel
BETi, is undergoing phase III clinical trials in patients with
high-risk cardiovascular disease (CVD). Apabetalone also
exhibits an anti-inflammatory effect in CVD patients
(Jahagirdar et al., 2014; Tsujikawa et al., 2019). Based on the
above findings, we investigated the role of apabetalone in
controlling Pg LPS-induced excessive inflammatory
cytokines production in macrophages. The current study
demonstrated that apabetalone inhibits Pg LPS-induced
macrophage M1 polarization via decreasing miR-130a-3p
and thus de-repressing STAT3 expression.

Materials and Methods

Cell culture
Amurine macrophage-like cell line (RAW264.7) was obtained
from the American Type Culture Collection (ATCC, MD,
USA), and cultivated in DMEM containing 10% FBS
(Tianhang, Hangzhou, China). RAW264.7 cells were
maintained in a humidified incubator (Yiheng Instruments,
Shanghai, China) containing 5% CO2 at 37°C. Ultrapure Pg
LPS (5 µg/mL), purchased from InvivoGen (San Diego, CA,
USA), was used to treat RAW264.7 cells.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from RAW264.7 cells with TRIzol™
reagent (15596-026; ThermoFisher, MA, USA) according
to the manufacturer’s instructions. Total RNAs were
quantified using NanodropND-2000 spectrophotometer
(ThermoFisher). cDNAs were synthesized using Moloney’s
murine leukemiavirus reverse transcriptase (Thermo Fisher

Scientific) and Oligo (dT) primers in accordance with
manufacturer’s instructions (70°C for 12 min, ice bath for
2 min, and then 42�C for 60 min). Reverse transcription
PCR (RT-PCR) for miR-130a was performed with special
stem-loop RT primers. qRT-PCR was carried out using
cDNA template and Light Cycler 480 SYBR Green I Master
(Roche, Basel, Switzerland) on ABI 7500 qRT-PCR System
(Thermo Fisher Scientific). The temperature protocol for
qRT-PCR was 95°C for 20 min, followed by 45 cycles of 95°
C for 10 s and 58°C for 15 s. β-actin was applied as internal
control for mRNAs. U6 was applied as internal control for
miRNAs. Relative expression level of mRNAs or miRNAs
was calculated using 2(-ΔΔCT) method, as previously
described (Livak and Schmittgen, 2001). All primers used in
the study were listed in Table 1.

Western blot
RAW264.7 cells were treated with Pg LPS (5 µg/mL) for 24 h
in the presence or absence of apabetalone (2 µM, 10 µM, or
30 µM) and lysed with RIPA buffer (Beyotime, Shanghai,
China). After measuring total protein concentration with a
BCA protein assay kit (Beyotime), approximate 80 µg of
protein were segregated through SDS-PAGE gels (12%) and
then electro-transferred onto PVDF membranes (Thermo
Fisher Scientific). The membranes were blocked with 3%
bovine serum albumin and then incubated with the
indicated primary antibodies (iNOS: ab178945, 1:1000,
Abcam; CD86: ab112490, 1:1000, Abcam; Arg-1: ab239731,
1:2000, Abcam; CD206: ab64693, 1:1500, Abcam; STAT3:
ab68153, 1:1500, Abcam; beta-actin: ab8226, 1:2000, Abcam,
MA, USA) for 1 h at room temperature (RT). Then the
membranes were incubated with HRP-labelled anti-rabbit
secondary antibodies (1:6000) for 1 h at RT. Immunoblots
were visualized using a chemiluminescence assay system
(Thermo Fisher Scientific).

Enzyme linked immunosorbent assay (ELISA)
RAW264.7 cells were treated with Pg LPS (5 µg/mL) for 24 h
in the presence or absence of apabetalone (10 µM), and then
the supernatant was collected. The IL-6 and IL-1β levels in
supernatant were assessed using the indicated ELISA kits
(Mouse IL-1β ELISA Kit: MLB00C, R&D; IL-6 ELISA Kit,
M6000B, R&D). The absorbance at 450 nm was assessed on
a Varioskan LUX Multimode Microplate Reader.

Dual-luciferase reporter assay
The recombinant plasmids of pGL3-STAT3-3’UTR or pGL3-
STAT3-3’UTR-mut was constructed by inserting STAT3-
3’UTR containing predictive binding site or its mutant
(STAT3-3’UTR-mut) into pGL3 vector. RAW264.7 cells
were plated into 96-well plates. After 24 h, pGL3-STAT3-
3’UTR or pGL3-STAT3-3’UTR-mut plasmids were co-
transfected with miR-130a mimics (GenePharma, Shanghai,
China) using Advanced DNA/RNA Transfection Reagent™
(ZETA LIFE, CA, USA) in accordance with manufacturer’s
instructions. Forty-eight hours later, luciferase activity was
assessed using Dual Luciferase Reporter Assay Kit
(Beyotime). pRL-TK was applied as the internal control to
normalize luciferase activity.
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Statistical analysis
Data were presented as mean ± SD from three independent
experiments. Comparison between different treatments was
performed with GraphPad Prism (GraphPad Software, CA,
USA). The significance of differences between groups was
assessed by one-way analysis of variance followed by the
Scheffé test or Student’s t test. p < 0.05 was considered as
significant.

Results

Apabetalone repressed Pg LPS-induced macrophage M1
polarization
Although apabetalone is well known to exert a critical role in
vascular inflammation (Jahagirdar et al., 2014; Tsujikawa
et al., 2019), the role of apabetalone in regulating
macrophage polarization remains unclear. To investigate the
potential correlation between apabetalone and periodontitis,
Pg LPS-treated RAW264.7 macrophages were applied as the
in vitro inflammatory model. As shown in Fig. 1A, Pg LPS
treatment enhanced the expression of macrophage M1
polarization markers (iNOS and CD86), whereas
apabetalone repressed Pg LPS-induced up-regulation of
iNOS and CD86 in a dose-dependent manner. Western blot
analysis further showed that apabetalone inhibited Pg LPS-
induced upregulation of iNOS and CD86 protein level

(Figs. 1B and 1C). As expected, Pg LPS increased pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α)
production, whereas apabetalone treatment repressed the
effect (Figs. 1D–1F). Consistent with the above results, Pg
LPS decreased M2 polarization markers (Arg-1 and CD206)
expression, whereas apabetalone treatment restored Arg-1
and CD206 expression in Pg LPS-treated RAW264.7 cells
(Figs. 2A and 2B). The results from ELISA also showed that
apabetalone repressed Pg LPS-induced increase of pro-
inflammatory cytokines (Figs. 2C and 2D). These results
demonstrate that apabetalone suppresses Pg LPS-induced
macrophage M1 polarization.

Apabetalone repressed Pg LPS-induced miR-130a expression
Given the important role of miRNAs in periodontitis (Luan
et al., 2021b; Santonocito et al., 2021) and macrophage
polarization (Nakao et al., 2021; Tao et al., 2021), we next
investigated whether miRNAs were involved in the
regulation of macrophage polarization after Pg LPS and
apabetalone treatment. To this end, several dys-regulated
miRNAs in periodontitis (miR-155, miR-146a, miR-130a-3p,
miR-142a-3p, miR-144, miR-24-3p, miR-27b-3p, and miR-
132) (Asa’ad et al., 2020) were analyzed in Pg LPS-treated
RAW264.7 in the presence or absence of apabetalone.
Among these miRNAs, only miR-130a-3p (hereafter named
as miR-130a) was increased in RAW264.7 cells following Pg

TABLE 1

All primers used in the study

Genes Sense (5’-3’) Anti-sense (5’-3’)

iNOS CTTGGAGCGAGTTGTGGATTGT AGGTGAGGGCTTGGCTGAGT

CD86 CATAAGCCTGAGTGAGCTGGTAGT CTGAACATTGTGAAGTCGTAGAGTC

IL-1β GCACCTTCTTTTCCTTCATCTTTG AGGCTTTTTTGTTGTTCATCTCG

IL-6 ACCACTCCCAACAGACCTGTCT TTTCTCATTTCCACGATTTCCC

TNF-α TCAACCTCCTCTCTGCCGTC CGGACTCCGCAAAGTCTAAGT

miR-130a-3p mimic CAGUGCAAUGUUAAAAGGGCAU

RT-PCR for miR-130a-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCC

qPCR for miR-130a-3p CGCGCAGTGCAATGTTAAAAG GTGCAGGGTCCGAGGT

RT-PCR for miR-155 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT

qPCR for miR-155 GCCGGTTAATGCTAATCGTGAT GTGCAGGGTCCGAGGT

RT-PCR for miR-146a GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACCCA

qPCR for miR-146a GGCCGTGAGAACTGAATTCCA GTGCAGGGTCCGAGGT

RT-PCR for miR-142a GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTAGT

qPCR for miR-142a CGGCCAUAAAGUAGAAAGC GTGCAGGGTCCGAGGT

RT-PCR for miR-144 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTACA

qPCR for miR-144 CGGCTACAGTATAGATGA GTGCAGGGTCCGAGGT

RT-PCR for miR-24-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTGTTC

qPCR for miR-24-3p CGCTGGCTCAGTTCAGCAG GTGCAGGGTCCGAGGT

RT-PCR for miR-27b-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCAGAA

qPCR for miR-27b-3p CGGCTTCACAGTGGCTAAG GTGCAGGGTCCGAGGT

RT-PCR for miR-132 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGACC

qPCR for miR-132 GCCGCTAACAGTCTACAGCCAT GTGCAGGGTCCGAGGT
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FIGURE 2. Apabetalone increased the expression of macrophage M2 polarization markers. (A and B) RAW264.7 cells were treated with Pg
LPS (5 µg/mL) and apabetalone (10 µM), and western blot analysis was performed to assess Arg-1 and CD206 protein level. RAW264.7 cells
were treated with Pg LPS (5 µg/mL) and apabetalone (10 µM), and ELISA was carried out to assess IL-1β (C) and IL-6 (D) level in supernatant.
**p < 0.01.

FIGURE 1. Apabetalone repressed Pg LPS-triggered macrophage M1 polarization. (A) RAW264.7 cells were treated with Pg LPS (5 µg/mL)
and apabetalone (2 µM, 10 µM, and 30 µM), and qRT-PCR analysis was carried out to assess iNOS and CD86 mRNA level. (B and C)
RAW264.7 cells were treated with Pg LPS (5 µg/mL) and apabetalone (2 µM, 10 µM, and 30 µM), and western blot analysis was carried
out to assess iNOS and CD86 protein level. (D–F) RAW264.7 cells were treated with Pg LPS (5 µg/mL) and apabetalone (2 µM, 10 µM,
and 30 µM), and qRT-PCR analysis was carried out to assess IL-1β (D), IL-6 (E), and TNF-α (F) mRNA level. **p < 0.01.
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LPS treatment, whereas apabetalone repressed the increase
(Figs. 3A and 3B). Functionally, miR-130a overexpression
increased iNOS and CD86 expression (Fig. 3C), and
promoted pro-inflammatory cytokines production (Fig. 3D),
indicating the effect of miR-130a on facilitating macrophage
M1 polarization. More important, miR-130a inhibition
decreased Pg LPS-induced macrophage M1 polarization
(Fig. 3E). These results showed that apabetalone represses
Pg LPS-triggered macrophage M1 polarization, at least in
part by repressing miR-130a.

miR-130a facilitated macrophage M1 polarization by targeting
STAT3
To identify the potential targets of miR-130a, bioinformatical
analysis was performed with TargetScan7.1 (http://www.
targetscan.org/vert_71/). There are 1029 transcripts possibly
targeted by miR-130a. Among these transcripts, STAT3 was
selected for further validation because STAT3 is a critical
factor in regulating macrophage polarization (Ren et al.,
2021; Tian et al., 2021). To prove the prediction,
recombinant plasmids of pGL3-STAT3-3’UTR and its
mutant (pGL3-STAT3-3’UTR-mut) were constructed by
inserting STAT3-3’UTR into pGL3 vector (Fig. 4A), and co-
transfected with miR-130a into RAW264.7 cells. It has
revealed that the luciferase activity of pGL3-STAT3-3’UTR
was significantly reduced following transfection with
miR-130a, but four nucleotides mutation in STAT3-3’UTR
led to complete loss of the suppressive effect (Fig. 4B).
Furthermore, forced expression of miR-130a significantly
decreased STAT3 protein level in RAW264.7 cells

(Figs. 4C and 4D), whereas miR-130a inhibition up-
regulated STAT3 expression (Figs. 4E and 4F).

Discussion

Macrophages can polarize into different phenotypes in
response to different environmental signals. In periodontitis,
M1 macrophages initiate pro-inflammatory response and
contribute to maintain inflammatory state (Lam et al.,
2016). Therefore, driving these macrophages to M2
macrophages may be an effective treatment for inhibiting
inflammation-induced tissue destruction and bone loss. In
the current study, we demonstrated that, I) apabetalone
restrains Pg LPS-induced macrophage M1 polarization, II)
apabetalone decreases Pg LPS-triggered miR-130a
expression, III) miR-130a promotes macrophage M1
polarization by targeting STAT3, IV) apabetalone represses
Pg LPS-induced macrophage M1 polarization via regulating
miR-130a-3p/STAT3 axis. These results reveal the
important role of apabetalone in inhibiting Pg LPS-induced
macrophage M1 polarization, indicating that apabetalone
has the potential to treat periodontitis.

There are more than 700 kinds of bacteria in mouth
cavity, and Gram-negative bacteria are the major pathogens
in chronic periodontitis. Among these, Pg is regarded as the
keystone pathogen. Mounting evidence has demonstrated
that LPS derived from Porphyromonas gingivalis (Pg LPS) is
a major virulence factor in the pathology of periodontitis
through triggering periodontal inflammation (Yao et al.,
2021). Macrophage is a key regulator of innate and adaptive

FIGURE 3. Apabetalone repressed Pg LPS-induced miR-130a expression. (A) RAW264.7 cells were treated with Pg LPS (5 µg/mL) and
apabetalone (10 µM), and qRT-PCR analysis was carried out to assess the level of miR-155, miR-146a, miR-130a, miR-142a-3p, miR-144,
miR-24-3p, miR-27b-3p, and miR-132. (B) qRT-PCR analysis of miR-130a in RAW64.7 cells after treatment with Pg LPS (5 µg/mL) in the
presence or absence of apabetalone (10 µM). (C) qRT-PCR analysis of miR-130a, iNOS, and CD86 level in RAW64.7 cells after treatment with
miR-130a mimics (40 nM). (D) qRT-PCR analysis of IL-1β, IL-6, and TNF-α level in RAW64.7 cells after treatment with miR-130a mimics
(40 nM). (E) qRT-PCR analysis of miR-130a, iNOS, CD86, IL-1β, IL-6, and TNF-α level in RAW64.7 cells after treatment with miR-130a
inhibitor (40 nM). *p < 0.05. **p < 0.01.
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immune response, and exerts a critical role in regulating
periodontal homeostasis and pathogenesis (Nędzi-Góra
et al., 2017). Dysregulation of macrophage function leads to
the breakdown of periodontal homeostasis. M1 macrophage,
induced by periodontopathic bacteria or bacteria-derived
LPS, produces a large amount of inflammatory factors,
including IL-1β, IL-6, TNF-α, etc., and thus acts as an
antimicrobial function. Nevertheless, chronic and excess
inflammatory factors derived from over-activated M1
macrophage exacerbate inflammation and periodontal tissue
injury. Lam et al. (2014) has demonstrated that
macrophages depletion using clodronate-liposomes alleviates
alveolar bone loss in a murine model of periodontitis.
Viniegra et al. (2018) revealed that macrophages depletion
during onset of experimental periodontitis prevents bone
resorption.

Epigenetic mechanisms, including DNA and histone
modifications, contribute to the onset and progression of
periodontitis. In vitro studies have demonstrated the ability
of Pg LPS to stimulate epigenetic modifications associated

with DNA methylation and histone acetylation in human
periodontal ligament stem cells (Diomede et al., 2017).
Furthermore, Pg LPS can also trigger abrupt but short-lived
acetylation of histone H3 in oral epithelial cells (Martins
et al., 2016). Epigenetic therapeutics have been identified as
a promising therapeutic target for chronic periodontitis.
Effects of some small-molecular inhibitors of epigenetic
regulators in periodontitis models in vitro and in vivo are
reviewed and discussed (Jurdziński et al., 2020).

MiRNAs are able to regulate multiple genes involved in
different biological processes (Selbach et al., 2008). For
example, miR-146a can repress IFN-γ-triggered macrophage
M1 polarization via directly targeting signal transducer and
activator of transcription 1 (STAT1) (He et al., 2016).
The miR-146a level is increased in patients with
periodontitis, and miR-146a overexpression in gingival
fibroblasts or macrophages decreases pro-inflammatory
cytokines production by targeting tumor necrosis factor
receptor-associated factor (TRAF)-6 (Motedayyen et al.,
2015; Tang et al., 2019). These results suggest that miR-146a

FIGURE 4. MiR-130a facilitated macrophage M1 polarization by targeting STAT3. (A) Schematic representation of the miR-130a site in
STAT3-3’UTR. (B) Luciferase activity was assessed in RAW264.7 cells after co-transfection with miR-130a mimics (40 nM) and 20 ng of
STAT3-3’UTR luciferase reporters (or its mutant). (C and D) Western blot analysis of STAT3 protein level in RAW264.7 cells after
transfection with miR-130a mimics (40 nM). (E and F) Western blot analysis of STAT3 protein level in RAW264.7 cells after treatment
with miR-130a inhibitor (40 nM). **p < 0.01.
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might protect against periodontitis through regulating
macrophage polarization. MiR-130a is also increased in
periodontitis (Perri et al., 2012), and the role of miR-130a in
macrophage polarization has been demonstrated (Lin et al.,
2015; Shi et al., 2020). However, little is known about
whether miR-130a is correlated with chronic inflammatory
state in periodontitis by regulating macrophage polarization. In
the study, we demonstrated that miR-130a level is increased in
RAW264.7 cells after Pg LPS treatment. Forced expression of
miR-130a up-regulates iNOS and CD86 expression and
promotes pro-inflammatory cytokines production, suggesting
the role of miR-130a in facilitating macrophage M1
polarization. More important, miR-130a inhibition represses
Pg LPS-induced macrophage M1 polarization.

BET protein has two tandem bromodomains, BD1 and
BD2. BET inhibitors are small molecules which can bind to
BET bromodomains, inhibiting the interactions of BET
proteins with acetylated lysines on histone tails, thus
modulating downstream gene transcription. BET inhibitors
are demonstrated to have beneficial roles in diabetes,
cardiovascular diseases, and cancer (Kalantar-Zadeh et al.,
2021; Kulikowski et al., 2018). The pan-BETi JQ1 was
demonstrated to resolve inflammation in vitro and bone
destruction in a murine periodontitis model (Meng et al.,
2014). However, compared with selective BET inhibitors,
pan-BETi with equal affinity towards BD1 and BD2 leads to
larger side effects and toxicity. Apabetalone is a selective BD2
bromodomain inhibitor with 20 to 30-fold selectivity over
BD1 (Ray et al., 2019), which is different from JQ1, a pan-
BET inhibitor, thus resulting in different biological processes.
As a novel BETi, apabetalone is being developed as the
potential treatment of acute coronary syndrome, diabetes and
chronic kidney failure. Here we assessed whether apabetalone
regulates macrophage polarization and function. We found
that apabetalone represses Pg LPS-triggered macrophage M1
polarization in a dose-dependent manner. Mechanistically,
apabetalone inhibits Pg LPS-induced miR-130a expression in
macrophages. STAT3 is identified as a novel target gene of
miR-130a in the regulation of macrophage polarization.

Conclusion

The current study demonstrated that apabetalone suppresses
Pg LPS-induced macrophage M1 polarization via decreasing
miR-130a-3p and de-repressing STAT3 expression.
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