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Abstract: Poly(ADP-ribose) (PAR) is a highly negatively charged polymer. PAR is synthesized by poly(ADP-ribose)

polymerases (PARPs) and is involved in the assembly and stabilization of macromolecular complexes. Here, the

presence and putative roles of poly(ADP-ribosyl)ation (PARylation) associated to adherens junctions (AJ) and the

actin cytoskeleton in epithelial and Schwann cells, is reviewed. The hypothesis generated by analogy, stating that PAR

is associated to AJ in other cell types, is postulated. According to this hypothesis, PAR associated to puncta adherentia

in chemical synapses would participate in plasticity, learning and memory. In turn, PAR associated to fascia adherens

in cardiomyocytes, would affect heart beating. PARP inhibitors are currently under development and clinical testing.

Basic research in different tissues will probably influence their clinical uses.

An Introduction to Poly(ADP-ribose) (PAR)

Poly(ADP-ribosyl)ation (PARylation) is a biochemical
reaction consisting on the synthesis of a linear or branched
polymer called poly(ADP-ribose) (PAR), comprising up to
400 ADP-ribose monomers. PAR is covalently bound to
proteins as a posttranslational modification, or to DNA
(Matta et al., 2020). With two negatively charged
phosphates per unit and substructures that can be
recognized by selected protein domains-such as Macro,
WWE, RNA recognition motif (RRM) or PBM-, PAR can
be regarded as a “glue” that facilitates assembly and
stabilization of certain macromolecular complexes (Hottiger,
2015; Leung, 2014). Although PAR remained unnoticed
until 1963 (Chambon et al. 1963, reviewed in Kraus, 2015),
it is involved in several cellular processes. Moreover, PAR
metabolism displays alterations in several inflammatory
pathologies including diabetes, cardiovascular disease,
infections, autoimmune disease, cancer and
neurodegeneration (Bai, 2015; Cerboni et al., 2010;
Masutani et al., 2005; Strosznajder et al., 2012; Virag, 2002).

PARylation is catalyzed by four enzymes: PARP-1,
PARP-2, tankyrase-1 (TNKS-1) and tankyrase-2 (TNKS-2).
PARP-1/2 and TNKS-1/2 belong to a larger molecular

family (PARP family, or ARTDs) that does also include
inactive members-probably playing regulatory roles through
substrate competition-, as well as intracellular enzymes with
mono(ADP-ribosyl)ating activity (Lüscher et al., 2022).
PARP-1, the canonical PARP, has been deeply involved in
all nuclear functions, including chromatin structure
modulation, transcriptional regulation, imprinting (Lafon-
Hughes et al., 2008), DNA repair and cellular response to
stress. PARP-1 and PARP-2 have partially overlapping
functions (Bai, 2015).

TNKS-1/2 lack the DNA binding domain of PARP-1/2.
They have an Ankyrin binding domain, present in several
sub-membrane region proteins, instead (Chi and Lodish,
2000). TNKS is required during mitosis, colocalizes with the
Golgi system (Smith and de Lange, 1999; Wahlberg et al.,
2012), and is involved in cell junction assembly and Wnt/
Axin/β-catenin signaling (Bao et al., 2012; Chi and Lodish,
2000; Yeh et al., 2006).

Current Evidence Associating PAR with Adherens Junctions
(AJ), Vinculin and Actin Microfilaments

TNKS–dependent PARylation of VCL vs. epithelial cell
morphology
In epithelial cells, some actin microfilaments are anchored to
cell-matrix integrin-harboring focal adhesions (FA) while a
characteristic subcortical actin ring is bound to a cadherin
and catenin-rich cell-cell adherens junction (AJ) belt or
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zonula adherens (Domke et al., 2014; Niessen and Gottardi,
2008). Some zonula AJ proteins, like β-catenin, are called
nuclear and AJ complexes proteins (NaCos) because they
help coordinate cell shape and polarity with cycling
dynamics, alternatively being integral components of zonula
AJ complexes or acting as transcription factors (Aho et al.,
2009; Balda, 2003). A relevant actor in anchoring the actin
cytoskeleton to both zonula AJ and FA is Vinculin (VCL)
(Bays and DeMali, 2017). Being involved in mechanosensing,
VCL recruitment to zonula AJ is force-dependent (Le Duc
et al., 2010). VCL regulates cell-cell contact stability (Seddiki
et al., 2018) and facilitates mechanical coupling between
actin microfibers and the extracellular matrix (Angulo-Urarte
et al., 2020). Interestingly, VCL regulates epithelial cells
characteristics including cell polarity, cycling, adhesion and
migration (Coll et al., 1995; Maddugoda et al., 2007; Pal et
al., 2019; Peng et al., 2010; Raz and Geiger, 1982; Sumida et
al., 2011; Xu et al., 1998a; Xu et al., 1998b). VCL has also
been detected in the nucleus, indicating that it might be a
NaCo (Flachs et al., 2019; Hwang et al., 2017).

Epithelial cells harbor a PAR belt, detected by
immunoctytofluorescence under confocal microscopy (ICF-
CFM). The PAR belt colocalizes with zonula AJ, VCL and the
subcortical actin ring. In contrast, FA display no PARylation
signal (Lafon-Hughes et al., 2014). Therefore, the VCL pool
PARylated in epithelial cells extracts, would correspond to
VCL bound to zonula AJ (Vilchez Larrea et al., 2021).

The PAR belt is lost under treatment with cytochalasin D,
an actin polymerization inhibitor (Lafon-Hughes et al., 2014).
Conversely, in the presence of TNKS inhibitors, neither the
PAR belt nor the subcortical actin ring are assembled, while
cell shape becomes more irregular, mesenchymal-like (Lafon-
Hughes et al., 2014; Vilchez Larrea et al., 2021). VCL harbors
a TNKS binding motif (TBM) required to achieve TNKS-
dependent PARylation. The overexpression of a chicken VCL
gene carrying a point mutation in the TBM, unlike wt-VCL,
induces a cell shape change reminiscent of an epithelial to
mesenchymal transition (EMT) (Vilchez Larrea et al., 2021).
Accordingly, in an EMT model, under TGF-β induction of
EMT, the PAR belt is lost together with epithelial markers,
characteristic cell shape and low F-actin anisotropy (Schacke et
al., 2019). In the meantime, nuclear PAR increases.
Conversely, a treatment with Olaparib, an inhibitor of PARP-
1/2, diminishes nuclear PAR, preserves epithelial morphology/
anisotropy and molecular markers, and restores the PAR belt,
indicating the importance of the PAR belt and its close
relation with the actin cytoskeleton (Schacke et al., 2019). This
work highlights the fact that Olaparib, approved as an
anticancer drug following a synthetic lethality paradigm, may
show effects beyond the promotion of cell death through
DNA repair failure. Olaparib can deeply affect the cell
morphological and functional phenotype, including the PAR
belt, suggesting the existence of a crosstalk among nuclear
PARPs and TNKS.

Schwann cells autotypic AJ regions are PARylated and total
PAR distribution and quantity parallels F-actin
The presence of PAR associated to AJ-rich regions in non-
epithelial tissues could be biologically meaningful. In fact, in
peripheral nerves, Schwann cells harbor autotypical AJ that

fix the successive myelin layers (Fannon et al., 1995). Such
autotypical AJ, with a molecular composition similar to
epithelial zonula AJ (e.g., E-cadherin rich), are distributed in
regions called paranodes (PN) and Schmidt-Lanterman
incisures (SLI). Analysis of Schwann cells supported PAR
presence in PN and SLI. Moreover, in a mice model of
Charcot-Marie-Tooth demyelinating pathology, PAR
distribution and quantity alterations parallel the F-actin
changes (Lafon Hughes et al., 2017). This work indicates
that PAR is associated with autotypical AJ and the actin
cytoskeleton. Moreover, it links PARylation and myelination.

Working Hypothesis

A role of VCL PARylation in synaptic plasticity, learning and
memory?
Fig. 1 highlights the analogous structure of AJ complexes from
different cell types in spite of their dissimilar subcellular
distribution patterns. The figure depicts the core structure of
AJ (Fig. 1A), the epithelial cells with their belt (Fig. 1B),
Schwann cells with AJ at autotypic junctions at PN and SLI
(Fig. 1C), neuronal synapses with synaptic clips called
transynaptic puncta adherentia (Fig. 1D) and
cardiomyocytes with fascia adherentia in their intercalated
discs (Fig. 1E). Fig. 1 does not pretend to be exhaustive; it is
just showing well-documented examples. PAR has been
detected in epithelial zonula adherens and is Schwann cell
PN and SLI. PAR detection in puncta adherentia and fascia
adherens, with different implications, is envisaged.

In chemical synapses, transynaptic AJ complexes called
puncta adherentia clip the presynaptic active zone (PRE)
and postsynaptic density (POST) (Kilinc, 2018; Uchida et
al., 1996). Cadherins are involved in synaptic plasticity and
long-term potentiation (LTP). Synaptic activity modulates
synaptic adhesiveness (Bekirov et al., 2002; Benson, 2000;
Bozdagi et al., 2004; Fields and Itoh, 1996; Tang et al.,
1998). Catenins do also regulate synapses. For example,
upon depolarization, β-catenin relocation promotes synaptic
structural and functional changes (Kilinc, 2018). VCL is
required for neuronal mechanosensing (Wang et al., 2021)
and participates in synaptic plasticity (Liśkiewicz et al.,
2020). F-actin does also play a role in synaptic structure and
function (Bucher et al., 2020; Gentile et al., 2022; Lavoie-
Cardinal et al., 2020; Zhang and Benson, 2001). To sum up,
cumulative evidence indicates that puncta AJ, VCL,
mechanical forces and the actin cytoskeleton play concerted
crucial roles in synaptic establishment and plasticity. One
wonders (i) whether PAR is associated to puncta AJ, and in
such case, (ii) whether PARylation is involved in synaptic
plasticity, LTP, memory and learning. We cannot answer
the former issue yet. Regarding the latter, independent
evidence indicates that PARylation can be induced by
depolarization or neurotrofin treatment (Homburg et al.,
2000; Visochek, 2005), and that LTP, memory and learning
require PARylation (Berger et al., 2018; Cohen-Armon,
2004; Goldberg et al., 2009; Strosznajder et al., 2012). To
what extent nuclear PAR or puncta AJ-associated PAR
contribute to the cited results, remains to be established.
Thus, the presence of PAR associated with puncta AJ in
chemical synapses is a reasonable working hypothesis. By
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analogy to epithelial AJ, TNKS involvement in the PARylation
of VCL associated with puncta AJ is expected. Indeed, in
primary hippocampal neurons, TNKS is detected in the
soma and neurites, partially co-localizing with PAR signals.
Moreover, TNKS inhibitor XAV939 suppresses neurite
outgrowth and synaptogenesis (Mashimo et al., 2022). It
would be worth verifying the colocalization among puncta
AJ, VCL, synaptic components, F-actin and PAR. If
confirmed, it would also be tempting to analyze if there are
changes in puncta AJ-associated PARylation associated to
plasticity, LTP, learning and memory.

A role of VCL PARylation in cardiomyocytes?
VCL knockout results in brain and heart defects during
embryonic development (Xu et al., 1998a). Cardiomyocytes
cell-cell AJ constitute the fascia adherens, located in
intercalated disks (ICD). The fascia adherens is involved in
mechanical coupling and reinforcement of cardiomyocytes,
withstanding repeated cycles of actomyosin-mediated
contractile force. VCL is a critical link to contractile
actomyosin (Merkel et al., 2019). Components of the fascia
AJ including N-cadherin, α-E-catenin, β-catenin, and VCL
play important roles in cardiac development, disease,
and arrhythmias. In fact, cardiac-myocyte–specific VCL
knockout mice display cardiac AJ/ICD abnormalities,
leading to ventricular tachycardia and sudden death. VCL is
necessary for preservation of ICD ultra-structure as well as
cardiac function (Sheikh et al., 2009). It is highly probable
that PAR is present in fascia AJ, strengthening the junctions
and participating in differentiation maintenance.

Future Perspectives and Clinical Implications

The presence of PAR associated to grouped AJ subject to high-
tension forces and recruiting VCL is likely to have important

structural, physiological and pathological relevance in
contexts as different as epithelial cell phenotype
maintenance, myelination by Schwann cells, synaptic
plasticity, cardiac development and heart beating. PARP-1/2
and TNKS inhibitors are being actively developed and
introduced to the clinic. Basic research regarding the effect
of such inhibitors in different tissues (not limited to the
ones here addressed) will likely lead to context-dependent
restrictions and expansions in inhibitors clinical uses.
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