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Abstract: Most bacteria assemble a ring-like macromolecular machinery scaffolded by the essential cytoskeletal protein

FtsZ for cell division. Studies have broadly explored how FtsZ could polymerize at the correct place and time. Recently,

the FtsZ-ring was found to exhibit dynamic treadmilling along the circumference of the division site, driven by GTP

hydrolysis. This apparently directional motion of FtsZ seems to drive the movement of septal cell wall synthesis

enzymes and to play an important role in modulating cell envelope constriction and septum morphogenesis.

However, the relationship between FtsZ’s treadmilling dynamics and cell wall synthesis varies in different bacteria.

More importantly, the biophysical and molecular mechanisms governing these dynamic processes are unclear. In this

viewpoint, we will focus on some new and exciting studies surrounding this topic and discuss potential mechanisms

that underlie how FtsZ’s treadmilling dynamics might regulate septal cell wall synthesis and cell division.

Introduction

FtsZ is a prokaryotic tubulin homolog (Nogales et al., 1998)
that plays a central role in regulating bacterial cell division.
Thirty years ago, Bi and Lutkenhaus (1991) discovered that
FtsZ molecules can form a ring-like structure (termed the
“Z-ring”) at the future division site and determined this ring
to be the first known prokaryotic cytoskeleton. Similar to
tubulin, FtsZ self-polymerizes upon GTP binding (Bramhill
and Thompson, 1994) and subsequently hydrolyzes GTP
molecules, inducing its depolymerization (Chen and
Erickson, 2005; de Boer et al., 1992). The Z-ring recruits
more than thirty cell division proteins, many of them
essential and involved in cell wall synthesis, to assemble a
macromolecular machinery collectively called the divisome
(Du and Lutkenhaus, 2017).

Given that FtsZ is broadly conserved among eubacteria
and archaea, we wondered whether there exists a universal
mechanism for prokaryotes to control and regulate the cell
division process via the Z-ring. One well-accepted
function of the Z-ring is to act as a scaffold for the
recruitment of other divisome proteins, especially cell wall
synthases and remodeling enzymes (Egan et al., 2020;
McQuillen and Xiao, 2020). Another potential function of
the Z-ring was proposed to generate a mechanical

constricting force based on the homology to eukaryotic
microtubes. In this model, FtsZ-ring utilizes the energy
from GTP hydrolysis by its constitutive monomers to pull
the cell envelope inward and lead to cell constriction
(Erickson et al., 2010). This idea was strongly supported
by the impressive experiments by Osawa et al. (2008)
showing that FtsZ can polymerize to rings that bend and
constrict liposomes in vitro. While this mechanism is
intriguing, it raises questions such as: What is the exact
physical model in which the Z-ring generates a
homogeneous contractile force? Is the force strong enough
to deform both the inner membrane and peptidoglycan
cell wall against turgor? For insight into these questions, I
refer the readers to the extensive discussion in the review
by McQuillen and Xiao (2020).

The FtsZ force-generation model was challenged by
Coltharp et al. (2016) who found that the cell constriction
rate of E. coli cells does not depend on FtsZ’s intrinsic
GTPase activity (originally proposed to govern the force-
generation). Instead, the rate-limiting step of E. coli cell
division was identified as the cell wall synthesis rate. This
result was later confirmed by labeling the nascent sPG using
fluorescent d-amino acids (FDAAs) (Kuru et al., 2012): the
amount of newly synthesized (E. coli) cell wall was not
correlated with FtsZ’s GTPase activity (Yang et al., 2017).
These results are consistent with previous studies in which
FtsZ GTPase mutants can still complete cell division with
deformed or abnormal septa (Bi and Lutkenhaus, 1992;
Lutkenhaus et al., 2012). Considering the fact that the
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Z-ring constantly hydrolyzes GTP, it is important to
understand why bacterial cells continuously consume GTP if
the potential mechanical force is not essential.

FtsZ Dynamically Treadmills During Cell Division

Later, FtsZ’s GTP hydrolysis was found to drive an unseen
type of dynamic behavior of FtsZ: treadmilling (Bisson-Filho
et al., 2017; Loose and Mitchison, 2014; Yang et al., 2017).
FtsZ subunits in the Z-ring are known to exchange
constantly with monomers in the cytoplasmic pool (lifetime
~10 sec) (Stricker et al., 2002), where the exchange rate
depends on the GTPase activity. This behavior and the
corresponding kinetic mechanism were thoroughly
discussed in a classic review article by Erickson et al. (2010).
They also proposed that one possible scheme of FtsZ
dynamics could be treadmilling, a behavior that widely
exists in eukaryotic cytoskeletal filaments.

Margolin’s group was the first to observe rapid dynamics
and oscillations of the Z-ring back in 2004 (Thanedar and
Margolin, 2004), but the treadmilling behavior of FtsZ was
not determined until total internal reflection fluorescence
microscopy (TIRFm) was introduced to image reconstituted
FtsZ filaments in vitro and the Z-ring in vivo. FtsZ was
found to form chunks or clusters in the Z-ring using super-
resolution fluorescence microscopy (Buss et al., 2015; Fu et
al., 2010; Strauss et al., 2012). With much less phototoxicity,
TIRFm allowed researchers to monitor FtsZ clusters for a
long period of time with a high spatial-temporal resolution.
Interestingly, those FtsZ clusters move directionally around
the ring while individual FtsZ monomers stay immobile. This
behavior is a hallmark of treadmilling (Bisson-Filho et al.,
2017; Buss et al., 2013; Loose and Mitchison, 2014; Niu and
Yu, 2008; Yang et al., 2017): FtsZ monomers are added on
one end (polymerization) and lost on the other
(depolymerization), thus the filament appeared to be moving
forward (Fig. 1).

The apparent directional movement of FtsZ clusters
implies an energy input to the system. Unlike the bacterial
sidewall building system (the elongasome) that utilizes
the peptidoglycan (PG) synthesis reaction to power
its directional motion (Dominguez-Escobar et al., 2011;

Garner et al., 2011; van Teeffelen et al., 2011), the FtsZ’s
treadmilling speed is only correlated with its intrinsic
GTPase activity but not with the FtsZ regulators or sPG
synthesis (Bisson-Filho et al., 2017; Caldas et al., 2019; Perez
et al., 2019; Ramirez-Diaz et al., 2018; Squyres et al., 2021;
Whitley et al., 2021; Yang et al., 2017). Additionally, in vitro
fluorescence and atomic force microscopic studies suggested
that treadmilling dynamics also rely on FtsZ’s densities and
the type of surface tethers (Gonzalez de Prado Salas et al.,
2014; Loose and Mitchison, 2014; Marquez et al., 2019;
Mateos-Gil et al., 2012; Ramirez-Diaz et al., 2018).

The treadmilling dynamics were later confirmed in other
bacterial species such as S. mutans (Li et al., 2018), S. aureus
(Monteiro et al., 2018), and S. pneumonia (Perez et al.,
2019). Given the robustness of the treadmilling dynamics in
living cells, it is natural to reason that the energy from GTP
molecules is harvested to maintain FtsZ’s treadmilling which
further assists the sPG synthesis and cell constriction.
Indeed, the treadmilling was showed to be essential for
successful and efficient cell division: In B. subtilis, abolishing
FtsZ’s treadmilling by a small molecule inhibitor PC190723
stops cell division (Bisson-Filho et al., 2017). In E. coli, the
ftsZD212G mutation with a slow treadmilling speed causes
abnormal division and filamentous cells (Bi and Lutkenhaus,
1990; Stricker and Erickson, 2003; Yang et al., 2017).

FtsZ’s Treadmilling Drives the Directional Motion of sPG
Synthesis

Back when Bi and Lutkenhaus discovered the Z-ring, they
speculated that “formation of the ring would be the key point at
which temporal and spatial control over division are exerted…
perhaps by interacting directly with septal-specific peptidoglycan
biosynthetic machinery at the leading edge of the invagination”
(Bi and Lutkenhaus, 1991). This speculation turns out to be
visionary even though it was not possible to monitor Z-ring
dynamics or sPG synthesis in living cells at that time.

With novel single-molecule imaging and labeling
techniques, we are now able to track single protein
molecules in living cells and measure the spatial distribution
of PG synthesis (Cho et al., 2016; Grimm et al., 2015; Kuru
et al., 2012; Lee et al., 2016; Yu et al., 2006). The first
tracked essential sPG synthase was the monofunctional
transpeptidase (TPase) FtsI in E. coli (PBP2B in B. subtilis).
These enzymes were observed to move processively along
with the Z-ring (Bisson-Filho et al., 2017; Yang et al., 2017).
Unlike their counterparts PBP2 (in E. coli) and PBP2A (in
B. subtilis) in the elongasome, whose movement is driven by
PG synthesis (Dominguez-Escobar et al., 2011; Garner et al.,
2011; van Teeffelen et al., 2011), the average speeds of FtsI
and PBP2b are highly correlated with FtsZ’s treadmilling
speed. This exciting result indicated that FtsZ may convert
the chemical energy in GTP into kinetic energy by
treadmilling to drive the directed motion of these sPG
enzymes. In other words, FtsZ could use its polymer
dynamics to function as a linear motor to deliver cargos
(sPG synthases) at target sites to initiate local septum
synthesis.

This hypothesis is supported from pulse-labeling
experiments showing that the newly synthesized septum is

FIGURE 1. Diagram demonstrating FtsZ’s treadmilling. FtsZ
monomers polymerize on the right end of the filament while the
last subunit depolymerizes from the left end. The filament thus
moves to the right with immobile FtsZ subunits (orange).
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uneven and clustered, akin to the discontinuous, clustered Z-
ring structure in E. coli, B. subtilis, and S. pneumoniae (Bisson-
Filho et al., 2017; Perez et al., 2021; Yang et al., 2017). Such a
discrete sPG pattern suggests that sPG synthases are not
efficient in building the whole septum all at once, but that
they, instead, work ‘locally’ producing ‘patches’ of new sPG
around the ring. They therefore require regulators to
modulate their spatial-temporal distribution to evenly
construct the whole septum over time. As FtsZ clusters
treadmill around the future septum, they likely guide
enzymes to circle around the cell. Indeed, experiments have
shown that the new septum becomes uneven or abnormal in
FtsZ mutation strains with slow treadmilling speeds (Bisson-
Filho et al., 2017; Perez et al., 2021; Yang et al., 2017).
Furthermore, the cell division rate in B. subtilis was shown
positively correlated with FtsZ’s treadmilling speed, indicating
FtsZ’s treadmilling may guide both the distribution and
activity of sPG synthases (Bisson-Filho et al., 2017).

However, the results from the gram-negative bacterium E.
coli speaks to the contrary: FtsZ mutants with decreased
GTPase activity and slower treadmilling only impact the
septum morphology but do NOT alter the overall sPG
synthesis or the constriction rate in most cases (Coltharp and
Xiao, 2017; Yang et al., 2017). These results suggested that
FtsZ only regulates the spatial-temporal distribution but not
the enzymatic activity in E. coli. This discrepancy grew more
puzzling after several other findings revealed that FtsZ may
be dispensable for sPG synthesis under specific conditions.

sPG Synthesis Can be Independent of FtsZ’s Treadmilling

Soon after the discovery of FtsZ’s treadmilling dynamics,
Pinho’s group monitored the septum closure process in S.
aureus when FtsZ’s treadmilling was inhibited. Surprisingly,
they found that FtsZ’s treadmilling is no longer required for
sPG synthesis and cell constriction at a later stage of cell
division, once the entire divisome is assembled (after the
recruitment of the Lipid II lipase MurJ) (Monteiro et al., 2018).

In S. pneumonia, the Winkler lab then found that
bPBP2x, the essential sPG TPase, moved directionally yet in
an FtsZ independent manner (Perez et al., 2019). GTPase-
defective FtsZ mutants did not decrease the moving speed of
bPBP2x as that in E. coli or B. subtilis. Rather, inhibiting
sPG synthesis slowed bPBP2x. Moreover, the sPG synthesis
level of FtsZ mutant strains remained the same as that of
wild-type cells, while the pattern of nascent sPG became
irregular (Perez et al., 2021; Perez et al., 2019), very similar
to the case of E. coli (Yang et al., 2017).

More recently, Kevin et al. from the Holden lab re-
examined how inhibition of FtsZ’s treadmilling would
disrupt cell division at different stages in B. subtilis. Similar
to S. aureus, they found that a fraction of cells that have
already proceeded to a later cell division stage continued to
divide even when FtsZ’s treadmilling was inhibited (Whitley
et al., 2021). Other early-stage cells could not constrict or
build septal cell walls, as previous results (Bisson-Filho et
al., 2017). The authors also carefully measured the septum
closure rate under different cell growth rates, finding that
they are highly correlated. Given the insignificant change in
the FtsZ’s treadmilling speed under those conditions, there

might be other regulatory factors of sPG synthesis besides
FtsZ in B. subtilis.

In fact, FtsZ-independent cell constriction has been
found years ahead. Soderstrom et al. (2014) determined the
sequence of division proteins leaving the septum and found
that the FtsZ-ring disassembled before the end of
cytokinesis in E. coli (Soderstrom et al., 2014). This result
showed that FtsZ (and its treadmilling) is also dispensable
in the last part of division in E. coli. All the above
observations complicated the understanding of how FtsZ’s
treadmilling regulates sPG synthesis and cell division.

Rethink and Unify the Function of FtsZ in Cell Division

On one hand, in all bacteria tested thus far, FtsZ treadmills at
approximately 30 nm/s regardless of gram-positive or gram-
negative, rod or ovoid cell shapes, and even in artificial
rectangular or heart-shaped cells (Table 1). Considering the
significant differences in divisome composition and cell
physiology among those bacteria, FtsZ’s treadmilling seems
to be highly conserved. It is possible that this dynamic
property of FtsZ (or the Z-ring) serves as a basic and robust
mechanism in regulating the cell division process.

On the other hand, bacteria live in drastically different
environments and have evolved for billion years, developing
different cell shapes, sizes, cell wall thicknesses and PG
synthesis/hydrolysis enzymes. It is not unreasonable to
assume that they also have very different ways to build the
septum and constrict the cell envelope.

1. FtsZ’s treadmilling condenses the divisome to the
mid-cell

As the master regulator, FtsZ must first recruit and
scaffold for other proteins to the future cell division site (i.e.,
the middle of the long axis in most rod shape bacteria).
Recently, Squyres et al. (2021) from the Garner lab found
that the Z-ring is not only simply positioned to mid-cell with
sPG synthases. The FtsZ ring condenses along the
progression of division, which facilitates the assembly of cell
wall synthases such as PBP2b and FtsW in B. subtilis and
enables them to function correctly. The reason might be that
the enzymes have low concentrations inside the cell. Their
functions often rely on other partners or activators (such as
FtsQLB and FtsN in E. coli (Liu et al., 2015; Tsang and
Bernhardt, 2015)). A condensed Z-ring can generate a
confined volume trapping downstream divisome components
and thus raise their local concentration.

At the same time, Whitley et al. (2021) showed that FtsZ’s
treadmilling facilitates the aggregation of a narrow andmatured
Z-ring in the early division stage. After the tight ring formed,
treadmilling becomes less important. It is worth mentioning
that treadmilling was shown to facilitate transient FtsZ
assemblies to localize to the correct cell division site (Walker
et al., 2020). These studies suggested that the first regulatory
mechanism of FtsZ’s treadmilling is to enable FtsZ filaments
to dynamically encounter each other, locate at the mid-cell
and condense to a “narrow ring” by lateral interactions. The
condensed Z-ring subsequently helps other components
assemble and trigger sPG synthesis complex formation
(Fig. 2A).
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2. FtsZ’s treadmilling regulates the spatial distribution
of sPG synthase complex along the ring

The next step of cell division is to synthesize new sPG
material along the circumference of the cell. In rod-shaped

bacteria, such as E. coli and B. subtilis, the glycan strands of
PG are arranged circumferentially, while the peptide stems
are along the long axis of the cell (Holtje, 1998). If the
glycan strands are perfectly aligned and spaced, sPG

TABLE 1

FtsZ’s treadmilling speed in different bacterial species

Bacteria FtsZ’s treadmilling
speed (nm/s)

Reference Notes

Escherichia coli 27.8 ± 17.1a (Yang et al., 2017) TIRFm

Escherichia coli 23 - 30b (Soderstrom et al., 2018) Cells transformed to square, heart, or large circles shapes by
drug
Wide-field imaging of vertical cells in microholes.

Bacillus subtilis 32.0 ± 7.8 (Bisson-Filho et al.,
2017)

TIRFm

Bacillus subtilis 27c (Whitley et al., 2021) Mature/early Z-rings
Wide-field imaging of vertical cells in microholes

Streptococcus mutans 34.7 ± 16.6 (Li et al., 2018) TIRFm

Streptococcus
pneumoniae

32.4 ± 13.3 (Perez et al., 2019) Nascent and equatorial Z-rings. TIRFm

Streptococcus
pneumoniae

30.5 ± 9.3 (Perez et al., 2019) Mature Z-rings
Wide-field imaging of vertical cells in microholes

Note: a. Standard deviation b. The average speed of FtsZ treadmilling in cells of different shapes c. The median speed.

FIGURE 2. Potential models of FtsZ’s treadmilling
regulates the cell division in three different
dimensions. A. FtsZ filaments (green) travel around
the cell circumference via treadmilling (left). The
treadmilling dynamics facilitate the formation of a
narrow and mature Z-ring along the long axis
(right) that concentrate and activate the sPG
synthases (blue and orange parts) (Squyres et al.,
2021; Whitley et al., 2021). B. The treadmilling
direction is approximately along the glycan strands
in septum. sPG synthases can be transported by
FtsZ’ treadmilling to different positions (green
arrow) or synthesize new sPG processively in a
different speed (orange arrow). In B. subtilis,
synthases tend to associate more on the Z-track
(Bisson-Filho et al., 2017) (left) while enzymes in S.
pneumoniae were found to move with PG synthesis
(Perez et al., 2019) (right). E. coli synthases move on
both tracks (Yang et al., 2021) (middle). C. FtsZ may
generate contractile force radially toward the cell
center. The deformation of the inner membrane
could displace the synthesis complexes thus build
the new septal cell wall inside the old one (Nguyen
et al., 2019).
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synthesis could use the old PG strand as a template, at least
along the circumferential direction. Unfortunately, the glycan
chains are not perfectly organized, as visualized by atomic
force microscopy (AFM) (Pasquina-Lemonche et al., 2020;
Turner et al., 2018). Since FtsZ filaments constantly treadmill
around the cell’s circumference and scaffold sPG synthases, it
is natural to reason that FtsZ keeps the enzymes moving
(perhaps synthesis too) along the ring. Three supporting
observations were obtained: 1) FtsI and PBP2b molecules
move along the ring at a similar speed as FtsZ’s treadmilling;
2) the PG synthesis pattern is clustered like that of the Z-
ring; and 3) new septa in some ftsZ mutation strains exhibit
helical shapes similar to the Z-rings (Bisson-Filho et al., 2017;
Yang et al., 2017).

However, it is difficult to comprehend how enzymes or
enzymatic complexes can travel directionally along the Z-
ring while every single FtsZ protein is static. The Liu and
Xiao labs proposed a Brownian ratchet model in which
minus end-attaching enzymes (i.e., FtsI) on a treadmilling
filament will fall off while the last FtsZ subunit dissociates
(Fig. 3). Although falling FtsZ monomers likely diffuses
away in the cytoplasm, the sPG synthase is confined to the
membrane and cannot escape the surrounding zone in a
short time window. It could catch up and associate with the
FtsZ subunit on the new ‘minus-end’ of the filament again.
As such, the enzyme follows the FtsZ filament and moves
forward (McCausland et al., 2021). In this way, FtsZ
transports sPG synthases to different septal sites and
generates new clustered sPG. Even in S. pneumoniae, whose
PG synthases move slower than FtsZ’s treadmilling, the
nascent sPG still exhibits a clear clustered pattern along the
ring (Perez et al., 2021; Perez et al., 2019), indicating that
FtsZ still determines the spatial distribution of PG synthases
(perhaps in a passive way). Using a reconstituted lipid
bilayer system, Baranova et al. (2020) observed the collective
co-immigration of the cytoplasmic portion of FtsQ and
FtsN with FtsZ. Even though the truncated proteins did not
display a processive motion, the results demonstrated that

the late divisome proteins could be redistributed by FtsZ’s
treadmilling.

3. FtsZ’s treadmilling-associated synthase complexes
may or may not be active

In addition to the spatial distribution, it is also important
to understand whether FtsZ’s treadmilling determines the sPG
synthesis rate. On this aspect, the results seem to differ among
bacteria. Between the completely dependent case of B. subtilis
and the independent case of S. pneumoniae, we found that the
motion of E. coli sPG synthases partially depends on FtsZ’s
treadmilling. These enzymes split into two populations: one
goes with FtsZ, while the other was driven by the active sPG
synthesis (Yang et al., 2021). The results suggested a two-
track model in which FtsZ filaments (clusters) carry
enzymes (or synthase complexes) from one place to another
along the ring until these enzyme molecules stochastically
dissociation and/or encounter activators such as FtsN (Lyu
et al., 2021). The enzymes could then synthesize new sPG
for ~200 nm in a highly processive manner. After the
complexes terminate on the PG (stochastically or being
inactivated), they are able to catch on a treadmilling FtsZ
filament again (Fig. 2B middle, Fig. 3). Thus, treadmilling
FtsZ filaments act as trains to collect free synthases and
keep them on track to synthesize hot spots along the ring.
This “two-track model” might explain the different
behaviors in bacteria. Enzymes in S. pneumoniae might have
low binding affinities to FtsZ and therefore cannot follow
treadmilling for a sufficient time to be detected in
experiments; only molecules processively synthesizing sPG
were observed (Fig. 2B, right). In contrast, B. subtilis may
have enzymes with fast sPG synthesis rates but not very
processive, showing Z-track related motion only (Fig. 2B,
left). Mechanistically, B. subtilis sPG synthases may rapidly
proceed a couple of synthesis cycles (a few nanometers) after
leaving the Z-track and departing from PG. FtsZ filaments
then carry them until the next synthesis ‘hot spot’ (Fig. 3).
This hypothesis might be able to explain the correlation of
the sPG synthesis rate and FtsZ’s treadmilling speed in B.
subtilis (Bisson-Filho et al., 2017). More simulations and
experiments are required to reveal the true lying mechanism.
For example, it would be interesting to examine the motion
of the synthases and sPG synthesis pattern when FtsZ’s
treadmilling is abolished in B. subtilis and S. aureus.

4. Does FtsZ’s treadmilling generate a constriction force
to reduce the radius of the new sPG?

The synthesis of sPG is intrinsically different from that of
the lateral cell wall. The new sPG material must be inserted
inside of the old PG template to reduce the septal radius
gradually, which means that the synthesis complex must
break the symmetry and add new glycan strands biased to
the cell’s center. However, as introduced above and
discussed in a detailed review article (McQuillen and Xiao,
2020), the FtsZ-ring might not be able to generate enough
force to counter the turgor pressure and bend the cell wall
mechanically. A possible mechanism is that the sPG
synthases (transmembrane proteins) are pulled inside
together with the inner membrane, which is deformed
inward by FtsZ (Fig. 2C). Subsequently, the newly crossed
linked sPG could lie under the old PG and gradually

FIGURE 3.Diagram showing the Brownian ratchet model that FtsZ’s
treadmilling guides sPG synthases’ directional movement. Step 1.
The sPG synthase (blue) binds with the FtsZ subunit on the minus
end of an FtsZ filament (orange). Step 2. The last FtsZ subunit
dissociates from the filament leaving the synthase diffuses on the
membrane (in E. coli, top left) or synthesizes sPG shortly (in B.
subtilis, bottom left). Step 3. The synthase rebinds to the new end
of FtsZ filament thus moves forward to the right at the same speed
as that of the FtsZ filament (dashed lines).
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constrict the cell envelope. In C. crescentus cells, sPG can grow
as bulges instead of invagination at division sites with FtsZ’s
C-terminal linker (CTL) truncated variants, which might
affect the transduction of the force to the inner membrane.
(Sundararajan et al., 2015),

Although it remains unclear howmuch force FtsZ produces
in living cells, Schwille’s group found that treadmilling FtsZ
filaments could deform lipid tubes in vitro and wall-less E. coli
cells (Ramirez-Diaz et al., 2021). The authors were able to
measure the force (1–2 pN/μm) that is partially coupled with
GTP hydrolysis (or treadmilling). However, FtsZ GTPase
defective mutation could still bend the liposome. This finding
is consistent with the results that treadmilling-inhibited B.
subtilis cells can still divide yet at a slower rate (the static ring
generating less force) (Whitley et al., 2021). The force is orders
of magnitude smaller than the expected value (~5 nN/μm) to
synthesize the new sPG on the inner side of the old PG against
the turgor pressure from inside (Nguyen et al., 2019). We
speculate that either FtsZ filaments can generate greater force
in vivo or there are unknown factors supporting the new sPG
in the inward position, relieving the tension from the turgor.
Undoubtedly more theoretical and experimental works need to
be done to predict and measure the true mechanical force
generated by FtsZ filaments or the treadmilling dynamics.

Future: Figure Out the Unknowns of FtsZ’s Treadmilling in
Bacterial Cell Division

From the limited number of organisms tested, the master
cytoskeleton protein FtsZ presents almost identical
properties in organization, GTPase activity, and treadmilling
dynamics. A general model starts to emerge: the
treadmilling Z-ring acts as a dynamic scaffold to assemble
sPG synthases and keep them ‘on track’ on both the long
axis and along the circumference. At least in some periods
(aka, the late division stage after the whole divisome is
established), FtsZ and its treadmilling become less
important. In the gram-negative bacterium E. coli, for
instance, FtsN was shown to form a separate ring structure
and might serve as a scaffold in the later cell division stage
(Lyu et al., 2021; Soderstrom et al., 2018). It is likely that
different types of bacteria evolved their PG synthesis
strategies by altering the affinity of PG synthases to FtsZ or
sPG, enzymatic activity and processivity, lipid II substrate
concentration, and the types of activators. Thus, cells can
divide robustly with different cell sizes, growth rates, and
environmental conditions. Current studies are primarily
based on model bacteria that have similar cell dimensions
and division rates. To further explore the dynamics and
functions of FtsZ’s treadmilling, more studies on other
bacteria with unconventional shapes and different division
rates are needed. Considering the complexity of sPG
synthesis and consequently septal cell wall remodeling
during growth and division, careful studies of how PG
enzymes are regulated and work upon different cell wall
structures, lipid II concentrations, and different activation or
inhibition pathways are required to understand the full
picture of FtsZ and sPG synthases and the septal cell wall.

We still do not know how FtsZ filaments arrange and
treadmill on a molecular level in living cells yet. FtsZ

protofilaments may organize into diverse structures in vitro,
such as bundles, sheets, and other high-order structures
(Gonzalez de Prado Salas et al., 2014; Lu et al., 2000;
Mateos-Gil et al., 2012; Sundararajan and Goley, 2017). In
vivo super-resolution microscope revealed heterogenous
cluster-like structures (Buss et al., 2015; Coltharp et al.,
2016; Fu et al., 2010; Holden et al., 2014; Rowlett and
Margolin, 2014) not in agree with the well-aligned
continuous or short filaments from Cryo-EM images (Li et
al., 2007; Szwedziak et al., 2014; Yao et al., 2017). Resolving
the organization of FtsZ inside divisome is critical to
understand the fundamental physical mechanism of the
treadmilling dynamics. New imaging techniques such as
MinFLUX combined with functional FtsZ labeling methods
might be a promising method to depict the molecular
organization of FtsZ in cells (Balzarotti et al., 2017; Moore
et al., 2017; Schmidt et al., 2021).

Another amazing fact not explored in this article is that
the cells could manage to maintain FtsZ in a steady and
robust treadmilling state while reconstituted FtsZ requires a
proper protein density and certain membrane tethers to
trigger the treadmilling (Loose and Mitchison, 2014;
Ramirez-Diaz et al., 2018). Recent studies suggested that
FtsA and ZipA may be with complicated structures and
functions to regulate FtsZ filaments rather than simple
membrane-attachments (Conti et al., 2018; Krupka et al.,
2017). The cooperative treadmilling of multiple FtsZ
filaments was shown enhanced by FtsZ binding protein
ZapA in vitro (Caldas et al., 2019). This FtsZ “crosslinker”
has been found important to keep a narrow Z-ring in vivo
(Buss et al., 2013), indicating treadmilling itself might not
be enough to create the tight ring mentioned in the previous
section. To understand the molecule level mechanism of
treadmilling regulation, computational modeling could
reinforce our toolbox to explore a broad range of
parameters that are difficult to test by experiments. In fact,
simulations based on structural information and kinetic
measurements have already provided valuable insights
(Mateos-Gil et al., 2019).

How much force can be generated by FtsZ’s treadmilling
in living cells is the other major question difficult to answer.
New techniques or methods such as genetically encoded
force sensors (Wang et al., 2011) are needed to be carefully
designed to measure the amount of constriction force
generated by FtsZ during cytokinesis in real time. The force
measurement companying with structural studies and
computational simulations, we imagine, could complete one
important piece of the puzzle.

As FtsZ’s treadmilling was shown to regulate the sPG
synthesis, it may also participate to coordinate the
remodeling and reconstruction the outer membrane in
gram-negative bacteria. A recent study had shown that FtsZ
or some early division proteins can recruit the essential
outer membrane protein folding complex, BAM (Consoli
et al., 2021). Whether FtsZ’ treadmilling directly regulates
the outer membrane remodeling in time and space like the
sPG should be further studied.

Last but not the least, given its essential role in cell
division, FtsZ has attracted a lot of attention as a target for
new antibiotic development. Many potent molecules were
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discovered or designed to inhibit the GTPase activity,
polymerization, or depolymerization property of FtsZ
(Pradhan et al., 2021; Ur Rahman et al., 2020). We hope
this viewpoint article could provide some new angles for
antimicrobial developers to think about targeting FtsZ’s
conserved treadmilling behavior or the regulatory pathways.
In fact, some small molecules such as PC190723 have been
shown to abolish the treadmilling and become a powerfully
tool in the studies mentioned above (Bisson-Filho et al.,
2017; Monteiro et al., 2018; Whitley et al., 2021).
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