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Abstract: Esophageal cancer (EC) was an aggressive malignant neoplasm characterized by high morbidity and poor

prognosis. Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of

carcinoma progression. In this study, by comparing EC samples and normal samples, we found a total of 132 DDR

expression with a significant difference. Moreover, we revealed higher expression of POLN, PALB2, ATM, PER1,

TOP3B and lower expression of HMGB1, UBE2B were correlated to longer OS in EC. In addition, a prognostic risk

score based on 7 DDR gene expression (POLN, HMGB1, TOP3B, PER1, UBE2B, ATM, PALB2) was constructed for

the prognosis of EC. Meanwhile, EC cancer samples were divided into 3 subtypes based on 132 DDR genes

expressions. Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2, which was

remarked higher than that in cluster 3. Moreover, we found the immune cell inflation levels were significantly

changed in different subtypes of EC. The infiltration levels of T cell CD8+, B cell and NK cells were greatly higher in

cluster 2 than that in cluster 1 and cluster 3. The results showed T cell CD4+ infiltration levels were dramatically

higher in cluster 1 than that in cluster 2 and cluster 3. Finally, we perform bioinformatics analysis of DEGs among 3

subtypes of EC and found DDR genes may be related to multiple signaling, such as Base excision repair, Cell cycle,

Hedgehog signaling pathway, and Glycolysis/Gluconeogenesis. These results showed DDR genes may serve as new

target for the prognosis of EC and prediction of the potential response of immune therapy in EC.

Introduction

Esophageal cancer (EC) ranks the eleventh amid most
common carcinomas, with an estimated 473,000 cases
annually worldwide. And EC is the sixth widely occurred
inducer of carcinoma-associated death, approximately
436,000 death tolls (Global Burden of Disease Cancer et al.,
2019). EC consists of two major histological subtypes,
including adenocarcinoma (EAC) and squamous cell
carcinoma (ESCC). ESCC is the main histological type,
accounting for 80% of the global EC cases (Cancer Genome
Atlas Research et al., 2017; Gu et al., 2020; Freedman et al.,
2007). Although the management and treatment of patients
with EC have improved, the overall 5-year overall survival
(OS) rate (about 10%) and 5-year OS after esophagectomy
(within 15% and 40%) are still poor (Huang and Yu, 2018).

Alcohol, tobacco and acetaldehyde related to alcoholic
beverages are all carcinogens of EC, leading to the
occurrence and progression of ESCC (Ohashi et al., 2015).

Aldehyde Dehydrogenase 2 (ALDH2) polymorphism is also
the contributor to ESCC development, especially in Asian
population (Lewis and Smith, 2005). Obesity and Barrett’s
esophagus constitutes the main risk factors for EAC (Turati
et al., 2013). The occurrence of EC is the result of a
complex process involving changes in multiple genes.

One hallmark of carcinoma is the instability of genomic
which is caused by various insults leading to DNA damage.
Double strand breaks (DSBs) is the most dangerous and
threatening genotoxic injury, resulting in chromosome
rearrangement and cell death (da Silva, 2021). Defective
components in DNA damage and repair toolset are the
fundamental reason for the occurrence and development of
different sorts of carcinomas (da Silva, 2021). DNA damage
repair pathway work together in concert to eliminate DNA
damage and sustain the stability and integrity of the genome
(da Silva, 2021). DNA damage repair (DDR) genes exhibit
pivotal roles during this process in human cells. As
biochemical and mechanistic standards demonstrated, DDR
genes mainly consist of 7 functional pathways (Wang et al.,
2020a). Dysregulated DDR pathways functions importantly
regarding carcinoma risk, carcinoma development and
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response to treatment (Curtin, 2012). DDR pathways with up-
regulation were related to the resistance to DNA-damaging
radiotherapy and chemotherapy. In particular, activated DSBs
repair genes are one of the factors of tumor resistance to
radiotherapy and chemotherapy (Curtin, 2012). DDR has also
been shown to take part in the metabolism of carcinomas. The
activation of DDR promotes nucleotide synthesis and glucose
metabolism, whereas lessening glutamine anaplerosis (Turgeon
et al., 2018). In melanoma, the genes with up-regulation in
DDR pathways has a relation to tumor metastasis (Broustas
and Lieberman, 2014). The mutations of DDR genes have an
association with immune-related genes expression in ovarian
carcinoma and muscle invasive bladder carcinoma (Vidotto et
al., 2019). Herein, identifying the changes in DDR pathway
helps to better understand the mechanisms of carcinoma
progression. Here, our present article aims to comprehensively
investigate the expression alteration of DDR pathway genes in
EC. We plan to identify new prognostic model and novel
molecular subtypes based on expression of DDR genes in EC.
We think our results will prove DDR genes may serve as a
newly generated target for the treatment of EC.

Materials and Methods

Data acquisition
The RNA sequence data of Esophageal were obtained from
TCGA website (https://portal.gdc.cancer.gov), which included
13 normal samples and 182 EC samples. Meanwhile, the
clinical information of these EC patients were also extracted.

Analysis of differential DDR genes
A total of 229 DDR genes were retrieved from the TISIDB (Ru
et al., 2019) database (http://cis.hku.hk/TISIDB/index.php).

Construction of the prognostic Model Based on the DDR genes
The prognostic model was established via the “glmnet” R package.
The survival analysis was performed with “survminer” R package,
and the ROC curve analysis was performed via the “survival” and
“timeROC” R packages.

Tumor immune infiltration analysis
To further analyze the differences in immune cell inflation of 3
subtypes of esophageal cancer, the TIMER (Li et al., 2017a)
algorithm (https://cistrome.shinyapps.io/timer/) was used to
investigate the differences in the proportion of 6 immune
cell subsets (Gu et al., 2021).

Bioinformatics analysis
The KEGG analysis was performed using DAVID system
(https://david.ncifcrf.gov/).

Statistics
R software v4.1 (https://www.r-project.org/) was used for all
analyses. P-value < 0.05 was regarded as statistically significant.

Results

Aberrant expression of DNA damage repair genes (DDR) in
esophageal cancer
The present study aimed to identify the interaction between
229 DDR genes and esophageal cancers. Totally, the

expression of 132 DDR genes were observed to have a
remarkably difference between EC and normal samples
(Suppl. Table 1). 119 genes were overexpressed in
esophageal cancer, whereas another 13 genes were
suppressed in EC samples (Fig. 1). Among these DEGS,
HAP1, RDM1, RAD54L, UBE2T, EXO1 were the top 5 up-
regulated DDR genes, and NEIL1, REV3L, POLI, XPA,
PER1 were the top 5 down-regulated DDR genes (Fig. 1).

The dysregulation of DNA damage repair genes (DDR) were
correlated to shorter OS in esophageal cancer
We next performed Kaplan-Meier analysis to evaluate the
association between DDR expression and OS time in EC. As
present in Fig. 2, the results showed that higher expression
of POLN, PALB2, ATM, PER1, TOP3B, and lower
expression of HMGB1, UBE2B were related to longer OS
time in EC (Figs. 2A–2G).

Construction of a prognostic DDR genes signature
LASSO regression analysis was performed based on DDR
expression, and 7 genes were retained according to the
optimal lambda value, including POLN, HMGB1, TOP3B,
PER1, UBE2B, ATM, PALB2 (Figs. 3A and 3B). Then, a
prognostic model based on 7 DDR genes was developed as
follows: Riskscore = (−0.4278) * POLN + (0.3241) *
HMGB1 + (−0.0328) * TOP3B + (−0.03) * PER1 + (0.8504)
* UBE2B + (−0.0913) * ATM + (−0.548) * PALB2. The EC
samples were classified into high- and low-risk groups based
on the median value as cutoff (Fig. 3C). Kaplan–Meier
analysis showed EC patients with higher risk scores had a
shorter OS time (Fig. 3D). Next, the AUC for OS prediction
was calculated. The AUC of the ROC curve reached 0.779 at
1 year, 0.725 at 3 years, and 0.705 at 5 years (Fig. 3E).

Consensus clustering analysis for esophageal cancer based on
the expression of DNA damage repair genes
We next performed consensus clustering for Esophageal
cancer based on the expression of DNA damage repair
genes. k = 3 was identified based on the similarity displayed
by the expression levels of 132 DDR genes expressions
(Figs. 4A and 4B). EC patients were divided into cluster 1,
cluster 2 and cluster 3 (Fig. 4C). There were 81 EC patients
in cluster 1, 27 EC patients in cluster 2, 54 EC patients in
cluster 3. As present in Fig. 4D, we observed almost 90% of
DDR genes expressions were down-regulated in cluster 2,
indicating the genome instability may be higher in cluster 2
compared to other groups.

Clinical profile of the 3 subtypes
To reveal the clinical relevance of DDR based subtypes,
gender, race, T stage, N stage, M stage and grade were
compared between patients with the 3 DDR subtypes
(Table 1). Clinically, we observed cluster 1 and cluster 2
have a markedly higher proportion of male patients, while
cluster 3 have a markedly higher proportion of female
patients (Fig. 5A). Cluster 1 has a markedly higher
proportion of Asian patients and cluster 2 and cluster 3
have a markedly higher proportion of white patients
(Fig. 5B). Clusters C1 and C2 showed a similar frequency of
T2, which was remarked higher than that in cluster 3

2602 JIAMING ZHAN et al.

https://portal.gdc.cancer.gov
http://cis.hku.hk/TISIDB/index.php
https://cistrome.shinyapps.io/timer/
https://david.ncifcrf.gov/
https://www.r-project.org/


(Fig. 5C). However, N stage, M stage and was not different
among the 3 groups (Figs. 5D–5F).

Landscape of immune infiltration in 3 subtypes of esophageal cancer
To further analyze the differences in immune cell inflation of 3
subtypes of esophageal cancer, the TIMER algorithm was used
to investigate the differences in the proportion of 6 immune
cell subsets. The results showed infiltration levels of T cell
CD8+, B cell and NK cells were markedly higher in cluster 2
than that in cluster 1 and cluster 3. The results showed T
cell CD4+ infiltration levels were markedly higher in cluster
1 than that in cluster 2 and cluster 3 (Figs. 6A and 6B). The
infiltration levels of Endothelial cell were markedly higher in
cluster 2 and 3 than that in cluster 1 (Figs. 6A and 6B).
Fig. 6 presents the immune cell distribution in the EC samples.

Identification of differently expressed genes among 3 subtypes of
esophageal cancer
Then, we identified differently expressed genes among 3
subtypes. As present in Fig. 6, 1071 overexpressed and 215
suppressed genes were found in cluster 1 in comparison

with cluster 2, 419 overexpressed and 378 suppressed genes
were identified in cluster 1 in comparison with cluster 3,
and 48 overexpressed and 142 suppressed genes were
identified in cluster 2 in comparison with 3 (Figs. 7A, 7D
and 7G). The KEGG analysis showed these DEGs were
related to multiple pathways regulation.

For example, the DEGs between cluster 1 and cluster 2 were
significantly related to Base excision repair, Cell cycle, DNA
replication, Cellular senescence, Fanconi anemia pathway,
Homologous recombination, Mismatch repair, Nucleotide
excision repair, Wnt pathway, p53 pathway, IL−17 pathway,
Insulin resistance, Fat digestion and absorption, Fatty acid
degradation (Figs. 7B and 7C). The DEGs between cluster 1
and cluster 3 were significantly related to Hedgehog, Hippo,
PI3K−Akt, and Wnt signaling, Glycolysis/Gluconeogenesis,
Glycosphingolipid biosynthesis, IL−17 signaling pathway (Figs.
7E and 7F). the DEGs between cluster 2 and cluster 3 were
significantly related to Fatty acid degradation, Gastric acid
secretion, Glycolysis/Gluconeogenesis, PPAR signaling
pathway, Cell cycle, Cellular senescence, IL−17 pathway,
NF−kappa B signaling (Figs. 7H and 7I).
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FIGURE 1. DNA damage repair genes (DDR) was differently expressed in esophageal cancer. The heatmap analysis of DDR genes in EC.
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Discussion

EC is an aggressive malignant neoplasm characterized by high
morbidity and poor prognosis. Alcohol along with its
metabolite, acetaldehyde, and ALDH2 have been reported to
exhibit an associated with esophageal carcinogenesis. In
recent years, much advance has been made in EC’s diagnosis
and treatment, but EC’s prognosis is yet poor (Wang et al.,
2020a). The mechanism underlying in EC’s tumorigenesis
and development stays unclear. In this study, by comparing
EC samples and normal samples, we found a total of 132
DDR expression with a significant difference. Moreover, we
revealed higher expression of POLN, PALB2, ATM, PER1,
TOP3B and lower expression of HMGB1, UBE2B were
correlated to longer OS in EC. In addition, a prognostic risk
score based on 7 DDR gene expression was constructed for
the prognosis of EC. Meanwhile, EC cancer samples were
divided into 3 subtypes based on 132 DDR genes expressions.

Finally, we perform bioinformatics analysis of DEGs among 3
subtypes of EC to understand the mechanisms underlying the
regulation of DDR in EC progression.

Previous studies had demonstrated that DDR signaling
played important regulatory role in EC. For example, in
ESCC, polymorphisms of base excision repair (BER) genes
were probably related to ESCC’s susceptibility (Yang et al.,
2015). Genetic variants of the nucleotide excision repair
(NER) gene had a connection with Chinese ESCC patients’
survival outcome (Zhang et al., 2018). In addition, the
genetic polymorphisms of XRCC6 displayed a link to a
high risk of ESCC (Li et al., 2015). Besides,
hypermethylation of the promoter of mismatch repair
(MMR) gene MLH1 is of importance for maintaining
genome stability, indicating a potential indicator of male
ESCC patients’ prognosis (Wu et al., 2017). The present
study, we revealed 119 genes with up-regulation and 13
genes with down-regulation in EC, such as DEGS, HAP1,
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FIGURE 2. The dysregulation of DDR genes were correlated to shorter OS in Esophageal cancer. (A–G) The dysregulation of were PALB2 (A),
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RDM1, RAD54L and POLI, XPA, PER1, further
demonstrating the crucial roles of DDR in EC.

Till now, many genes, such as VEGF, and miR-21 have
been confirmed to have important clinical significance in
the prediction of EC prognosis. Even so, more clinical
studies are needed to obtain more biomarkers related to the
prognosis of EC, thus providing a preliminary basis for
clinical management of EC. Of note, in this study, we
revealed higher expression of POLN, PALB2, ATM, PER1,
TOP3B and lower expression of HMGB1, UBE2B were
correlated to longer OS in EC. These results showed that
dysregulation of DDR genes may serve as potential
prognostic markers for EC. DNA topoisomerases was
considered to be an important anti-cancer drug target (Bai
et al., 2016). Type IA (TOP3A and TOP3B) enzymes are the
only ones relaxing negative supercoiling. Convincing evidence
shown that they interact with SGS1 helicase (Bai et al., 2016)
and other members of RecQ family (Staker et al., 2002),

indicating that they have the function of maintaining
genomic stability. UBE2B have been reported to be related
to survival in esophageal adenocarcinoma (EAC). It also
took part in worse OS for EAC patients. UBE2B was greatly
higher in EAC patients of stage II than stage I, suggesting it
was probably increased with the progression of EAC at early
stage (Wang et al., 2020b). Li et al. (2017b) showed that
HMGB1 had an obvious link to OS in the ESCC cohort.
And HMGB1 was adversely prognostic genes in ESCC.
PALB2 exhibits importantly in the maintenance of genomic
integrity. PALB2 has become a crucial tumor suppressor
related to genetic susceptibility to breast and pancreatic
carcinomas, since being identified as a BRCA2 interaction
partner (Nepomuceno et al., 2017). Li et al. (2016) indicated
that circadian protein PER2 level was largely raised, while
E-cadherin was greatly reduced in the tissues of human
metastatic EC when compared with non-metastatic EC.
PER2 overexpression in EC cells markedly inhibited the
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TABLE 1

Clinical profile of the 3 subtypes

Characteristics C1 C2 C3 P_value

Status Alive 50 15 32

Dead 31 12 22 0.846

Age Mean (SD) 58 (10.7) 67 (14.3) 66.2 (10.5)

Median [MIN, MAX] 56 [36,90] 71 [27,86] 67 [36,84] 0

Gender FEMALE 7 2 14

MALE 74 25 40 0.01

Race ASIAN 28 2 8

BLACK 6

WHITE 41 21 38 0.002

(Continued)
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expression of E-cadherin. Compared with non-metastatic EC
tissues, pHDAC1 was more common in human metastatic EC
tissues. After PER2 overexpression, the repressors of
pHDAC1 and E-cadherin at the E-cadherin promoter locus
were increased. Overexpressing PER2 significantly
heightened the migration ability of EC cells, while inhibiting
HDAC1 eliminated this migration ability, all data suggested
that PER2 played importantly in the metastasis of EC cells.
Based on above, we presumed that PER1 might function the
same as PER2 in EC. More researches needs to be further
verified. In addition, a prognostic risk score based on 7
DDR gene expression was constructed for the prognosis of
EC. Kaplan–Meier (K–M) plots shown that patients with
high risk scores had poor OS. It is worth noting that EC
patient were classified into three subtypes in the light of
DDR genes expression. Clinically, we observed these
subtypes were significantly enriched in different stages of EC.

Recently, researches on immune checkpoint inhibitors in
ESCC (e.g., PD-1/PD-L1 inhibitors, CTLA-4 inhibitors, etc.)
presented satisfactory results. Additionally, combining immune
checkpoint inhibitors and traditional strategies against

neoplasms to treat ESCC has aroused widespread interest, and
the results are encouraging. As previously described, PD-L1
expression, TMB, MSI-H, as well as other biomarkers
displayed a relation to the immunotherapy’s efficacy (Jiao et
al., 2019). More and more evidence showed that TMB was an
important factor in carcinogenesis with regard to EC (Yuan et
al., 2020). TMB displayed an association with abundant
neoantigens and enhanced immunogenicity (Yuan et al.,
2020), along with high immunogenicity (Champiat et al.,
2014). High TMB was a marker of associated antigen
mutations, indicating an increase in lymphocyte infiltration in
the tumor microenvironment. High TMB group exhibited
higher level of Treg cell infiltration than low TMB group in
EC patients free of radiotherapy. Nevertheless, no difference of
Treg cell infiltration was observed in EC patients with
radiotherapy. Some researchers indicated that, however, high
TMB generated a plenty of neoantigens that motivated
immune responses against neoplasms (Rizvi et al., 2015), and
that high TMB displayed a relation to genomic instability,
bringing about induced immune responses to neoplasms
(Rizvi et al., 2015). The significance of PD-L1 expression

Table 1 (continued)

Characteristics C1 C2 C3 P_value

pT_stage T1 6 3 16

T2 24 7 10

T3 44 16 28

T4 5

TX 2

T4a 1 0.017

pN_stage N0 30 11 24

N1 36 11 23

N2 4 2 3

N3 1 1 3

NX 10 2 1 0.515

pM_stage M0 67 21 40

M1 7 2

M1a 1 1 4

MX 5 5 5

M1b 1 0.156

pTNM_stage I 1 6

IA 1 1 2

IB 2 2 1

IIA 22 7 13

IIB 17 2 11

III 17 5 3

IIIA 7 5 4

IIIB 4 2 2

IIIC 2 1 3

IV 6 3

IVA 1 1 3

IVB 1 0.494
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levels in tumor cells remained controversial. A majority of
researches suggested that PD-L1 expression in neoplastic
cells was the most expected biomarker for immune
therapy. Nonetheless, immune therapies have shown good
efficacy in some PD-L1 negative patients, but ineffective in
some PD-L1 positive patients. The inconsistency of these
results was mainly related to the heterogeneity of PD-L1
expression, samples variation and inconsistent detection
standards, etc. (Yuan et al., 2020). Besides, several clinical
researches of PD-1/PD-L1 inhibitors along with CTLA-4
inhibitors for treating EC are also in progress (Champiat et
al., 2014). As previous study shown, MSI-H has a positive
correlation with high TMB in the immunotherapy for
colorectal carcinoma (Fabrizio et al., 2018). Le et al. (2017)
(Asaoka et al., 2015) discovered that mismatch repair
status could be utilized as a predictor of the effect of
pembrolizumab in clinical, and found that deficiencies
mismatch repair (dMMR) neoplasms had an association
with prolonged progression-free survival (PFS) relative to
mismatch repair-proficient neoplasms, regardless of the
carcinomas’ origin tissues. Even though the incidence of

MSI-H in ESCC stayed low, with estimated 8%, the function
of this biomarker is extremely important since it perhaps
exert an effect on the efficiency of immune checkpoint
inhibitors (Le et al., 2017). Immune cell infiltration has
been linked to EC, and it has been shown to have a
significant impact on tumor progression, treatment, and
patient outcomes. More recent studies have shown that
immune cell infiltration is a potential predictive marker for
immune therapy response in human malignancies, including
EC (Liu et al., 2021; Zhang et al., 2020). A few regulators
have been linked to immune cell infiltration; for example,
Liu et al. (2021) found that COL9A3, GFRA2, and VSIG4
were linked to levels of infiltration of CD4 memory T cells,
M1 and M2 macrophages. Moreover, we found the immune
cell inflation levels were significantly changed in different
subtypes of EC. The results showed infiltration levels of T
cell CD8+, B cell and NK cells were greatly higher in cluster
2. The results showed T cell CD4+ infiltration levels were
dramatically higher in cluster 1. These results showed DDR
based subtypes could predict the potential response of
immune therapy in EC.
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In order to reveal the underlying mechanism in different
subtypes of EC. We identified differently expressed genes and
performed functional analysis based on these DEGs. Our
results showed the DEGs between cluster 1 and cluster 2
were significantly related to Base excision repair, Cell cycle,
Cellular senescence, DNA replication, DNA damage repair
related signaling. The DEGs between cluster 1 vs. 3 were
significantly related to Hedgehog, Hippo, PI3K−Akt signaling.
The DEGs between cluster 2 vs. 3 were significantly related to
Glycolysis/Gluconeogenesis, PPAR signaling pathway. Previous
research has found that the HH pathway is highly activated in
esophageal cancer (Wang et al., 2019). In esophageal cancer,
several key members of the HH pathway, such as GLI1 and
PTCH1, are significantly overexpressed (Wang et al., 2019).
The Hedgehog (HH) pathway is linked to cancer stemness and
therapy resistance (Wang et al., 2019). Inhibiting the HH
pathway was linked to fewer cells with a cancer stem cell-
associated phenotype (CD44+/CD24-), decreased spheroid
formation, and increased radiosensitivity, according to a recent
study (Wang et al., 2019). The glycolytic pathway is important

in the occurrence and progression of esophageal cancer (Zhu
et al., 2021). Previous research has shown that glycolysis can
affect EAC immunotherapy by altering the microenvironment
caused by genetic mutations (Zhu et al., 2021). CLDN9,
GFPT1, HMMR, RARS, and STMN1 are glycolysis-related gene
signatures that predict prognosis in patients with esophageal
adenocarcinoma. DNA damage repair pathways are essential
for genome integrity (Kang et al., 2020). A large number of
DNA damage repair genes, such as RAD54B, and PRKDC,
were significantly amplified and overexpressed in esophageal
cancer. Amplification of DSB repair pathway genes are
associated with poorer outcome in EC. Inhibiting the DSB
repair pathway can improve ESCC radiosensitivity. APE1-
mediated DNA damage repair promoted EC survival in
response to acidic bile salts, according to a recent study
(Hong et al., 2016).

Several limitations of this study should be noted. Firstly,
only TCGA was analyzed in this study. In the future study,
more validation will be performed using clinical samples.
Secondly, several hub DDR genes were identified, such as

(A)

0%

50%

100%

Pe
rc

en
t

Type

B cell

Endothelial cell

Macrophage

NK cell

T cell CD4+

T cell CD8+

uncharacterized cell

(B)

FIGURE 6. Landscape of immune infiltration in 3 subtypes of esophageal cancer. (A–B) The immune cell distribution in the different clusters
of EC samples were shown. *P < 0.05; ***P < 0.001.
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RAD54B, NBS1, RAD51B. However, the molecular functions
of these DDR genes were not confirmed. The experimental
validation of these genes will be performed in the future
study. Thirdly, the findings of this article are still a long way
from clinical practice. More translational medicine work will
be done in the future study.

Conclusion

In summary, our findings showedDDR genes were significantly
differently expressed in EC and correlated to the OS time in EC.
Moreover, a prognostic risk score based on 7 DDR gene
expression was constructed to predict OS of patients with EC.
In addition, EC cancer samples were divided into 3 subtypes
based on 132 DDR genes expressions. We found the immune
cell inflation levels were significantly changed in different
subtypes of EC. These results showed DDR genes may serve
as new target for the treatment of EC.
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Supplementary Materials

TABLE S1

Clinical profile of the 3 subtypes

Characteristics C1 C2 C3 P_value

Status Alive 50 15 32

Dead 31 12 22 0.846

Age Mean(SD) 58(10.7) 67(14.3) 66.2(10.5)

Median[MIN,MAX] 56[36,90] 71[27,86] 67[36,84] 0

Gender FEMALE 7 2 14

MALE 74 25 40 0.01

Race ASIAN 28 2 8

BLACK 6

WHITE 41 21 38 0.002

pT_stage T1 6 3 16

T2 24 7 10

T3 44 16 28

T4 5

TX 2

T4a 1 0.017

pN_stage N0 30 11 24

N1 36 11 23

N2 4 2 3

N3 1 1 3

NX 10 2 1 0.515

pM_stage M0 67 21 40

M1 7 2

M1a 1 1 4

MX 5 5 5

M1b 1 0.156

pTNM_stage I 1 6

IA 1 1 2

IB 2 2 1

IIA 22 7 13

IIB 17 2 11

III 17 5 3

IIIA 7 5 4

IIIB 4 2 2

IIIC 2 1 3

IV 6 3

IVA 1 1 3

IVB 1 0.494
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