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Abstract: Ochratoxin A (OTA), one of the most dangerous mycotoxins for human health, has been subjected to

numerous studies for separation and detection in minimal amounts. Aptamers as novel recognition elements have

been employed to fabricate ultrasensitive biosensors for the detection of OTA and designing delicate analytical tools.

This review attempted to comprehensively examine all reported aptamer-based detection and separation platforms for

ochratoxin. The most relevant databases were considered to discover all specific aptamers for dealing with OTA.

Aptamer-based detection and separation devices specified for OTA were searched for, analyzed, discussed, and

classified based on their specifications. The optical aptasensors have gathered a higher interest than electrochemical

aptasensors, which can achieve a lower limit of detections. Moreover, some extraction platforms based on these

aptamers were also found. However, aptamer-based devices seem to have some challenges in their application.

Introduction

Ochratoxins belong to a family of toxic secondary metabolites
produced by several species of fungi such as Aspergillus and
Penicillium spp. Ochratoxins A, B, and C are members of
this family with abundance in specimens. Ochratoxins are
ubiquitous fungal toxins in a wide variety of poorly stored
agricultural supplies, ranging from cereal grains to dried
fruits to wine and coffee (Bui-Klimke and Wu, 2015). They
threaten human and animal health by impacting food and
nutrition safety and can affect food and agricultural
economics (Heussner and Bingle, 2015).

The structure of ochratoxin A (OTA), a chlorophenolic
mycotoxin, is chemically stable (Fig. 1) and comprises a
phenylalanine moiety and dihydro-isocoumarin ring.

OTA exerts several toxic effects such as immunotoxicity,
nephrotoxicity, hepatotoxicity, neurotoxicity, teratogenicity,
and carcinogenicity (el Khoury and Atoui, 2010). It enters
the human food chain through livestock products as a result
of animal feeding on contaminated nutrition.

Children who consume large amounts of milk daily may
have higher daily intakes of OTA (Muñoz et al., 2014).

Avoiding the risk of OTA exposure and the detection and
quantitation of OTA levels are issues of great significance.

Currently, there are various analytical methods to detect
OTA in as low as microgram levels. The most typical methods
to detect and analyze OTA include immunological, such as
enzyme-linked immunosorbent assay (ELISA) (Sun et al.,
2019), Radio-immunoassay (RIA) (Rousseau et al., 1985), and
chromatographic methods such as thin-layer chromatography
(Pittet and Royer, 2002), liquid chromatography (LC), liquid
chromatography-mass spectrometry/mass spectrometry (LC-
MS/MS) (Chung and Kwong, 2019), gas chromatography
(Olsson et al., 2002), and high-performance liquid
chromatography (HPLC) (Sibanda et al., 2001).

In addition to their high cost, these methods take a long
time and require a trained person and specific instruments to
perform.

With the increasing need to develop a simple method to
detect and separate OTA, various biosensors have been
developed to detect this toxin in cereal products, food
materials, and beverages. The development of novel biosensors
has created an opportunity in the agriculture and food
industries to improve food quality and safety assurance.
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Hitherto numerous antibody-based biosensors have been
reported for the detection of OTA (Huang et al., 2017; Ren et
al., 2018; Alhamoud et al., 2019). In most biosensors,
antibodies are used to identify targets. However, several new
recognition elements have been introduced as alternatives
for antibodies.

Aptamers, oligonucleotides, or peptide molecules that
bind to a specific target can be isolated against amino acids,
drugs, proteins, and other molecules. These are potent in
their use in a variety of tools, including biosensors and
analytical techniques (Zhao et al., 2008). Aptamers, known
as chemical antibodies (Zhou et al., 2016a), are worthwhile
alternatives for antibodies with greater benefits. They can
bind specifically with a high affinity to their targets, ranging
from ions to a complex targets such as whole cells. The
specificity of aptamers is such that they can even distinguish
between chiral molecules. These characteristics have enabled
aptamers into a promising tool to construct diagnostic and
analytical platforms with low limits of detection ranging
from picomoles to nanomoles of targets (Song et al., 2008).

An interesting issue to address OTA contaminations is the
development of aptasensors and biosensors. Some studies applied
OTA aptamer for separation approaches such as aptamer-
assisted real-time polymerase chain reaction (PCR), HPLC,
suspension arrays, microfluidic devices, and affinity columns.

In © present review, we have tried to systematically study
and classify OTA-specific isolated aptamers based on their
applications and specifications.

Materials and Methods

Search for available OTA-specific aptamers and their
separation and detection platforms
Data mining and searches were carried out in PubMed and
Scopus for articles from 2008 to 2020. The main search
keywords included OTA-specific aptamers, aptamer-based
biosensors, aptamer-based detection, OTA aptasensors,
ochratoxin A separation, ochratoxin A analysis, and other
similar compositions. Keywords were selected using the
medical subject headings (MeSH) terms and composed
using proper Boolean operators (AND/OR/NOT).

The data mining was performed independently by two
researchers, and the results were checked by the other researchers.

Study eligibility
The following inclusion criteria were considered: only articles
published in the English language, articles with methods for
separation or detection of OTA, and use of aptamer-based sensors.

For data collection and extraction, selected publications
that met inclusion criteria were reviewed. The methods were

categorized and reviewed based on the separation approach,
sensor platform, label, detection limit, detection range, and
sequences of aptamers. The analytical methods used to
measure OTA were also evaluated.

Study selection
A total of 269 records (up to October 2020) were recovered;
among these, 15 studies were removed after the first screening.
The remaining 254 studies were reviewed in detail. Studies
addressing other aspects of the title and deviation from
inclusion criteria were excluded. The remaining studies that
met the inclusion criteria and were classified for inclusion in
the systematic review (Fig. 2).

Docking studies
OTA structure was prepared from (PDB: 6J2W), and the
tertiary structures of OTA-specific aptamers were designed
according to the findings in our recent article. In summary,
Secondary structures of four OTA-specific aptamers were
predicted using the Mfold web server (Zuker, 2003) (version
3.0, http://www.unafold.org/mfold/applications/dna-folding-
form.php). Then, based on the resulting secondary structure
of the Vienna file format, their PDB structure was predicted
using RNA composer (Antczak et al., 2016) and refined by
UCSF Chimera (Pettersen et al., 2004) and discovery studio
visualizer. In summary, the uracil was replaced by thymine
(T), and the ribose sugars were substituted with deoxyribose
sugars in the primary chain. The OTA was docked on each
aptamer by HDOCK webserver (Yan et al., 2020) to predict
complex models. Then, discovery studio visualizer software
(2016) was employed to find the most appropriate and final
structure of OTA and each aptamer complex and to
monitor possible intermolecular interactions.

Results

Specific Aptamers against OTA
Some aptamers have been reported for specific detection of
OTA (Table 1).

Cruz-Aguado and Penner isolated 13 DNA aptamers
against OTA by SELEX after twelve reiterative rounds,
between which an aptamer named OTA binding aptamer
(OBA; 1.12) showed the highest affinity (Kd = 0.36 μM).
They also developed buffer conditions by adding divalent
cations to reduce the Kd value of the aptamer to 50 nM.
Their results found that the Kd value could be reduced by
substituting calcium for magnesium in the buffer.

Presumably, OTA forms a coordination complex with
magnesium or calcium with the aid of its carboxyl and 8-
hydroxyl groups, and this complex increases the binding to
the aptamer. This buffer was subsequently used for the
separation of the OTA from wheat samples using an
aptamer affinity column. The column removed more than
97% of OTA from 1 mL of a 100 nM OTA solution (Cruz-
Aguado and Penner, 2008). Other scientists applied a
structure-guided post-SELEX approach to improve the
affinity of this reported aptamer. They achieved this goal by
forming a novel hairpin structure containing an
intramolecular triple helix in the aptamer structure by

FIGURE 1. Chemical structure of ochratoxin A (OTA).
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mutating T and adenine (A) in critical points in aptamer
sequence to cytosine (C) and guanine (G), respectively, and
adding a C in the 5’–terminus of the aptamer. Using such
an approach increased the affinity aptamers’ by up to 50-
fold (Xu et al., 2019).

In 2011, another research group (Barthelmebs et al., 2011)
isolated five aptamers against OTA by employing in vitro
SELEX method. They selected an aptamer with the lowest IC50
(0.051 µg/mL), called H12, with Kd of 96 nM as the best one
(Barthelmebs et al., 2011). They found two important conserved
sequences (GGGTGTGGG) and (AGGGAGT) in the stem
region and the single-strand terminal loop, respectively, in these
aptamers for binding to OTA in the stem and loop regions
similar to aptamer OBA (Cruz-Aguado and Penner, 2008).

A08 and B08, were other novel aptamers reported for the
detection of OTA with relatively high affinity (Kd = 290 ± 150
and 110 ± 50 nM respectively), after fifteen reiterative rounds
of SELEX (McKeague et al., 2014) without any similarity with
previously reported aptamers (Cruz-Aguado and Penner,
2008; Barthelmebs et al., 2011).

Recently, a study used the in vitro evolution technique
and introduced a threose nucleic acid aptamer for OTA
with high stability and low Kd (71 nM) (Rangel et al., 2018).

Docking results
In silico investigation on binding structures confers valuable
data about intermolecular interactions. Knowledge of the
interaction mechanism can help us design purposeful
diagnostic and analytical systems. Each binding—partial or
complete binding or pocket formation—of the aptamer has
features that help researchers to design their devices
intelligently and accurately.

To know more about OTA-aptamer interactions, the
OTA molecule was docked on reported aptamers (aptamers
with the highest affinity in each study). Docking of OTA on
its specific aptamers by the HDOCK web server (http://
hdock.phys.hust.edu.cn/) (Yan et al., 2020) resulted in over
100 probable models. From these structures, the top models
ranked by HDOCK were summarized in Table 2. We also
calculated the strength of interaction of each top model of
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FIGURE 2. PRISMA flow-diagram.

TABLE 1

Reported aptamers against OTA

No. Name of the
best aptamer

Type Sequence (5′ to 3′) Length
(nt)

Affinity
(Kd)

References

1 OBA (1.12) DNA TGGTGGCTGTAGGTCAGCATCTGATCGGG
TGTGGGTGGCGTAAAGGGAGCATCGGACAACG

61 0.36 µM (Cruz-Aguado and
Penner, 2008)

2 H12 DNA GGGAGGACGAAGCGGAACCGGGTGTGGGTGCC
TTGATCCAGGGAGTCTCAGAAGACACGCCCGACA

67 0.096
µM

(Barthelmebs et al.,
2011)

3 B08 DNA AGCCTCGTCTGTTCTCCCGGCAGTGTGGGCGAATCTA
TGCGTACCGTTCGATATCGTGGGGAAGACAAGCAGACGT

76 0.47 µM (McKeague et al.,
2014)

4 OBA3 DNA TGGTGGCTGTAGGTCACGGGGCGAAGCGGGTCCCG
GAGCATCGGACAACG

19 1.4 µM (Xu et al., 2019)

5 A04T.2 AATAGGGTAAAAAAAAAAAGTTGGTCCTATG 31 71 nM (Rangel et al., 2018)
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docking of OTA with the highest affinity OTA aptamers ranked
byHDOCK using the PreDDICTA tool (www.scfbio-iitd.res.in/
software/drugdesign/preddictanew.jsp) http://www.scfbio-iitd.
res.in/software/drugdesign/preddictanew.jsp and compared
them (Shaikh and Jayaram, 2007). The OBA (1.12) (Cruz-
Aguado and Penner, 2008) showed the lowest predicted
binding free energy (−3.0 kcal/mol).

After minimizing the energy of these models for each
aptamer, final models were achieved and considered for
further analysis (Fig. 3). Hydrogen bonds in the final
complex structures was monitored by Discovery studio
visualizer software (2016) (Wallace et al., 1995). The
illustration revealed the possible hydrogen bonds between
OTA and its aptamers (Fig. 3 and Table 3).

Docking results revealed that these aptamers could
surround and bind OTA through some hydrogen bonds by
creating binding pockets. The carbonyl oxygen and
hydrogens from the amide and chlorine of OTA showed

high potential for forming intermolecular hydrogen bonds
between the OTA and the aptamers.

Different binding interactions could explain their distinct
predicted affinity for binding OTA (Table 2). Some studies
showed comparable binding strength of carbon hydrogen
bonds to that of the conventional hydrogen bonds. The
attractive dispersion interaction could explain the unusual
stabilities of these hydrogen bonds (Ghosh et al., 2020).
However, aptamers are more complex to be interpreted with
preliminary molecular studies, and such a basic analysis
cannot totally disclose the mechanism of aptamer-target
binding.

Aptamer-based methods for OTA
Various aptamer-based sensors have been developed for the
quantitative measurement of OTA. In this regard,
electrochemical, optical, and mass-sensitive transducers have
been used to fabricate aptasensors. In addition to the

TABLE 2

Top models of OTA docking with the highest affinity OTA aptamers ranked by HDOCK

No. Aptamer Docking Score Ligand rmsd (Å) Predicted binding free energy (kcal/mol)* References

1 OBA −222.02 72.49 −3.0 (Cruz-Aguado and Penner, 2008)

2 H12 −230.01 44.49 36.6 (Barthelmebs et al., 2011)

3 B08 −208.67 20.37 23.5 (McKeague et al., 2014)

4 OBA3 −177.99 20.47 29.0 (Xu et al., 2019)
Note: * Predict aptamer-OTA Interaction strength by Computing the Affinity of binding: http://www.scfbio-iitd.res.in/software/drugdesign/preddicta.jsp (Shaikh
and Jayaram, 2007).

FIGURE 3. Illustration of docking Ochratoxin A (OTA) (purple) on its specific aptamers (white tubes): a) OTA binding aptamer (OBA; Cruz-
Aguado and Penner, 2008), b) H12 (Barthelmebs et al., 2011), c) B08 (McKeague et al., 2014) and d) OBA3 (Xu et al., 2019). The OTA bonded
nucleotides of each aptamer are displayed in the magnified form on the right side of each figure. Green dashed lines: Conventional hydrogen,
Blue dashed lines: Carbon-hydrogen bonds.
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biosensors, some other approaches such as aptamer assisted
real-time PCR, HPLC, suspension array, microfluidic
devices, and extraction columns have been developed.

All studies can be divided into two main categories of
detection (aptasensor or non-biosensor detection methods)
and separation.

Most of the fabricated aptasensors for OTA have been
developed based on the first reported aptamer (OBA, Kd =
0.36 µM) (Cruz-Aguado and Penner, 2008). Of reported
aptasensors based on OBA aptamer, 38 were electrochemical
(Table 4), and 70 were optical aptasensor (Table 5). An
optical aptasenor was also fabricated based on B08
(McKeague et al., 2014).

Other studies (17 original studies) have used either the
first reported aptamer (OBA aptamer, 15 studies) (Cruz-
Aguado and Penner, 2008) or H12 aptamer (two bioassays
including direct and indirect Enzyme-Linked Aptamer
Assay) (Barthelmebs et al., 2011) in non-biosensor detection
approaches, isolation, and extraction.

In the following, the most prominent studies in two
categories of aptasensors and non-biosensor aptamer-based
detection and separation methods were discussed. We have
also mentioned a few reported lateral flow and Lab-on-
Chip-based assays. However, all the relevant studies are
listed in the Tables.

a) Aptasensors

i) Electrochemical Aptasensors

In electrochemical biosensors, the biologically active
materials are combined with an electrochemical sensing

element transducer. The transducer transduces a chemical
signal into an electrical signal by amperometric, voltammetric,
potentiometric, or conductometric methods. There are thirty-
eight reports on electrochemical aptrasensors for the detection
of OTA (Table 4).

In these studies, gold electrodes were employed as the
working electrode in twenty electrochemical aptasensors (n =
20) that exhibited favorable outcomes using this type of
electrode. The advantages of this electrode include high
surface area, ease of synthesis, preparation, and modification,
tunable pore size, conductivity, and a bicontinuous open pore
network (Angnes et al., 2000).

The other popular electrode for this type of OTA specific
electrochemical aptasensor (n = 10) is a screen-printed carbon
electrode (SPCE) with a wide potential window, low
background current, and low-cost properties. SPCE consists
of a reference electrode, a counter electrode, and a carbon
working electrode. The area, thickness, and composition of
these electrodes can be readily controlled. Catalysts can be
simply incorporated by pasting them to the screen printing
ink (Cumba et al., 2020).

Glassy carbon electrodes (GCEs), which were employed
in six of the OTA electrochemical biosensors are less
sensitive than GE because of having a wider window of
electrochemical activity. Since these electrodes are highly
resistant to heat and corrosion and can be easily cleaned and
polished due to their tightly knit atomic structure and glassy
exterior, they are widely applied in electrochemical biosensors.

TABLE 3

Monitoring of the hydrogen bonds of final structures of OTA and aptamers complexes

Aptamer Donor-Acceptor Type of hydrogen bond Distance (Å) References

OBA B:OTA:OBB-A:DA51:N7 Conventional hydrogen bond 3.20044 (Cruz-Aguado and Penner, 2008)

A:DG34:C5*-B:OTA:OXT Carbon hydrogen bond 2.66189

A:DG34:C8-B:OTA:OXT Carbon hydrogen bond 3.19575

A:DG35:C5*-B:OTA:OBB Carbon hydrogen bond 3.18193

A:DC50:C3*-B:OTA:OAX Carbon hydrogen bond 3.26106

A:DC50:C6-B:OTA:OAX Carbon hydrogen bond 3.3818

H12 A:DA53:N6-B:OTA:OAX Conventional hydrogen bond 3.01236 (Barthelmebs et al., 2011)

B:OTA:OBB-A:DC18:O1P Conventional hydrogen bond 2.50557

A:DA17:C5′-B:OTA:OAI Carbon hydrogen bond 3.24395

A:DC18:C6-B:OTA:OXT Carbon hydrogen bond 3.71028

A:DC18:C3′-B:OTA:OXT Carbon hydrogen bond 3.42828

B08 A:DA51:N6-B:OTA:OAX Conventional hydrogen bond 2.88057 (McKeague et al., 2014)

B:OTA:OBB-A:DG28:N7 Conventional hydrogen bond 2.56041

B:OTA:OBB-A:DG29:O6 Conventional hydrogen bond 2.43525

A:DG28:C8-B:OTA:OAK Carbon hydrogen bond 2.99965

A:DG28:C3′-B:OTA:OAI Carbon hydrogen bond 3.5491

OBA3 A:DC15:N4-B:OTA:OAX Conventional hydrogen bond 2.32605 (Xu et al., 2019)

B:OTA:OBB-A:DG5:N7 Conventional hydrogen bond 2.56915

B:OTA:CA-A:DT4:O4 Carbon hydrogen bond 2.89197

APTAMER-BASED TOOLS FOR OCHRATOXIN A 2541



TABLE 4

Electrochemical biosensors for detection of ochratoxin A (OTA) based on OTA binding aptamer (OBA) (Cruz-Aguado and Penner, 2008)

No. Modification Sample Electrode Linear
range
ng/mL

LOD
ng/mL

RSD% Recoveries% References

1 NRa Red grape wine GCEb 0.1–20 0.03 NR 95–110 (Kuang et al., 2010)

2 NR Wheat GEc 0.02–3.0 0.007 3.8 82.0–103.1 (Wang et al., 2010)

3 Biotin Spiked wheat SPCEd 0.78–8.74 0.07 ±
0.01

<8 102–104 (Bonel et al., 2011)

4 5′-NH2 NR ITOe 0.1–0.01 0.1 NR NR (Prabhakar et al., 2011)

5 5′-AAA Wheat starch GE 0.005–10.0 0.001 NR 90.0–108 (Tong et al., 2011)

6 5′-Methylene
blue 3′-SH

Red wine GE 0.001–1000 0.000095 1.6–4.3 94–106 (Wu et al., 2012)

7 5′-N3

5′-NH2

Beer sample SPCE 0.00125–
0.5

0.00025 NR 101.5–105.4 (Hayat et al., 2013b)

8 5′-COOH Beer sample SPCE 0.12–8.5 0.1 4.2–4.8 NR (Hayat et al., 2013a)

9 5′-SH Beer GE 0.040381–
4.0381

0.008 NR 70–78 (Evtugyn et al., 2013)

10 NR Red wine GE 0.0001–
0.005

0.000065 4.2–7 96–109 (Huang et al., 2013)

11 NR Red wine GE 0.2–1 0.000075 9.1–6.0 96–110 (Chen et al., 2014b)

12 NR Red wine GE 0.001–50 0.0003 7.1 90–97 (Jiang et al., 2014)

13 3′-Biotin Red wine GE 0.001–20 0.064 NR 96–110 (Chen et al., 2014b)

14 NR Red wine GE 0.001–1.00 0.0003 5.2–7.4 90–95 (Jiang et al., 2014)

15 NR Red wine GCE 0.00002–
40.381

0.000004 4.6–6.3 96.6–106 (Yuan et al., 2014)

16 5′-NH2 Cereal SPCE 0.00001–
0.0132

0.00001 3–5 95–103 (Chrouda et al., 2015)

17 NR Cocoa beans SPCE 0.15–2.5 0.15 4.8 91–95 (Mishra et al., 2015)

18 NR Corn GE 0.00005–
0.5

0.00005 6.7 91.4–98.5 (Yang et al., 2015)

19 3′-NH2 Wine SPCE 0.0040381–
40.381

0.0056 17 125 (Rivas et al., 2015)

20 5′-NH2 Cocoa beans SPCE 0.15–5 0.07 3.7 82.1–85 (Mishra et al., 2016)

21 5′-Biotin NR GE 0–1 0.0000003 0.916 NR (Wang et al., 2017b)

22 5′-Thionine
(Thi)

Wheat SPCE 0.4–8.0 0.0056 5.3–7.8 NR (Sun et al., 2017)

23 NR Grape juice GE 0.073–
12.1143

0.021 6.3–7.6 NR (Abnous et al., 2017)

24 NR NR GE 323048 2624.765 NR NR (Somerson and Plaxco, 2018)

25 NR Red wine GE 0.0005–1.0 0.00023 4.3–9.0 93.7–100.8 (Tang et al., 2018)

26 5′-HS Corn GE 0.10–10 0.0001 6.7 89 (Wei and Zhang, 2018)

27 5′-NH2 Coffee SPCE 0.125–2.5 0.125 3.68 88–89 (Zejli et al., 2018)

28 5′-Biotin Grape juice ITO 0.01–0.001 0.0000001 0.45 90–101 (Kaur et al., 2019)

29 3′-Cy5 Corn GCE 0.0005–50 0.00017 2.3–6.4 96.1–100.7 (Gao et al., 2019)

30 Dithiol-
phosphor
amidi

GE 0.101–303 0.0456 0.099–298 0.045 (Mazaafrianto et al., 2019)

31 5′-SH Red wine
White wine
Red grape juice
Purple grape juice

GE 0.1–10.0 0.030 3.96–7.42
6.47–7.77
1.44–8.20
1.90–5.78

98.24–100.04
91.90–104.21
90.56–99.04
92.25–97.68

(Nan et al., 2019)

(Continued)
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Table 4 (continued)

No. Modification Sample Electrode Linear
range
ng/mL

LOD
ng/mL

RSD% Recoveries% References

32 5′-HS(CH2)6 Beer GE 0.001–100 0.0007 5 96.57–109.7 (Suea-Ngam et al., 2019)

33 NR Wine GCE 0.020–2.0 0.0049 2.25–8.16 93.82–103.62 (Wei et al., 2019)

34 5′-SH Red wine GCE 0.000004–
4.0381

0.0000001 0.052–0.049 95.7–100.18 (Yang et al., 2019)

35 5′-COOH
3′-Methylene
Blue

Cold brew SPCE 0.002–2 0.00081 6.4 94.3–97.5 (El-Moghazy et al., 2020)

36 5′-SH Beer GE 0.00047–
0.00026

0.001 4.39-7.41 89.0-102.0 (Wei et al., 2020)

37 NR Wheat GE 0.01–10 0.0033 3.9 94.0–103.0 (Zhu et al., 2020)

38 NR Grape and beer GCE 11 35–3982 NR 91.8–103.2 (Huang et al., 2021)
Notes: a NR = Not reported. bGlassy carbon electrode (GCE). cGraphite electrodes (GE). dScreen-printed carbon electrodes (SPCE). eIndium tin oxide (ITO).

TABLE 5

Optical biosensors for detection of ochratoxin A (OTA) based on OTA binding aptamer (OBA) (Cruz-Aguado and Penner, 2008)

No. Modification Sample Linear range
ng/mL

LOD
ng/mL

RSD% Recoveries
%

References

1 3′-FAM Red wine 807.62–
14133.35

767.24 NR NR* (Sheng et al., 2011)

2 3′-FAM Beer 10.09–80.76 9.73 NR NR (Guo et al., 2011)

3 3′-C6-Biotin Maize 0.0001–1 0.0001 3.29 90.70–
117.98

(Wu et al., 2011a)

4 NR NR 8.07–252.38 8.076 NR NR (Yang et al., 2011)

5 3′-FAM Corn 1–100 0.8 2.1–5.9 83–106 (Chen et al., 2012)

6 New hairpin DNA Wine 4.03 1.01 NR NR (Yang et al., 2012)

7 NR Wine 0–12.11 1.61 NR NR (Yang et al., 2013)

8 5′-C6-Biotin Wheat 0.1–1 0.02 1.67 97.5–105.5 (Zhang et al., 2013)

9 5′-T10-FAM Red wine 0.40–40 2.02 NR 90–108 (Zhao et al., 2013)

10 NR Wheat 0.01–0.3 0.002 1.5 93–108 (Chen et al., 2014a)

11 5′-Hemin NR 4.0381–40.381 0.40381 NR NR (Lee et al., 2014)

12 5′-Tetramethylrhodamine Red wine 1.211–1211 1.211 3 NR (Zhao et al., 2014)

13 NR Beer 1-1e + 8 1 NR NR (Lv et al., 2014)

14 5′-HS Corn 0.04–4038.1 0.4 NR 108.3–
109.4

(Park et al., 2014)

15 5′-C6 Beer 0.100–20.20 0.092 3.1–4.2 96–97.5 (Hayat et al., 2015)

16 5′-FAM Red wine 8.076–161.524 8.0762 NR 101–104 (Wei et al., 2015)

17 NR Yellow rice
Wheat grain

0.004–0.13 0.004 5.4–9.6
7.5–8.9

96–115
93–112

(Wang et al., 2015a)

18 NR Beer 0–403.81 0.51 NR NR (Liu et al., 2015)

19 3′-Biotin Wine and peanut oil 0.094–10 0.005 NR 86.9–116.5 (Liu et al., 2015)

20 NR Chinese liquor made
from
wheat and sorghum

0.05–50 0.009 NR NR (Luan et al., 2015)

21 5′-NH2 Red wine 0.005–10 0.00167 ≤ 6.4 94.0–97.3 (Qian et al., 2015)

22 5′-NH2 Oat 2.4–200 1.22 3 92–104 (Wang et al., 2015b)

23 3′-NH2 Cereal 0.5–100 0.03 8.4 92.0–108.1 (Wang et al., 2016a)

(Continued)
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Table 5 (continued)

No. Modification Sample Linear range
ng/mL

LOD
ng/mL

RSD% Recoveries
%

References

24 NR Beer 1–30 0.5 NR NR (Chu et al., 2016)

25 3′-Poly-T-Thiol Astragalus
membranaceus
(traditional chinese
medicine (TCM)

0–1 1 NR NR (Zhou et al., 2016a)

26 NR Grape juice 0.121–4.038 0.054 NR NR (Nameghi et al., 2016)

27 3′-Thiol Grape juice 0.060–2.42 0.039 5.7 93.9–97.7 (Taghdisi et al., 2016)

28 3′-Biotin White wine 0.080–2019.05 1.13 NR 83–113 (Samokhvalov et al.,
2017)

29 5′-NH2-C6 Rice wheat corn 0.01–100 0.00428 NR 80 (Shen et al., 2017)

30 3′-C6H12-NH2 Red wine 0–1 0.013 2.9–5.8 94.4–102.7 (Wang et al., 2017a)

31 NR Red wine 4.03–403.81 1.69 NR 93.8–113.0
92.0–115.9

(Wu et al., 2017)

32 NR Cornmeal beer coffee 10.095–121.14 9.16 1.1–2.1
2.6–3.5

<113.2 (Wu et al., 2017)

33 NR White wine 32–1024 20 1.43–4.27 100.80–
112.50

(Yin et al., 2017)

34 5′-Biotin Beer sample 0.001–250 0.001 4.6 88.4~95.9 (Dai et al., 2017)

35 5′-Biotin Rice wheat corn 0.001–1 1 NR 89–95
81–92
94–105

(Shen et al., 2018)

36 5′-NH2-PolyT Beer 5–100 1.86 4.6 88.4~95.9 (Wu et al., 2018b)

37 NR Red wine 1.2–200 0.4 NR 96.5–107 (Wu et al., 2018a)

38 NR Food samples 0.050–5.000 0.021 2.8–9.6 90.55–
123.13

(Xiao et al., 2018)

39 5′-SH NR 0.004–40.38 0.004 NR 85.5–116.9 (Lee et al., 2018)

40 NR Corn 0.05–2.0 0.023 5.3–6.9 98.5–106.1 (Lin et al., 2018)

41 NR Corn 0.0316–316 10
−10.5

10.19–14.01 99.3–110.0 (Liu et al., 2018a)

42 NR Red wine 8–1000 4.7 3.2 5.7 93.5–113.8 (Liu et al., 2018a)

43 NR Corn 0.04–0.48 0.012 6.1 96.6–106 (Liu et al., 2018b)

44 3′-NH2 Rice corn 0.167–67 0.11 0.9–2.7
1.1–8.0

94.0–103.3
89.3–102.0

(Liu et al., 2018b)

45 5′-FAM Ginger 4.03–403.81 0.815 1.9–6.3 89.0–117.8 (Liu et al., 2018c)

46 NR Red wine 0.08–200 0.08 NR 90.9–112 (Ma et al., 2018)

47 NR Red wine 1.21–121.1 0.52 NR 92.2–111.6 (Xu et al., 2019)

48 3′-(CH2)6-SH Corn 0.002–5 0.00067 <5.6 95–108 (Qian et al., 2018)

49 5′-Alexa 405 Milk 0.001–1000 0.33 10.18 74.13–
124.8

(Song et al., 2018)

50 3′-SH Wine coffee 0.0012–1–3310 0.00048 5.6–10.1
5.9–9.7

88–104
86–107

(Song et al., 2018)

51 NR Peanuts 0.01–20 0.025 NR 90–110 (Tian et al., 2018)

52 5′-cy5-(CH2)6 Corn 1–1000 0.40 NR 96.4–
104.67

(Ren et al., 2018)

53 5′-Biotin Red wine 0–100.95 0.80 5.02 NR (He et al., 2019)

54 NR Astragalus
membranaceus

0.2–20 0.16 NR 98.9–102.2 (Liu et al., 2019)

55 NR Wine coffee 2.02–80.76 0.38 1.9–3.6
2.5–4.3

92.0–107.0
91.0–106.8

(Liu et al., 2019)

56 NR Red wine 5–500 1.9 2.7–5.2 92.2–106.3 (Lv et al., 2019)

(Continued)
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The indium tin oxide electrode exhibited a wide range of
current density implemented in two of the reported devices
(n = 2) (Bouden et al., 2016).

The electrochemical properties of electrodes could be
improved by various techniques. Nanomaterials were used
to develop electrochemical sensors by signal amplification to
improve both sensitivity and selectivity. These materials
produce a synergistic effect among catalytic activity,
conductivity, and biocompatibility to accelerate the signal
transduction. The surface of nanomaterials could be
efficiently activated and easily functionalized, making them
an ideal surface for immobilization of biomolecules such as
enzymes and bioreceptors, including aptamers, antibodies,
and also electroactive labels.

For example, Chrouda et al. (2015) used an
electrochemically oxidated carboxyl end of the long spacer
chain of polyethylene glycol (NH2-PEG-COOH) on a
boron-doped diamond (BDD) microcell through which
sensitivity of the system was increased to the range of
pg/mL. For immobilization of biomolecules on the BDD
surface of microcell, that is inactive, the surface should be
activated by reactive groups. This procedure helps to control
the surface easily. In their aptasensor, immobilized amino-
aptamer on PEG was utilized. In the presence of OTA, the
conformation of the aptamer changed to G-quadruplex
structures, and the electron transfer rate of the redox probe
was decreased. Their results showed a wide linear range
(0.00001–0.0132 ng/mL) with a LOD of 0.00001 ng/mL.
This sensor needed a shorter time (1 h) to detect OTA in
real samples of rice in comparison with the other designed
methods using the same aptamer (6–16 h).

Kaur et al. (2019) fabricated a simple and efficient
functionalized graphene (f-graphene) doped chitosan (CS)
nanocomposites based electrochemical aptasensor for the
detection of OTA. The use of f-graphene increased the
electroactive surface area of the electrode, and CS prevented
the leaching of the aptamer molecules. CS is a suitable
matrix due to its biocompatibility, hydrophilicity, non-
toxicity, excellent mechanical stability, cost-effectiveness,
and availability of reactive functional groups for chemical
modifications. Besides, f-graphene increased the
electroactive surface area of the electrode. The dual use of
CS and f-graphene overall improved the sensor
performance. This aptasensor exhibited LOD of 1 fg/mL for
standard and 0.01 ng/mL for real samples within a response
time of 8 min.

Yang et al. (2019) developed a label-free ultrasensitive
electrochemical aptasensor based on NH2/Janus particles for
the detection of OTA. Janus particles are special types of
nanoparticles (NPs) with two or more surfaces having
distinct physical or chemical properties. This allows two
different types of chemicals to occur on the same particle.
They prepared Janus particles by coating a layer of Au onto
the hemisphere of amino polystyrene microspheres and
immobilized the thiolated OTA aptamer on the Au layer.
This aptasensor showed a very low LOD (0.0000001 ng/mL:
3.3 × 10−3 pM) and a wide dynamic linear range of OTA
concentration (0.000004–4.0381 ng/mL: 1 × 10−5 to 10 nM)
with high selectivity due to highly specific molecular
recognition between OTA and aptamer and also good
stability and reproducibility. They also applied this
electrochemical sensor for the detection of OTA in red wine.

Table 5 (continued)

No. Modification Sample Linear range
ng/mL

LOD
ng/mL

RSD% Recoveries
%

References

57 5′-biotin Grape juice 0.5–100.95 0.027 1.5–2.3 89.1–100.6 (Lv et al., 2019)

58 NR Red wine 0.4–20 0.08 NR 96.1–107.5 (Wu et al., 2019)

59 5′-SH-(CH2)6 Red wine 0.004–20.2 0.0005 2.65 93.31–
97.44

(Zheng et al., 2019)

60 NR Red wine 0–0.80762 0.80 1.1–4.4 90.8–100.7 (Armstrong-Price et al.,
2020)

61 3′-C6H12-NH2 Cereal 0.403–56.53 0.20 2.24 94.5–101 (Bi et al., 2020)

62 NR Beer 0.05–100 0.01 4.26 94.2–105 (Hao et al., 2020)

63 5′-Biotin Grape juice 2.52–302.85 0.81 2 99.4–104.2 (Hernández et al., 2020)

64 NR Beer 0.20–40.38 0.012 NR 96.5–105.6 (Jiang et al., 2020)

65 5′-HS-(CH2)6 Coffee wheat 0.01–0.25 10.09 4.65 86–110 (Hernández et al., 2020)

66 5′-Biotin Wheat flour 0.50–50 0.10 6.4–10.5 87.5–122 (Jiang et al., 2020)

67 5′-amino-3′-black hole
quencher-1

NR 0.1–1000 0.022 NR NR (Kim et al., 2020)

68 NR Red wine 8.076–504.76 4.0381 NR NR (Li et al., 2020)

69 Biotin Grape juice 5.04–8.07 3.63 8.3 97.14–
106.2

(Tian et al., 2020)

70 NR Wheat flour
Red wine

0.004–20.20 0.001 3.3–4.8
3.7–5.1

97.9–105
94–96.8

(Qian et al., 2020)

Note: * NR = Not reported.
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The common issue in these devices is employing
nanomaterials. Nanoparticles provide a more accessible surface
for immobilization of biorecognition elements which increase
the sensitivity of biosensor to as low as pico/femtomolar levels.

Interestingly, there were some devices with an extremely
low limit of detection (LOD) down to pico/femtogram/mL of
OTA. The key point of some of these devices is the use of
amplification techniques that enhance the signal to fabricating
ultrasensitive biosensors such as PCR, real-time PCR, and
recently, isothermal amplification-detection strategies such as
loop-mediated isothermal amplification (LAMP).

For the first time, Yuan et al. (2014) integrated the LAMP
technique with an electro-chemiluminescent (ECL) system to
fabricate an ultrasensitive aptasensor. They immobilized a
dsDNA composed of an OTA aptamer and its capture DNA
on the electrode. With the presence of OTA, some of the
aptamers were separated, and the remaining aptamers on
the electrode served as an inner primer to initiate the LAMP
reaction. The amplification procedure was tracked by
monitoring the intercalation of DNA-binding Ru(phen)32+
ECL indicators into newly formed amplicons. Therefore, the
presence of more OTA was equal to the release of more
aptamer, less remaining aptamer on the electrode for
producing LAMP amplicons, less Ru(phen)32+ intercalating
into the formed amplicons, and thus increasing the ECL
signal. They achieved a detection limit as low as 10 fM of
OTA with good reproducibility and stability.

The integration of nanomaterials with these nucleic acid
amplification strategies also could have a positive impact on
the sensitivity of aptasensors.

Wang et al. (2017b) applied NH2@Cobalt-Metal–organic
frameworks (MOFs) with their μ3-O linked trigonal prism
structures to construct a sensitive biosensor. These
frameworks efficiently possess intrinsic electrocatalytic
activities for redox molecules, like thionine, which could
intercalate into grooves of dsDNA via electrostatic
adsorption and generate ultrasensitive square wave
voltammetry signal. For amplification of the signal, they also
employed a versatile exonuclease I (Exo I)-assisted target
recycling for the production of sufficient numbers of cDNA
sequences. Exo I catalyzes the hydrolysis of ssDNA instead
of dsDNA from its 3′ end and digests the aptamer in the
OTA-aptamer complex to release OTA again for further
reaction. In brief, the gold nanoparticles (AuNPs), which
effectively promote the electron transfer, were linked to the
surface of NH2-Co-MOFs on the Au electrode. Biotin-
modified OTA aptamer and cDNA were immobilized onto
streptavidin magnetic beads. A series of OTA concentrations
were incubated, and then Exo I-assisted target recycling
reaction was performed. Eventually, the aptamer was
dissociated from the matched double-stranded DNA in the
presence of OTA and digested by Exo I, which led to the
release of OTA. Then, the released OTA participated in
another specific recognition reaction with the remaining
aptamers, achieving the target recycling and signal
amplification. The dissociated cDNA in the supernatant
solution was collected. The mixture of the collected
complementary DNA, and SH-Capture probe was incubated
on the Au electrode to form the ternary DNA Y-junction
structure on the NH2-Co-MOFs sensing surface. At the

signal generation step, large amounts of thionine could
intercalate into the three complementary DNA sequences.
Further hybridization of the SH-Capture probe and cDNA
to form a “Y” junction structure on the electrode surface
resulted in significant signal recovery. They successfully
applied this sensor to determine OTA in red wine with a
linear range of 0.000001 to 1 ng/mL and LOD of
0.00000033 ng/mL (0.33 fg/mL). It also showed 90.0–105.0%
recoveries for OTA in the red wine.

ii) Optical Aptasensors

Based on our search, 70 papers have reported optical
aptrasensors for the detection of OTA (Table 5). Here we
have attempted to discuss the most prominent construction.

A sensitive luminescent aptasensor was designed by Wu
et al. (2011a). They utilized aptamer-conjugated magnetic
nanoparticles (MNPs) and sodium yttrium fluoride
(NaYF4): Yb (Ytterbium), Erbium (Er) labeled upconversion
nanoparticles (UCNPs) as the recognition element and
highly sensitive label, respectively. They immobilized OBA
aptamer (Cruz-Aguado and Penner, 2008) on the surface of
Fe3O4 MNPs hybridized with UCNPs coated with
complementary DNA. Once OTA was bound to the aptamer,
the complementary ssDNA was released, and subsequently,
the luminescent signal was reduced. By fabricating this simple
method, they could achieve very low LOD (0.0001 ng/mL)
and a wide linearity range (0.0001–0.1 ng/mL) (Fig. 4a).

Song et al. (2018) introduced a Surface-Enhanced Raman
Spectroscopy (SERS)-based aptasensor for the detection of
OTA by hybridizing cDNA coated Fe3O4@Au magnetic
nanoparticles (MGNPs), and the detection of OBA aptamer
(Cruz-Aguado and Penner, 2008) modified Au@Ag
nanoprobes labeled with the Raman reporter 5,5′-Dithiobis(2-
nitrobenzoic acid) (DNTB) (Au-DTNB@Ag NPs). In the
absence of OTA, the peak of SERS was high, but with the
presence of OTA, due to the binding of OTA to the aptamer
and the release of cDNA, the signal decreased proportionally
to the concentration of OTA. This platform showed
picogram levels (0.48 pg/mL) of LOD with good recovery and
accuracy in evaluating real samples of wine and coffee.

A label-free fluorescent aptasensor which was developed
by Lv et al. (2014), gives one of the widest reported dynamic
ranges of detection. In this highly-sensitive (0.025 ng/mL)
and selective fluorescent sensor, they applied PicoGreen (PG),
an asymmetric cyanine dye, which exhibits its fluorescence
property only after ultra-selective binding to the minor
groove of dsDNA. In this platform, if there is no OTA, the
ssDNA aptamers (Cruz-Aguado and Penner, 2008) hybridize
to cDNAs. The PG dyes can bind the formed dsDNA and
exhibit fluorescence. In the presence of OTA, the aptamer
binds to the target and generates a G-quadruplex structure,
and the signal intensity decreases. In this approach, a wide
dynamic range (1 to 100000 ng/mL) was achieved to
determine OTA concentrations in beer samples.

Yue et al. (2014) developed a simple and novel aptamer-
based photonic crystal encoded suspension which could
simultaneously recognize and quantify OTA and fumonisin
B1 (FB1) in cereal samples by immobilizing the OBA
aptamers (Cruz-Aguado and Penner, 2008) on the surfaces
of different kinds of silica photonic crystal microsphere
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(SPCM) by a covalent bond. The different OTA and FB1
aptamer probes hybridized with their fluorescence-labeled
complementary DNA and those immobilized on the surfaces
of SPCMs could bind to their specific targets (OTA and FB1).
Binding each aptamer to its target induced a structural switch
of the aptamer, causing the release of the fluorescence-labeled
aptamer complementary DNA and a marked decrease in
fluorescent intensity of each kind of SPCM (Fig. 4b).

One interesting method in the line of optical aptasensors
was developed by Song et al. (2018). They utilized a dual-color
fluorescence resonance energy transfer (FRET) based
aptasensor for simultaneous detection of the mycotoxins
aflatoxin M1 (AFM1) and OTA. They labeled AFM1 and
OTA aptamers with two different fluorophores as the
signaling probes. In the blank samples, the aptamers were
hybridized to their specific quencher labeled cDNA,
resulting in weak fluorescent signals. Simultaneously, the
fluorescent labels of the aptamers bound to their targets in
milk samples could produce strong signals under optimized
conditions, as this aptasensor selectively detected AFM1 and
OTA with a LOD value of 0.021 ng/mL over a wide linear
range (0.001–1000 ng/mL).

In another study, an optical aptasensor was constructed
based on a B08 aptamer by McKeague et al. (2014). In this
diagnostic system, the SYBR Green I dye, which can intercalate
to the minor groove of dsDNA, was used to enhance
fluorescent emission. In their designed sensor, OTA competed
with SYBR Green I for binding to aptamer, and consequently
led to a decline in SYBR Green I fluorescence emission. SYBR
Green intercalates with the free DNA aptamer and fluoresces
at 520 nM. However, increasing concentrations of the OTA
and binding to aptamers displaces SYBR Green I and a
concentration-dependent loss of emitted fluorescence. This
label-free SYBR Green I-based aptasensor showed Kd (9 nM)
and linear range in the nanomolar scales (9–100 nM).

There are some reports that introduced lateral flow assay
(LFAs)-based optical biosensors (Anfossi et al., 2012; Anfossi
et al., 2013; Moon et al., 2013; Zhou et al., 2016b; Jiang et al.,
2017; Ren et al., 2018; Velu and DeRosa, 2018; Oh et al., 2019;
Hao et al., 2021; Zhao et al., 2021).

LFAs are popular among commercial paper-based assay
products for quality control, food safety assessment, and in
medical and clinical centers and laboratories (Majdinasab
et al., 2022). However, this method has limited sensitivity in
the detection of low concentrations of analytes. The samples
also require pretreatment, including sample extraction,
filtration, and dilution in some analytes, such as complex
matrix or solid samples. Thus, LFA strips are not ideal for
these samples. Positive results of LFA tests also need
confirmatory analysis (Majdinasab et al., 2022).

b) Non-biosensor Aptamer based separation and detection
methods

Due to the specificity and selectivity of the OTA aptamer
isolated by Cruz-Aguado and Penner (OBA aptamer) (Cruz-
Aguado and Penner, 2008), several studies have applied it as
a detection element in a column to isolate, extract and clean
up this toxin from samples, including wine, beer, or food
(Table 6).

In some studies, various oligosorbents on solid-phase
columns were constructed, such as magnetic nanospheres
(MNS) (Wu et al. 2011b), coupling gel for the preparation
of the aptamer-SPE (solid-phase extraction) columns (de
Girolamo et al., 2011), cyanogen bromide-activated
sepharose (Hadj Ali and Pichon, 2014), chitosan magnetic
nanoparticles (Wang et al., 2020), or monolithic columns
with high coverage density of aptamer (Chen et al., 2018;
Yu et al., 2018; Lyu et al., 2020).

i) Liquid chromatography

In one of the considerable methods, an ultra-fast liquid
chromatography with tandem mass spectrometry method was

FIGURE 4. Schematic illustration of the most sensitive reported optical aptasensors. a) The immobilized aptamer on the surface of magnetic
nanoparticles (MNPs) hybridized with cDNA immobilized on sodium yttrium fluoride (NaYF4): Yb (Ytterbium), Erbium (Er) labeled
upconversion nanoparticles. Once OTA was bound to the aptamer, the cDNA was released, and subsequently, the luminescent signal was
reduced (Wu et al., 2011a). b) Simultaneous detection of ochratoxin A (OTA) and fumonisin B1 (FB1) based on aptamer−SPCMs
suspension arrays (Yue et al., 2014).
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TABLE 6

Non-biosensor aptamer based extraction or detection methods of OTA

No. Application Methods Modification Sample Linear
Range

LOD RSD
%

Recoveries
%

Reference

OBA
aptamer

1 Solid phase
extraction (SPE)
Columns

Extraction NR* Durum wheat 0.4–500
ng

0.023
ng/g

<6 74–88 (de Girolamo
et al., 2011)

2 Oligo-sorbent
(OS)

3′-and 5′-
amino-
modified-C6
and C12
spacer arm

Contaminate
wheat sample

5–3000
ng

2.2 ng/g 1–7.2 100 (Hadj Ali and
Pichon, 2014)

3 AuNPs@aptamer
modified
mercaptosiloxane-
based hybrid
affinity monolithic
column

NR Beer and wine
samples

0.50~5.00
ng

0.025 ng 2.0 88.6~94.1 (Chen et al.,
2018)

4 Aptamer-
molecularly
imprinted
monolithic
column

5′-SH-C6-5′-
SH-C6-

Beer samples 0.14–1.0
ng

0.05 ng 1.6–
2.4

95.5–105.9 (Lyu et al.,
2020)

5 Aptamer-based
polyhedral
oligomeric
silsesquioxane
(POSS)-containing
hybrid affinity
monolith prepared
via a “one-pot”
process for
selective extraction

5′-SH-C6-5′-
SHC6-

Beer samples 0.2–2.0
ng

0.025
0.045 ng

3.2
6.7

93.5 ± 2.7
93.7 ± 1.1

(Chen et al.,
2018)

6 Aptamer-bound
polyamine affinity
monolithic
column

NR Beer samples 0.04–0.08
ng/mL

0.01
ng/mL

3.3 94.1–94.6 (Yu et al.,
2019)

7 Aptamer@AuNPs
modified POSS-
polyethylenimine
hybrid affinity
monolith

NR NR 0.06–5
ng/mL

0.06
ng/mL

1.9 92.6 ± 1.3 (Chen et al.,
2018)

8 Hydrophilic
aptamer-based
hybrid affinity
monolith for on-
column specific
discrimination

1,5′-SH-C6-
2,5′-SH-C6–
3′-FAM

Beer samples 0.05~0.10
ng

0.06
0.025 ng

1.5–
2.0

94.9–99.8 (Chen et al.,
2019)

9 HPLC NR 5′-amino Unfortified
food samples

NR 2.5–50
ng/g

7.8 67.2–90.4 (Wu et al.,
2011b)

10 HPLC analysis
using
Fe3O4@CTS@Apt
adsorbent

NR Cornmeal 5–10 ng/g 5 ng/g 4.2% 91.3–99.1 (Wang et al.,
2020)

11 Liquid
chromatography
with tandem mass
spectrometry
method

NR Traditional
Chinese
medicines
(TCMs)

0.2–20
g/mL

0.0001 ng 0.35–
9.22

83.54–
94.44

(Yang et al.,
2014)

(Continued)
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reported based on aptamer-affinity column and vortex-assisted
solid-liquid microextraction, which can promote the diffusive
motion of analyte from the sample to the extraction solvent
(Yang et al., 2014). In another method, polyhedral oligomeric
silsesquioxane (POSS) was applied to construct aptamer
monoliths. POSS is a special organic-inorganic material with
highly stereoscopic nano-cage and massive function sites that
provide high coverage density of aptamer. Polyethyleneimine
(PEI) was also used for the immobilization of AuNPs
aptamer due to abundant amino groups. This fabrication
resulted in a highly efficient, sensitive, and selective
recognition system (LOD = 0.06 ng/mL) (Yu et al., 2018).

In a similar study, a POSS-PEI monolith was prepared
with 2,4,6-trichloro-1,3,5-triazine (TCT) as a linker for
binding high levels of the aptamer that enable them to
achieve a LOD as low as 0.01 ng/mL in beer samples (Yu et
al., 2019).

ii) Polymerase chain reaction-based assays

Real-time PCR is an amplification method and a high
throughput screening method that could shorten operation
time, decrease detection limit for low concentration analyte
samples and have a favorable reproducibility.

The most sensitive device was reported with a LOD of
0.000001 ng/mL (1 fg/mL) for the detection of OTA by
employing real-time PCR (Ma et al., 2013). It has shown a
satisfactory recovery rate (99–112%) in red wine samples.
The recruited strategy was based on the conformational
change of the OBA aptamer (Cruz-Aguado and Penner,
2008). At first, the biotinylated aptamers were immobilized
on the surface of the streptavidin-coated PCR tubes. Then,
in the absence of the OTA, ssDNA aptamer was hybridized

with complementary DNA strands and subjected to the
same treatment as the PCR template. The forward and
reverse primers and other PCR components were added and
the PCR procedure was performed. Then, the emitted
fluorescence was measured after each annealing step. In the
presence of OTA, a structural switch of the aptamer was
induced by the target binding, leading to the formation of
an antiparallel G-quadruplex, which resulted in
complementary ssDNA release. This could reduce the
amount of the template for amplification and increase the
cycle threshold (Ct). Thus, the concentration of the OTA
was measured by the change in the PCR amplification
(Ma et al., 2013).

iii) Enzyme-Linked Aptamer Assay (ELAA)

ELAA is employed for biorecognition of analytes by
replacing antibody with aptamer, with its benefits over
antibody through (Vargas-Montes et al., 2019).

Among other reported aptamers, H12 aptamer
(Barthelmebs et al., 2011) was also applied for the detection
of OTA. The H12 aptamer was used for both direct and
indirect ELAA for detection of OTA in spiked red wine
samples by Barthelmebs et al. (2011). In this approach,
the fluorescein-labeled aptamers are specifically bound
to biotinylated OTA. This complex could attach to the
OTA-HRP conjugate, and the emitted fluorescence could be
simply detected (Barthelmebs et al., 2011).

Chip-based aptasensors
Miniaturization is one of the important issues in the
fabrication of biosensors to produce portable and user-
friendly devices. Lab-on-a-chip (LoC) is also recently

Table 6 (continued)

No. Application Methods Modification Sample Linear
Range

LOD RSD
%

Recoveries
%

Reference

12 aptamer-assisted
real-time PCR-
based assay (Apta-
qPCR)

Detection NR Herrenhauser
premium
pilsener beer

0.039–
1000 ng

0.009 ng 1.9–
6.3

89.0–117.8 (Modh et al.,
2017)

13 surface-enhanced
Raman
spectroscopy
(SERS) fluidic
device

5′-HS- Cornmeal 20.1905–
1615.24
ng

1009.525
ng

<4.2 96.1 (91.3–
99.1)

(Galarreta et
al., 2013)

14 Method based on
aptamer and loop-
mediated
isothermal
amplification
(LAMP)

NR Red wine
samples

0.0004–
20 ng

0.00012
ng

4.3–
7.8

97.4–108 (Xie et al.,
2014)

15 RT-QPCR
Aptasensor

3′-Biotin Red wine
samples

5×10−6

ng/mL
0.000001
ng/mL

NR 99–108 (Ma et al.,
2013)

H12
aptamer

16 Direct ELAA 3′-Biotin Red wine
samples

1–80
ng/mL

1 ng/mL 2.9 NR (Barthelmebs
et al., 2011)

17 Indirect ELAA 3′-Biotin Red wine
samples

10–250
ng/mL

10 ng/mL 4.7 NR (Barthelmebs
et al., 2011)

Note: * NR = Not reported.
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considered in this field. Some Efforts have also been made to
design LoC-aptasensors for the detection of OTA.

Recently, a novel ACSB was described for the detection of
OTA via FRET with an LOD of 0.005 ng/m in a linearity range
of 0.01–10 ng/mL. They immobilized a Cy3-labeled OTA-
specific biotinylated aptamer on an epoxy-coated chip via
streptavidin-biotin binding. A black hole quencher 2
(BHQ2) labeled complementary DNA strand to OTA
aptamer. In the presence of OTA, the Cy3-labeled OTA
aptamer bound specifically to OTA and led to the physical
separation of Cy3 and BHQ2, which resulted in an increase
in fluorescence signal. This aptasensor was tested in rice
samples spiked with OTA with a mean recovery rate of 91%
(Li et al., 2021).

A fluorescent label-free LoC aptamer portable assay,
integrated into the microfluidic network, was constructed on
a single glass substrate, comprising an array of amorphous
silicon photosensors and a long pass interferential filter. The
employed fluorescent molecule was a “light switch” complex
[Ru(phen)2(dppz)](2+) which intercalated between the base
pairs of the aptamer. The aptamer was directly anchored
into a layer of poly(2-hydroxyethyl methacrylate) polymer
brushes grown inside the channels. The presence of OTA
changed the aptamer conformation and released the
fluorophore, causing a decline in fluorescence. This device
performed detection in 5 min with an LOD of 1.3 ng/mL
and 5–200 ng/mL linear detection in real samples (beer and
wheat samples) (Costantini et al., 2019).

Nekrasov et al. (2022) reported an advanced aptasensor
based on an array of graphene field-effect transistors
integrated on a single silicon chip. Graphene with
electrochemical, thermal, optical, electronic, and mechanical
properties holds enormous potential for LOC devices. The
G-rich aptamer was covalently attached to the graphene
surface via pyrenebutanoic acid, succinimidyl ester (PBASE)
chemistry. PBASE created efficient π-π stacking to graphene
via an electric field stimulation. In the absence of OTA, the
aptamer strands created π-π stacking on graphene, and after
the addition of OTA molecules, aptamers reconfigured in G-
quadruplex to bind OTA molecule. This fast assay (10 s)
graphene-aptasensor showed an LOD of 1.4 pM for OTA
with a demonstrated performance of wine in real-time.

An ultrasensitive label-free liquid crystal (LCs) OTA
aptasensor was also designed with the lowest reported LOD
(0.63 Am) based on the conformational switch of the
immobilized π-shaped aptamer on the glass substrate in the
presence of the OTA. A shift in the orientation of LCs from
random to a homeotropic state altered the optical
appearance of the aptasensor platform, which could be
examined by polarized light microscopy for the detection of
OTA in grape juice, coffee, and human serum samples
(Khoshbin et al., 2021).

Expert Opinion and Conclusion

OTA-specific recognition aptamers show good affinity, making
them applicable recognition elements in different devices.
Docking results reveal that these aptamers could surround
the OTA through some hydrogen bonds by creating binding
pockets. However, a logical and straight relationship between

docking scores and monitored hydrogen bonds has not yet
been found, possibly because aptamer-target interaction has
more intricacy and requires more in silico analyses to
discover critical features in this interaction.

Aptamers as alternative recognition elements to
antibodies exhibit several advantages, including the ease of
in vitro isolation, high specificity and selectivity, longer
duration of stability, ability to isolate a variety of small,
toxic, and non-immunogenic molecules, amenable to
modification, rare immunogenicity, and limited batch-to-
batch variation. Aptamer-based systems also have several
advantages over conventional methods due to their high
selectivity and sensitivity, low cost, and stability.

Overview of this database could show that, by employing
signal amplification strategies such as nanomaterials for
increasing surface accessible area or catalytic effects on
reaction, could be ultrasensitive devices with LODs as low as
pico/femto level. Most of the aptasensors show reproduced
responses with a good confidence. They are also applied
frequently for the detection of real samples such as beverages,
particularly wine, beer, and also cereals such as wheat. This
could confirm the efficiency of these devices for consumers.

Nucleic acid amplification strategies are the other
techniques for enhancing signals and, consequently,
increasing sensitivity. PCR, real-time PCR and recently,
LAMP as isothermal amplification-detection strategies were
employed in OTA-specific aptasensors. Utilizing other nucleic
acid amplification techniques such as helicase-dependent
amplification, strand displacement amplification, rolling circle
amplification, and recombinase polymerase amplification
could be considered for further aptasensor fabrication.

Gold electrodes act as favorable working electrodes among
electrochemical OTA aptasensors due to their unique
properties such as good conductivity and chemical inertness.

Aptamers as alternative recognition elements to
antibodies exhibit several advantages, including the ease of
in vitro isolation, high specificity, and selectivity, long
duration of stability, ability to isolate a variety of small,
toxic, and non-immunogenic molecules, the capability of
modification, rare immunogenicity, and limited batch-to-
batch variation. Aptamer-based systems also have several
advantages over conventional methods due to their high
selectivity and sensitivity, low cost, and stability. However,
the application of aptamer as a recognition element has
some challenges. The most important issue is maintaining
the desired affinity of the aptamer. Changing conditions in
different detection methods could impact the affinity of the
aptamer. For instance, immobilization techniques could
result in microstructure changes which may alter the
binding affinity. Other circumstances such as ionic strength
and pH could influence aptamer configuration which may
reduce its affinity properties. On the other hand, complex
samples such as foods include various components such as
nucleases which may have an adverse effect on the structure
of aptamers and affect their activity.

Despite hundreds of reported separation methods and
aptasensors with very low LODs for OTA, none have
received approval for commercial applications, posing major
challenges for improving research prototypes to reliable
instruments.
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Achieving the simple, rapid, sensitive, specific, and cost-
effective methods for measuring OTA are the primary
requisites for industrial, analytical, and medical assessments.
Numerous aptamers are just capable of detecting samples in
the aqueous solutions but not in solid analytes. It is
necessary to improve some aspects, including ease of
application, sample preparation, and cost of the production
to reduce the gap between research and large-scale
industrial applications (Schmitz et al., 2020).

Almost all of the sensors and separation approaches have
used ssDNA aptamer reported by Cruz-Aguado and Penner
(2008). They demonstrated a well-designed isolated aptamer
which can meet merits for application.

Electrochemical and optical biosensors are two types of
aptasensors developed for detection of OTA. Although the
electrochemical methods have shown the highest sensitivity
and selectivity, the optical aptasensor exhibited the widest
linear ranges. However, several ultra-sensitive aptasensors
have used nanomaterials to increase accessible surface area to
enhance the OTA-aptamer interaction for signal amplification.

The current systematic review demonstrated the possibility,
simplicity, and high selectivity of using aptamers to detect and
analyze OTA in different real samples that are highly needed
in agriculture, food industry, and water management.
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