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Abstract: Cadmium (Cd) causes oxidative stress, which leads to the oxidation of various biomolecules by the production

of reactive oxygen species (ROS) to facilitate programmed cell death (PCD). The antioxidant defense system fails to

detoxify ROS when it is produced in excess. Nitric oxide (NO), a gaseous free radical and a phytohormone, regulates

various physiological processes of plants. Therefore, this work was undertaken to study the effects of the application

of exogenous sodium nitroprusside (SNP, a NO donor) on growth parameters, oxidative stress, accumulation of

secondary metabolites, and activities of antioxidant enzymes under Cd stress. Mild (50 µM) and severe (200 µM) Cd

stress were applied to hydroponically grown pea (Pisum sativum L.) plants with or without 50 µM SNP. Severe Cd

stress had a substantial impact on the plants. The effectiveness of NO in reducing Cd-induced negative effects on

plant height, fresh weight, dry weight, protein content, nitrite content, nitrate reductase (NR) activity, catalase activity,

and peroxidase activity were investigated. Seedling development, protein content, nitrite content, nitrate reductase

(NR) activity, antioxidant defense systems disruption, overproduction of reactive oxygen species, and oxidative

damage were observed. The antioxidant defense system (catalase and peroxidase activities) was activated by NO,

which resulted in lower lipid peroxidation and lower hydrogen peroxide (H2O2) levels in Cd-exposed plants. SNP

treatment boosted endogenous NO levels and NR activity in Cd-stressed plants while also enhanced proline levels to

preserve osmotic equilibrium. The presence of total phenols and flavonoids increased after SNP treatment, indicating

that SNP enhanced stress recovery and boosted plant development in Cd-stressed plants.

Introduction

The toxic heavy metal like cadmium (Cd) reaches the soil
mainly as Cd2+ via various natural and anthropogenic
activities. Soil pollution occurs because Cd becomes a
hazardous threat by inhibiting plant development by
damaging various metabolic activities, reducing intake of
water and nutrient, and modifying organ development.
Furthermore, the availability of Cd in the soil causes a
reduction in the market price of various edible plants, and

as a result, Cd becomes a challenge for living beings (Zhang
et al., 2020). Cd simply reaches the root from the soil either
through channel or nutrients transporters or via aquaporins,
and from there, it is transported to aerial parts of the plants
and gets accumulated. Cd has a great affinity to phosphates,
porphyrins, purines, pteridines, histidyl, and cysteinyl side
chains of proteins; hence, it has the potential to damage
nucleic acids, proteins, lipids, and enzymes (Cheng et al.,
2016). Cd promotes severe stress by causing increased
production of reactive oxygen species (ROS) (Kumar and
Khan, 2021), which, if not detoxified, promptly lead to
oxidation of proteins, lipids, and DNA, triggering
programmed cell death (PCD), and dysregulation of a serious
physiological and metabolic process of plant development
leading to selective cell death.
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Plants usually trigger defense strategies at every stage of their
life to protect themselves from toxicity in the soil; they protect
themselves from heavy metal contamination by controlling the
free radicle ion produced in the cell by eliminating,
immobilizing, chelating, attaching to thiol-peptides, and by
vacuolar segregation (Zaid and Wani, 2019). However, when
ROS is produced in excess, the antioxidant enzymes fail to
reduce their level. In heavy metal-stressed plants, attempts have
been made to increase the efficacy of components of the
antioxidant defense system by supplying various compounds
and phytohormones exogenously (Mohamed et al., 2019;
Sharma et al., 2012). In the past few years, several results have
shown that the reactive nitrogen species (RNS), specifically
nitric oxide (NO), interacts with ROS to protect the plant from
heavy metals stress, although the mechanism behind this
process is still unknown. In fact, while the ROS produce
oxidative stress and NO may produce nitrosative stress, both
act as signaling molecules depending on their amounts in the
cells in response to Cd stimuli (Liu et al., 2019).

Plants can change their NO metabolism when exposed to
Cd toxicity; nevertheless, conflicting data are available showing
the effect of Cd2+ on endogenously produced NO (Genchi et al.,
2020). In fact, as reported in numerous plant species, Cd can
either enhance or inhibit NO levels (Corpas and Barroso,
2014). Furthermore, exogenous NO donor treatments were
demonstrated to defend plant tissues from oxidative stress
that occurred due to Cd2+ through increasing ROS scavenging
(Kopyra et al., 2006; Noriega et al., 2007).

NO, being a plant hormone has lately been recognized as
a possible signaling molecule (Khan et al., 2017; Khan et al.,
2022a; Khan et al., 2022b). It is a universal signal molecule
that controls various activities of animals and plants at the
physiological and molecular level and provides tolerance to
plants from heavy metal stress by increasing the antioxidant
defense system (Anjum et al., 2016; Nabi et al., 2019). Several
findings have stated the involvement of NO in the regulation
of plant Cd response (Kopyra et al., 2006). Despite the fact
that NO is important for regulating the biological processes
produced by plants against metalloid stress, the exact
pathway of NO signaling is unknown to date. Sodium
nitroprusside (SNP) is one among other extensively used NO
donor substances for supplying NO to plants, regardless of
whether they are growing in natural soil, synthetic or
prepared media, or hydroponic (Soares et al., 2021). Its
significance in physiological processes, however, is
determined at the cellular level. Indeed, at very low levels, it
serves as a signaling molecule, but at high levels, it acts as a
stress-causing signaling molecule (Fancy et al., 2017).

The peroxynitrite (ONOO-) is formed when NO reacts
with superoxide anion (O2

•−), which is considered one of
the simplest and fastest reactions in living systems
(Arasimowicz-Jelonek and Floryszak-Wieczorek, 2011;
Corpas and Barroso, 2014). The peroxynitrite is a highly
unstable anion and a member of the RNS family. Although
it is generally established that ONOO- is not hazardous to
plant cells at low concentrations, a rise in its cellular levels
causes stress, as reported in Arabidopsis (Corpas and
Barroso, 2014). NO has the ability to modify a variety of
proteins, either directly through S-nitrosylation, nitration,
and nitrosylation, or secondarily through monitoring the

stress proteins genes transcription, which explains its role in
plant physiological/metabolic processes (Fancy et al., 2017).

Pea (Pisum sativum L.) is the main nutritious legume
crop, considered highly sensitive to Cd toxicity compared to
cereals and grasses. Based on earlier studies, we
hypothesized that NO plays an important role in providing
tolerance to pea plants from Cd stress. Therefore, we
subjected pea seedlings to low and high Cd concentrations
to understand the response and physiology of pea plants
growing under Cd stress. Our primary objective was to use
this understanding to produce Cd tolerance in other plant
varieties that currently suffer from severe Cd damage and
crop losses. We investigated the effect of Cd stress on pea
seedlings and the mechanism by which exogenously
supplied NO ameliorates Cd toxicity in examined plants.

Materials and Methods

Plant material and stress conditions
The sodium hypochlorite (NaOCl) (v/v) solution of 0.5% was
used for surface sterilization of pea (Pisum sativum L.) seeds
which were then rinsed thrice with deionized water. The
sterilized seeds were placed at random on two-layered filter
paper moistened with distilled water and kept at 28 ± 2°C
for 3 days for better germination. After germination,
seedlings were moved to pots having Hoagland solution.
The treatment solutions included two concentrations of
CdCl2 (50 µM and 200 µM) with or without SNP (50 µM)
added to the Hoagland solution. Growth media were
continuously aerated and renewed on each third day. A
growth chamber (ACMAS Technology Pvt., Ltd., India) was
used for growing seedlings. The growth chamber was
maintained with 12 h/12 h light/dark cycles, at 25/20°C,
under a white fluorescent light intensity of 350 µmol
photons m–2 s–1, and 70% relative humidity. After three
weeks of growing, plants were harvested, washed completely,
and plant parts were used for further estimations. All the
experiment was carried out thrice.

Evaluation of growth and biomass
The shoots and roots length of pea seedlings were measured
by a measuring scale. The length between root–shoot knot
and the tip apex of the root was considered as root length,
and shoot length was the difference between the base of the
culm to the tip apex of the plants. The measurements were
presented in centimeters. The seedlings were cleaned with
double distilled water and blotted between filter papers
before measuring their fresh weight (FW). A weighing
balance was used to determine the fresh weight. Dry matter
was obtained by drying the root and shoot samples at 70°C
for 72 h in an oven.

Quantification of Nitric Oxide
By quantifying nitrite, NO was indirectly measured. Evans
and Nason’s method was used to calculate the nitrite
content (Evans and Nason, 1953). Briefly, plant root and
shoot were homogenized in acetic acid buffer (50 mM, pH
3.6) in a chilled mortar pestle, followed by centrifugation
(10,000 g, 15 min) and removal of the residue. Greiss
reagent was mixed with the obtained supernatant. This
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reagent contained 1.0% sulfanilamide in 1N-HCl, and 0.025%
N-(1-Napthyl)-ethylene diammonium dichloride (NEDD)
and optical density (OD) was recorded at 540 nm.

Determination of Nitrate Reductase (NR) activity
To determine NR activity, the method by Hageman and his
colleagues was followed (Hageman et al., 1980). Fresh root
and shoot tissues (0.5 g) were crushed in potassium
phosphate buffer (0.05 M, pH 7.8) and 0.4 M KNO3

solution. The obtained homogenate was incubated at 35°C for
75 min in the dark. After incubation, tubes were subjected to
a hot treatment for 5 min to terminate the activity of the
enzyme. A 200 µL aliquot of the resulted product was
collected and mixed with 2 mL Greiss reagent (1.0%
sulfanilamide in 1N HCl and 0.025% NEDD). Diazotization
resulted in a pink color after 30 min of incubation. Finally,
using distilled water, the volume was increased to 6 mL, and
the OD was measured at 540 nm. The standard curve was
made from sodium nitrite. The activity of the enzyme was
measured in μmol NO2 min-1 g-1 FW.

Determination of Hydrogen Peroxide (H2O2)
The quantity of H2O2 was calculated using Cheeseman’s approach
(Cheeseman, 2006). In a prechilled pestle andmortar, 0.5 g of root
and shoot was crushed in 5 mL trichloroacetic acid (TCA) buffer
(0.1%) followed by centrifugation (12,000 g, 15 min, 4°C). The
obtained supernatant was used to calculate the amount of
H2O2. One milliliter of supernatant was added to phosphate
buffer (10 mM, pH 7.0), and KI (1 M), and the absorbance was
measured at 390 nm. The concentration of H2O2 was measured
in µmol H2O2 g

-1 FW.

Estimation of Lipid Peroxidation
The method, using 2-thiobarbituric acid (TBA), developed by
Heath and Packer (1968), was used for estimating the
malondialdehyde (MDA) level, which is produced upon pre-
oxidation of polyunsaturated fatty acid. Root and shoot were
homogenized in 0.1% TCA buffer followed by centrifugation
for 10 min. The supernatant obtained after centrifugation was
incubated at 95°C with 4 mL of 0.5% TBA in 20% TCA for
30 min. To stop the process, the mixture was immediately
placed on ice and centrifuged (8,000 g for 10 min). The
MDA level was obtained by calculating the differences in
absorbance at 600 nm and 532 nm using 155 mM-1 cm-1 as
an extinction coefficient. The concentration of MDA was
expressed as nmol MDA g-1 FW.

Estimation of proline content
Root and shoot tissues (0.5 g) were homogenized in 10 mL of
extraction buffer (3% sulfosalicylic acid). The resultant filtrate
was used to calculate proline using the technique of Bates et al.
(1973). In a test tube, 2 mL filtrate was added to 2 mL of acid
ninhydrin followed by 2 mL of glacial acetic acid and incubated
at 100°C for 1 h. The reaction was immediately transferred to
the ice to stop the reaction. Toluene was used to extract the
reaction mixture. A test tube stirrer was used to thoroughly
mix the test tubes for 15–20 s. The toluene-containing
chromophore was removed from the upper layer, and the
OD was measured spectrophotometrically at 520 nm,
considering toluene as a blank. L-proline (0.02 to 0.1 M)

standard curve was used to measure the concentration of
proline and expressed as mg proline g-1 FW.

Estimation of protein content
Bradford’s test was performed to estimate the total amount of
protein in root and shoot samples (Prasertsongskun et al.,
2002). In test tubes, 100 μL plant extract was mixed with
5 mL of the diluted dye. The reaction mixture was
incubated at room temperature for 5 min, and the color
change was recorded spectrophotometrically at 595 nm. The
standard curve was prepared using bovine serum albumin to
calculate the protein concentrations.

Estimation of antioxidant enzyme activities
The plant tissues were homogenized in phosphate buffer
(100 mM, pH 7.5) with 1 mM EDTA and 5% insoluble PVP
in a 3:1 ratio, followed by centrifugation at 10,000 g for
30 min. Protein and enzyme activities were measured using
the extracts. The activity of catalase (EC: 1.11.1.6) was
estimated by measuring the decline in absorbance that
occurred due to the disappearance of H2O2 at 240 nm (Aebi,
1984). In a cuvette, 100 μL of enzyme extract was quickly
added to 3.0 mL H2O2-phosphate buffer prepared by mixing
0.067 mM phosphate buffer (pH 7) with 2 mM H2O2. The
change in OD was measured in a spectrophotometer at
240 nm at intervals of 30 s up to 3 min. As a control, an
enzyme solution containing H2O2-free phosphate buffer was
used. The decreasing absorbance was measured at 240 nm for
3 min, and the enzyme unit mg-1 protein was calculated.
One unit of the enzyme was defined as the quantity of
enzyme essential to degrade 1 μM H2O2 min-1.

The activity of peroxidase (POD, EC: 1.11.1.7) was
measured by using the procedure of Li et al. (2014). POD uses
pyrogallol as a hydrogen donor and converts H2O2 to H2O
and O2. When pyrogallol is oxidized, it generates purpurogalli,
a colorful product that may be detected spectrophotometrically
at 430 nm. A hundred microliters of enzyme extract was
mixed thoroughly with 3.0 mL of 50 μM pyrogallol solution.
Five hundred microliters of 1% H2O2 was mixed properly in
the test cuvette. The change in OD at 430 nm was recorded
for a gap of every 30 s till 3 min and presented as enzyme
units mg-1 protein. One enzyme unit was defined as the
quantity of enzyme needed to produce one µmole purpurogalli
every min.

Determination of phenolics and flavonoids
An assay modified by Shetty and co-workers was used to
measure total soluble phenolics (Shetty et al., 1995). The leaf
tissue weighing 0.5 g was immersed in 95% ethanol and
frozen for 48 h. The leaf sample was crushed and followed
by centrifugation at 12,000 g for 10 min. The supernatant
(0.5 mL) was diluted with 0.5 mL distilled water and then
placed into a test tube having 1 mL 95% ethanol and 5 mL
distilled water. Each sample was mixed thoroughly with
500 µL of 50% (v/v) Folin and Ciocalteu’s reagent. The
sample mixture was incubated for 5 min, then 1 mL of 5%
Na2CO3 was added to it and left for 60 min. As a blank,
0.5 mL of double distilled water was taken, and the absorbance
was noted at 725 nm. The standard curves were prepared by
taking various concentrations of gallic acid in 95% ethanol.

NITRIC OXIDE ALLEVIATES CADMIUM STRESS IN PEA 2585



The obtained absorbances were transformed to total phenol and
represented in mg equal to gallic acid per g of FW.

The total flavonoid content was determined using the
method of Jia and coworkers (Jia et al., 1999). At room
temperature, the leaf sample was homogenized with ethanol.
To each extract, methanol was added to 300 µL to make the
final volume up to 2 mL followed by the addition of 0.1 mL
of AlCl3 (10%) and 0.1 mL of 1 M sodium acetate
(CH3COONa). The final volume was then adjusted to 5 mL
using double distilled water. The sample was then incubated
for 30 min and absorbance was measured at 415 nm using a
spectrophotometer (Perkin Elmer UV-VIS 35). The
standard curve was made using quercetin. The data were
given in µg of quercetin per g of fresh weight.

Statistical analysis
One-way ANOVA was performed by Graph Pad PRISM
version 5.01. The error bars on the figures represent the
standard deviation (SE). Using Tukey’s honest significant
difference (HSD) test at p ≤ 0.05, different letters show

significant differences while the same letters represent no
significant differences.

Results

Growth and biomass yield
Cd concentration of 50 µM decreased the shoot length by 37%,
root length by 36%, shoot fresh weight by 21%, shoot dry
weight by 26%, root fresh weight by 37%, and root dry
weight by 21% in comparison to those of the control (Figs.
1A, 1C and 1E). Cd concentration of 200 µM reduced the
shoot length by 62%, root length by 47%, shoot fresh weight
by 43%, shoot dry weight by 61%, root fresh weight by 60%,
and root dry weight by 54% in comparison to those of the
control. The use of 50 µM SNP with 50 and 200 µM Cd
increased the shoot length by 46% and 77% and root length
by 63% and 42%, respectively, compared to the treatment
with 50 and 200 µM Cd alone (Figs. 1A and B). The shoot
fresh weight and dry weight were also elevated by the
supplementation of 50 µM SNP with 200 µM Cd, and the

FIGURE 1. Effect of Cd, SNP, and their combinations on length (A,B), fresh weight (C,D), and dry weight (E,F) of shoot and root of pea
seedlings. Different letters represent significant differences, and the same letters represent no significant difference by applying Tukey’s
honest significant difference (HSD) test at p ≤ 0.05.
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maximum increase in shoot fresh weight and dry weight was
42% and 65%, corresponding to 200 µM Cd treatment (Figs.
1C–1F). The root fresh weight and dry weight also increased
when 50 µM SNP was used along with 200 µM Cd, and an
increase in root fresh weight by 56% and root dry weight by
64% was observed compared to those after 200 µM Cd
treatment (Figs. 1C–1F).

Nitrite and NR content
Cd concentrations of 50 and 200 µM reduced nitrite content by
53% and 60% in shoot and 50% and 68% in root compared to
control. Supplementation of NO with Cd improved the nitrite
content and NR activity in both root and shoot (Figs. 2A–
2D). SNP concentration of 50 µM with 50 µM Cd enhanced
the nitrite content by 23% and 27% in shoot and root,
respectively, whereas 200 µM Cd enhanced the nitrite content
by 24% and 59% in shoot and root, respectively (Figs. 2A and
2B). Cd treatment reduced the NR activity in shoot and root
by 47% and 34%, respectively, at 50 µM concentration and by
100% and 61%, respectively, at 200 µM concentration
compared to control. The use of NO to 50 µM Cd treated
plants enhanced the NR content by 27% and 26% in shoot
and root, respectively, whereas NO supplementation to
200 µM Cd stressed plants enhanced the NR content by 30%
and 43% in shoot and root, respectively (Figs. 2C and 2D).

H2O2 and MDA content
In shoot and root, Cd treatment of 50 µM led to a 31% and
44% increase in H2O2 and 16% and 44% increase in MDA
content, respectively (Figs. 3A–3D). Cd concentration of
200 µM caused 65% and 77% increase in H2O2 content and
44% and 120% increase in MDA content in the shoot and

root, respectively, compared to those in control plants. The
addition of 50 µM SNP to 50 µM Cd reduced H2O2

accumulation by 24% in the shoot and 24% in the root,
whereas the addition of 50 µM SNP to 200 µM Cd caused
28% reduction in H2O2 content in the shoot and 25%
reduction in the root (Figs. 3A and 3B). MDA content
decreased by 22% in shoot and 31% in root when 50 µM
SNP was used along with 50 µM Cd compared to 50 µM Cd
treatment alone. Similarly, the use of 50 µM SNP along with
200 µM Cd reduced MDA content by 22% in the shoot and
22% in the root (Figs. 3C and 3D).

Proline and protein contents
The amount of proline reduced by 22% in the shoot and 28% in
the root, whereas protein content decreased by 25% in the shoot
and 39% in the root at 50 µM Cd treatment (Figs. 4A–4D). At
200 µM Cd concentration, proline content reduced by 5% in
the shoot and 16% in the root, whereas protein content
decreased by 63% in the shoot and 68% in the root,
respectively, relative to those in control. Supplementation of
50 µM SNP along with 50 µM Cd led to a 100% and 42%
decrease of proline content in shoot and root, respectively, and
a 50% and 72% increase in protein content in shoot and root
respectively. Treatment with 50 µM SNP along with 200 µM
Cd decreased proline content by 73% in shoot and 31% in
root and enhanced protein content by 74% in shoot and 100%
in root compared to 200 µM Cd treatment alone (Figs. 4A–4D).

Total phenols and flavonoids content
The contents of total phenols and flavonoids decreased by
41% and 37% in the shoot at 50 µM Cd and by 61% and
59% in the shoot at 200 µM Cd treated plants in

FIGURE 2. Effect of Cd, SNP and their combinations on nitrite content (A,B) and NR activity (C,D) in shoot and root of pea seedlings.
Different letters represent significant differences, and the same letters represent no significant difference by applying Tukey’s honest
significant difference (HSD) test at p ≤ 0.05.
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comparison to those in control plants (Figs. 5A and 5B).
However, 50 µM SNP increased the phenols and flavonoids
by 30% and 20% in the shoot, respectively, when supplied
along with 50 µM Cd and by 40% and 36% in the shoot,
respectively, when supplied with 200 µM Cd (Figs. 5A and 5B).

Catalase (CAT) and peroxidase activities
In 50 µM and 200 µM Cd-treated stressed plants, CAT activity
was reduced by 48% and 61%, respectively, in shoot and 34%
and 62% in root as compared to control (Figs. 6A and 6B).
POD activity was reduced by 10% and 19% in shoot and

FIGURE 3. Effect of Cd, SNP, and their combinations on H2O2 (A,B) and MDA (C,D) content in shoot and root of pea seedlings. Different
letters represent significant differences, and the same letters represent no significant difference by applying Tukey’s honest significant
difference (HSD) test at p ≤ 0.05.

FIGURE 4. Effect of Cd, SNP, and their combination on proline (A,B) and protein (C,D) content in shoot and root of pea seedlings. Different
letters represent significant differences, and the same letters represent no significant difference by applying Tukey’s honest significant
difference (HSD) test at p ≤ 0.05.
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root, respectively, in 50 µM Cd treated plants, but it was
decreased by 48% and 36% in shoot and root,
respectively, in 200 µM Cd treated plants (Figs. 6C and
6D). NO supplementation along with Cd resulted in a
significant enhancement in the activities of CAT and
POD both in root and shoot compared to 50 µM and
200 µM Cd treatment (Figs. 6A–6D). Supplementation of
50 µM SNP with 50 µM Cd increased CAT activity by
61% in shoot and 36% in root compared to 50 µM Cd
treatment, whereas supplementation with 200 µM Cd led
to a 76% increase in shoot and 58% increase in root
compared to 200 µM Cd. The POD activity increased by
19% in shoot and 41% in root when 50 µM SNP was
supplied with 50 µM Cd and 34% in shoot and 44% in
root when 50 µM SNP was supplied along with 200 µM
Cd (Figs. 6C and 6D).

Discussion

The current findings suggest that NO has a role in regulating
pea responses to Cd toxicity. The exogenous supply of NO-
donor SNP to the Cd-contaminated rice root increases
intracellular NO and alleviates the morphological and
anatomical damages caused by Cd by restoring the
ROS/RNS balance in the cell (Sharma et al., 2020a). Plants
absorb Cd easily through roots growing in Cd-rich
environments. Only a little amount of Cd is transfered to
the shoots from the roots (Moussa and El-Gamal, 2010). As
Cd is a non-essential element, its accumulation inhibits the
growth and development of the plant (Wang et al., 2021).
NO acts as a key signaling molecule in plants, and its
importance in alleviating abiotic and biotic stressors has
prompted widespread interest (Khan et al., 2017). The

FIGURE 5. Effect of Cd, SNP and their combination on phenols (A) and flavonoids (B) content in the shoot of pea seedlings. Different letters
represent significant differences, and the same letters represent no significant difference by applying Tukey’s honest significant difference
(HSD) test at p ≤ 0.05.

FIGURE 6. Effect of Cd, SNP, and their combination on catalase (A,B) and peroxidase (C,D) activity in shoot and root of pea seedlings.
Different letters represent significant differences, and the same letters represent no significant difference by applying Tukey’s honest
significant difference (HSD) test at p ≤ 0.05.
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endogenous NO level increased in Cd-affected pea plants
developing in a stressed environment (Huang et al., 2020).
This increase in NO suggests that it acts as a stress signaling
molecule (Molassiotis et al., 2010). Treatment of Cd-stressed
pea seedlings with SNP boosted endogenous NO levels even
further, indicating effective uptake and storage of NO
provided by SNP, which is consistent with earlier
investigations that have found a similar role of SNP (Li et
al., 2014). NO has been identified in recent studies as an
important messenger molecule in plants and provides
tolerance from various types of heavy metals like arsenic
(Singh et al., 2009), Cd (Wang et al., 2013; Wang et al.,
2013a), and copper (Zhang et al., 2009). In one previous
study, we reported that a specific concentration of NO was
needed to alleviate Cd stress in pea seedlings, and a low
concentration of NO provides more tolerance against Cd
toxicity (Khan et al., 2017; Mohamed et al., 2019). In a
previous work, different concentrations of SNP were
supplied exogenously to a Cd-treated growth medium to
determine the optimal NO level for efficiently reducing Cd
toxicity. Pea seedlings treated with a Cd cause a decrease in
length and fresh and dry weight of root and shoot (Figs. 1A–
1C). Cd toxicity reduces growth due to i) reduced absorption
of water and nutrition by root (Wang et al., 2021), ii) damage
to the photosynthetic membrane (Sharma et al., 2020b), iii),
hindrance during cell division (Mondal et al., 2013), and iv)
direct impedance of Cd with some hydrolytic enzymes, and
changes in carbohydrates metabolism (Abdel Latef, 2013;
Hussain et al., 2013). The exogenous use of SNP mitigates the
inhibitory effect of Cd on length, and fresh and dry weight of
root and shoot (Figs. 1A–1C), demonstrating that NO plays a
direct or indirect function in reducing Cd toxicity in these
plants. These findings are consistent with previous research
on Typha latifolia and chickpea (Wang et al., 2016; Kumari
et al., 2010).

The two probable enzymatic sources of NO synthesis are
NR and NOS (Neill et al., 2008). In plants, NR is regarded as
the primary enzymatic source for the production of
endogenous NO (Li et al., 2016). Several studies have
reported NOS activity in plants (Corpas and Barroso, 2013),
despite the evidence showing that no NOS gene was
reported in plants (Neill et al., 2008). Endogenous NO levels
and NR activity were reduced in Cd-treated pea seedlings
(Figs. 2A and 2B). Cd causes a reduction in endogenous NO
concentration and NR activity which was reversed after an
exogenous supply of SNP (Figs. 2A and 2B).

Cd stress causes ROS overproduction leading to
oxidative burst and damage to various biomolecules in
plants. The outcome of lipid peroxidation is MDA, and its
concentration reflects lipid peroxidation and stress level
(Abdel Latef, 2011; Ahmad et al., 2015). Enhanced MDA
production and loss of membrane permeability have been
reported in maize and pepper. In this study, we observed
that Cd treatment caused the increase of H2O2 and MDA
content in the root and shoot of pea (Figs. 3A and 3B).
Similar to our studies, Cd has been reported to cause
oxidative stress by enhancing H2O2 and MDA contents in
Arabidopsis (Li et al., 2016). H2O2, on the one hand, act as a
signaling molecule (Liu and He, 2016; Liu and He, 2017), on
the other hand, it is very harmful to most biochemical

reactions (Nahar et al., 2021). H2O2 hinders the Calvin cycle
by lowering the photosynthetic rate (Hussain et al., 2013),
and its high content is generally assumed as a stress
condition in plants. When Cd-treated pea plants were
supplied with 50 µM SNP, plants showed a decrease in
H2O2 and MDA levels than those in plants treated with Cd
alone (Fig. 3A and 3B). This could be because of NO-led
modulation in antioxidant enzymes activity and proline
accumulation, which can detoxify free radicals and decrease
oxidative damage of membranes during Cd stress (Mourato
et al., 2012; Li et al., 2016).

Heavy metal exposure has been linked to a decrease in
the level of soluble proteins (Hasanuzzaman et al., 2014).
Our findings showed the reduction of protein content in
Cd-treated plants. This may be because of (i) an increase in
ROS generation, which damages proteins (Gajewska and
Skłodowska, 2007), (ii) binding of Cd to the sulfhydryl
group of protein damages the protein structure
(Hasanuzzaman et al., 2014), and (iii) active involvement of
protease activity (Palma et al., 2002). Plants treated with Cd in
combination with 50 µM SNP displayed more protein content
related to Cd-treated plants (Fig. 4B). Parallel to our studies,
SNP-mediated increase in protein content has been observed
under Cd stress in peanuts (Dong et al., 2019) and seawater
stress in canola plants (Abdel Latef, 2011). SNP improved the
content of protein during abiotic stress, perhaps by increasing
protein synthesis and lowering proteolysis and enzyme
degradation (Kozlowski and Pallardy, 2002).

Phenolic compounds and flavonoids are well known for
their protective role against various stresses in plants. Total
phenols and flavonoids represent antioxidant properties
because of their capacity to act as electron-donating agents
(Salinitro et al., 2020). Flavonoids have also been implicated
in metal chelation (Bai et al., 2004). With an increase in Cd
concentration, phenols and flavonoid levels decreased in the
roots and shoots of pea seedlings (Figs. 5A and 5B). Similar
to our studies, the reduction of phenols and flavonoid levels
due to Cd was also reported earlier (Kapoor et al., 2014). Cd
toxicity causes the overproduction of ROS by inhibiting the
enzymes involved in the production of phenols and
flavonoid. Phenolic compounds are produced immediately
through the signaling processes during stress (Bais et al.,
2002). Exogenous supply of SNP along with Cd enhanced
the total phenol and flavonoid level in roots and shoots of
pea seedlings (Figs. 5A and 5B). This may be probably due
to SNP-led (i) decrease in Cd uptake, (ii) enhancement in
polyphenols biosynthesis genes expression (Xu et al., 2014),
and (iii) stimulation of the activity of phenylalanine
ammonia-lyase enzyme, a key enzyme in phenyl propanoid
biosynthesis (Kuthanová et al., 2004).

Antioxidant enzymes, including CAT and POD play
important roles in plants by avoiding oxidative damage (Lu
et al., 2020). Both CAT and POD, decompose H2O2 to H2O
and O2 (Ahmad et al., 2015). Compared to CAT, POD
possesses a high affinity for H2O2. CAT is responsible for
the elimination of excess H2O2, and POD is responsible for
keeping H2O2 concentrations low (Mourato et al., 2012;
Hasanuzzaman et al., 2020). Our results showed decreased
CAT and POD activity in Cd stress pea seedlings (Figs. 6A
and 6B). Excessive production of ROS during Cd stress may
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be the cause of the decrease in antioxidant enzyme activity
(Mondal et al., 2013). The use of SNP increased antioxidant
enzyme activity and lowered H2O2 and MDA content
suggesting that SNP application can be effective in
increasing Cd stress tolerance in the plant by enhancing
antioxidant systems and protecting the structural and
functional damage of cell membranes (Talukdar, 2012;
Piacentini et al., 2020).

Conclusion

Our results suggest that the application of SNP along with Cd
increases endogenous NO content and antioxidant activity,
which might be responsible for the mitigation of Cd-
impeded growth in pea seedlings.
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