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Abstract: The nutraceutical resveratrol is associated with a range of biological effects, from antibiotic to anti-

inflammatory activities. One major axis of research has sought to harness its anti-tumour potential, with promising

preclinical results and early clinical trials. A second strong interest relies on the anti-ageing effects ascribed to the

compound and its application to stem cell research. It is becoming clear however that these possible favourable effects

are conditioned by a set concentration range not easily controllable in vivo. Here we evoke novel developments in the

field that could lead to more reliable conditions for the translational use of resveratrol-based compounds.

Introduction

Resveratrol (RV) is a stilbenoid first isolated in 1939 from the
traditional medicine plant Veratrum grandiflorum and also
present in various foods such as grapes, apples, pistachios,
plums and peanuts, earning it a place of choice among
nutraceuticals (Zhang et al., 2021). From the two isomeric
forms of RV, the trans-version is considered more
biologically active (Kuršvietienė et al., 2016). Despite its low
natural solubility in water, RV shows relatively high
absorption (over 70%) after oral consumption (Vitrac et al.,
2003; Walle et al., 2004), however its bioavailability is
considered to be below 1% (Walle, 2011). RV is among the
most actively studied natural compounds, as underlined by
the number of RV-related entries recorded in the
international clinical trial database (www.clinicaltrials.gov)
covering a wide range of applications. This variety of
biological effects can be linked to the diverse cellular
pathways activated by RV, as the compound interacts with
different cellular components and exerts multiple biological
activities, including antioxidant (de la Lastra and Villegas,
2007; Xia et al., 2017), anti-inflammatory (Meng et al., 2021;
Magrone et al., 2019), anti-microbial (Bostanghadiri et al.,
2017), anti-proliferative (Stivala et al., 2001; Savio et al.,
2016; Maccario et al., 2012) properties. RV is predominantly
associated with antioxidant activity, an effect linked to the
presence in its structure of three hydroxyl groups
(Kuršvietienė et al., 2016; Stivala et al., 2001), as the

molecule acts as scavenger of free radicals by increasing the
intracellular concentration of antioxidant enzymes including
SOD (superoxide dismutase), catalase, glutathione reductase
and glutathione peroxidase (Yen et al., 2003; Ramprasath
and Jones, 2010). It has however been proposed that RV
could display a pro-oxidant activity, which could be
responsible for lipid peroxidation and DNA damage (de la
Lastra and Villegas, 2007). RV is also able to modulate
several signalling pathways involved in inflammation,
including AP-1, COX and NF-κB leading to an anti-
inflammatory response (Meng et al., 2021). Crucially, RV is
considered a potent activator of the NAD-dependent
deacetylase enzyme Sirtuin 1 (SIRT1), a pleiotropic regulator
of gene expression and silencing with particular relevance to
cancer development (Yi and Luo, 2010; Choupani et al., 2018).

Possible Anti-Cancer Applications

RV has been taken up as anti-cancer molecule following
numerous studies demonstrating its anti-tumoral profile,
through combined effects on cancer cell proliferation,
tumour microenvironment and angiogenesis (reviewed in
(Naujokat and McKee, 2020)). RV is considered a
chemopreventive agent, acting in the three major stages of
carcinogenesis (Fig. 1).

In particular, RV is involved in the regulation of phase I
and II enzymes and in the scavenging of ROS, blocking the
initiation stage of carcinogenesis (Ko et al., 2017). RV has
been observed to inhibit cell proliferation, arrest the
replication cycle, and induce apoptosis and autophagy
(Salehi et al., 2018) in several in vitro cancer models such as
HT1080 fibrosarcoma and MCF7 breast adenocarcinoma
(Stivala et al., 2001; Savio et al., 2016; Maccario et al., 2012).
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SIRT1 being a major mediator of RV effects, the ability of RV
to upregulate SIRT1 in cancer cells is thought to induce in
turn the degradation of β-catenin, supporting anti-cancer
activities (Jung et al., 2013; Firestein et al., 2008). The ability
of RV to inhibit the growth of cancerous cells is associated
with well-documented therapeutic effects on the tumour
environment including inhibition of angiogenesis and
matrix metalloproteases (MMPs), modulation of epithelial-
to-mesenchymal transition (EMT), and inhibition of
invasion and metastasis (Belleri et al., 2008; Rauf et al.,
2018). The compound was also shown to downregulate the
phosphorylation and acetylation of NF-κB, impairing
tumour proliferation, invasion and metastasis. In ovarian
cancer cell lines, Tino et al. (2016) demonstrated that RV
treatment inhibited cell growth by decreasing NF-κB levels
and its downstream gene vascular endothelial growth factor
(VEGF), which contributes to angiogenesis.

Its direct and indirect anti-tumour properties, combined with
the aforementioned antioxidant and anti-inflammatory effects,
hold clear potential for the use of RV in the clinic. Although
clinical evaluation of the molecule is not without challenges (Ren
et al., 2021), some clinical trials have investigated the use of RV
in cancer patients, in multiple myeloma, breast and colorectal
cancer (Berman et al., 2017). While treatment of colorectal
cancer patients with RV or grape powder showed partly reduced
tumour proliferation and increased cleaved caspase-3 levels in
malignant hepatic metastases (Howells et al., 2011), results to
date are not fully consistent across models, as it did yield adverse
effects in the multiple myeloma trial (Berman et al., 2017).
Preclinical observations have shown steadier benefits using RV,
proposed as a chemosensitizer in complement to conventional

chemotherapy (Harikumar et al., 2010). This approach trialled
by applying RV in combination with doxorubicin (DOX) in
breast (Jin et al., 2019), ovarian (Tino et al., 2016) and colorectal
(Buhrmann et al., 2016) cancer cell models, was observed to
inhibit proliferation, metastasis and chemoresistance. RV could
thus potentiate chemotherapy and lower the necessary drug
doses, consequently reducing the detrimental effects in patients
from oxidative stress, lipid peroxidation, inflammation, apoptosis
and autophagy (Yang et al., 2022).

Diverse Effects on Stem Cell Populations

Beside this possible role in cancer, RV have been linked to
increased longevity and resistance to age-induced degeneration
(Bonkowski and Sinclair, 2016), contributing to its promotion
as a multifaceted anti-ageing compound attracting much
commercial interest. The effect of RV on stem cell populations,
responsible for the long term maintenance of organs and tissue
throughout the lifetime, has been investigated in a range of
cellular models and linked to its ability to activate Sirtuins
(Stefani et al., 2007; Catalgol et al., 2012).

RVwas reported to promote self-renewal in undifferentiated
embryonic stem cell (ESC) cultures, in both mouse and human
models, and reduce apoptotic markers (Li et al., 2017;
Safaeinejad et al., 2017, 2018). Consequently, RV is among the
additives trialled to facilitate cellular reprogramming for the
production of induced pluripotent stem cells (iPSC) (Chen et
al., 2011; Ding et al., 2013), presumed to act on the SIRT1-
SOX2 axis. Application of RV at various concentrations yielded
diverse outcomes on adult stem cell populations, in particular
lower concentrations were reported to increase the proliferative

FIGURE 1. RV anti-cancer effects.
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ability of mesenchymal progenitors (Yoon et al., 2014; Yuan et al.,
2012), with a similar effect on neuroprogenitor also limited to
lower doses (Kumar et al., 2016). With regards to
differentiation response, low dose RV applied to pancreatic
stem cells improved β-cell formation (Xu et al., 2017), while
RV added to endothelial progenitors at 20 μM supported their
differentiation (Campagnolo et al., 2015). In differentiating
mesenchymal stem cell (MSC) cultures, RV was consistently
observed to promote osteogenesis (Moon et al., 2020; Dai et al.,
2007; Wang et al., 2019; Song et al., 2022) at doses up to 1 μM
(reviewed in (Safaeinejad et al., 2018)), warranting its
incorporation in tissue engineering products for localised
release to promote bone repair (Wei et al., 2021). RV added to
mouse mesenchymal progenitors also caused inhibition of the
adipogenic response (Zhou et al., 2015; Li et al., 2016) through
Sirt1 (Jang et al., 2017), although some conflicting reports have
observed the opposite effect in some mouse (Hu et al., 2015)
and in human progenitors (Caldarelli et al., 2015). The
publication of such discordant results further underlines the
likelihood of RV acting in a dose-, time- and species-
dependent manner, already evidenced in certain stem cell
models (Safaeinejad et al., 2018; Peltz et al., 2012).

Outstanding Issues & Perspectives

The basis of this apparent discrepancy in the differentiation
response to RV has been linked to a biphasic dose-response
profile (Borriello et al., 2013; reviewed in (Calabrese et al.,
2010)), which might hinder general comparisons across
models and studies. The fact that RV’s beneficial effects may
depend on reaching a specific in vivo concentration, points
to the need for a better controlled pharmacological profile
to achieve the desired effects (Scott et al., 2012; Cai et al.,
2015). Better RV bioavailability is under active investigation
(Chimento et al., 2019), including via alternative
formulations (Howells et al., 2011; Tripathi et al., 2018),
nano-encapsulation to assist the delivery and release (Santos
et al., 2019) and chemical analogues including hydroxylated
(Piotrowska et al., 2012) or methylated (Kapetanovic et al.,
2011) derivatives such as pterostilbene showing superior
bioavailability in vivo. One derivative in particular, trans-
4,4′-dihydroxystilbene or DHS has shown promising
biological characteristics. Produced as a synthetic new
compound, its chemical structure (Fig. 2) was originally
optimised to replicate the trans bicyclic/phenolic stilbene
backbone of RV, based on the correlation previously
observed between structure and activity (Stivala et al., 2001).
DHS was subsequently also identified as a natural derivative

(Torres et al., 2003), and found to be a potent antioxidant
and anti-proliferative stilbene, superior to RV in vitro
(Maccario et al., 2012; Savio et al., 2009).

DHS is active at a lower concentration compared to RV, and
shows a different mechanism of action. In particular, DHS
modified the cell cycle in the G1 phase, whereas RV induces a
block at the beginning of the S phase, involving different DNA
polymerases (Savio et al., 2009). Strictly related to its structure,
DHS is more potent than RV in inhibiting neoplastic
transformation of murine fibroblasts, as well as the proliferation
and invasion of breast cancer cells (Maccario et al., 2012).
In vivo, a murine lung cancer model was used to show that
tumour volume and cell proliferation were significantly
inhibited by DHS, and this is related to the reduction of
angiogenesis (Savio et al., 2016). In addition, liver metastatic
lesions were significantly reduced by DHS treatment, an
observation that was confirmed in a zebrafish tumour model
(Savio et al., 2016) and in a separate colon cancer model
(Kimura et al., 2020). These early results underline the potential
of DHS as an alternative RV derivative for treatment of cancer
and metastasis. More work is underway to explore its biological
effects on other cell types and broader therapeutic applications.
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(2003). Antioxidant and insect growth regulatory activities of
stilbenes and extracts from yucca periculosa. Phytochemistry
64: 463–473. DOI 10.1016/S0031-9422(03)00348-0.

Tripathi V, Chhabria S, Jadhav V, Bhartiya D, Tripathi A (2018).
Stem cells and progenitors in human peripheral blood get
activated by extremely active resveratrol (XARTM). Stem
Cell Reviews and Reports 14: 213–222. DOI 10.1007/
s12015-017-9784-7.

Vitrac X, Desmoulière A, Brouillaud B, Krisa S, Deffieux G et al.
(2003). Distribution of [14C]-trans-resveratrol, a cancer
chemopreventive polyphenol, in mouse tissues after oral
administration. Life Sciences 72: 2219–2233. DOI 10.1016/
S0024-3205(03)00096-1.

Walle T (2011). Bioavailability of resveratrol: Resveratrol
bioavailability. Annals of the New York Academy of Sciences
1215: 9–15. DOI 10.1111/j.1749-6632.2010.05842.x.

Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK (2004). High
absorption but very low bioavailability of oral resveratrol in
humans. Drug Metabolism and Disposition 32: 1377–1382.
DOI 10.1124/dmd.104.000885.

Wang H, Hu Z, Wu J, Mei Y, Zhang Q et al. (2019). Sirt1 promotes
osteogenic differentiation and increases alveolar bone mass
via Bmi1 activation in mice. Journal of Bone and Mineral
Research 34: 1169–1181.

APPLICATIONS OF RESVERATROL AND DERIVATIVES 2529

http://dx.doi.org/10.1002/jcb.25942
http://dx.doi.org/10.1016/j.bbabio.2016.03.009
http://dx.doi.org/10.1093/carcin/bgs244
http://dx.doi.org/10.3390/antiox9010035
http://dx.doi.org/10.3390/molecules26010229
http://dx.doi.org/10.1186/s13018-020-01684-9
http://dx.doi.org/10.1371/journal.pone.0037162
http://dx.doi.org/10.1016/j.mrrev.2011.11.001
http://dx.doi.org/10.1038/ejcn.2010.77
http://dx.doi.org/10.1080/10408398.2016.1263597
http://dx.doi.org/10.1016/j.canlet.2021.05.001
http://dx.doi.org/10.1016/j.canlet.2021.05.001
http://dx.doi.org/10.1016/j.ejmech.2018.06.037
http://dx.doi.org/10.1016/j.ejcb.2017.08.002
http://dx.doi.org/10.3390/biomedicines6030091
http://dx.doi.org/10.1016/j.colsurfb.2019.04.030
http://dx.doi.org/10.1016/j.biocel.2009.08.005
http://dx.doi.org/10.1016/j.biocel.2009.08.005
http://dx.doi.org/10.1038/srep19973
http://dx.doi.org/10.1002/mnfr.201100400
http://dx.doi.org/10.1007/s00223-021-00892-7
http://dx.doi.org/10.1007/s00223-021-00892-7
http://dx.doi.org/10.1196/annals.1396.001
http://dx.doi.org/10.1074/jbc.M101846200
http://dx.doi.org/10.1186/s13048-016-0293-0
http://dx.doi.org/10.1186/s13048-016-0293-0
http://dx.doi.org/10.1016/S0031-9422(03)00348-0
http://dx.doi.org/10.1007/s12015-017-9784-7
http://dx.doi.org/10.1007/s12015-017-9784-7
http://dx.doi.org/10.1016/S0024-3205(03)00096-1
http://dx.doi.org/10.1016/S0024-3205(03)00096-1
http://dx.doi.org/10.1111/j.1749-6632.2010.05842.x
http://dx.doi.org/10.1124/dmd.104.000885


Wei B, Wang W, Liu X, Xu C, Wang Y et al. (2021). Gelatin
methacrylate hydrogel scaffold carrying resveratrol-loaded
solid lipid nanoparticles for enhancement of osteogenic
differentiation of BMSCs and effective bone regeneration.
Regenerative Biomaterials 8: rbab044.

Xia N, Daiber A, Förstermann U, Li H (2017). Antioxidant effects
of resveratrol in the cardiovascular system. British Journal
of Pharmacology 174: 1633–1646.

Xu S, Sun F, Ren L, Yang H, Tian N et al. (2017). Resveratrol
controlled the fate of porcine pancreatic stem cells through
the Wnt/β-Catenin signaling pathway mediated by Sirt1.
PLoS One 12: e0187159.

Yang R, Dong H, Jia S, Yang Z (2022). Resveratrol as a modulatory of
apoptosis and autophagy in cancer therapy. Clinical and
Translational Oncology 24: 1219–1230. DOI 10.1007/
s12094-021-02770-y.

Yen GC, Duh PD, Lin CW (2003). Effects of resveratrol and 4-
hexylresorcinol on hydrogen peroxide-induced oxidative
DNA damage in human lymphocytes. Free Radical
Research 37: 509–514.

Yi J, Luo J (2010). SIRT1 and P53, effect on cancer, senescence and
beyond. Biochimica et Biophysica Acta (BBA)-Proteins
and Proteomics 1804: 1684–1689. DOI 10.1016/j.
bbapap.2010.05.002.

Yoon DS, Choi Y, Jang Y, Lee M, Choi WJ et al. (2014). SIRT1
directly regulates SOX2 to maintain self-renewal and
multipotency in bone marrow-derived mesenchymal stem
cells. Stem Cells 32: 3219–3231. DOI 10.1002/stem.1811.

Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX et al. (2012). SIRT1 is
required for long-term growth of human mesenchymal stem
cells. Journal of Molecular Medicine 90: 389–400. DOI
10.1007/s00109-011-0825-4.

Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF et al. (2021).
Resveratrol (RV): A pharmacological review and call for
further research. Biomedicine & Pharmacotherapy 143:
112164. DOI 10.1016/j.biopha.2021.112164.

Zhou Y, Zhou Z, Zhang W, Hu X, Wei H et al. (2015). SIRT1 inhibits
adipogenesis and promotes myogenic differentiation in
C3H10T1/2 pluripotent cells by regulating wnt signaling.
Cell & Bioscience 5: 61. DOI 10.1186/s13578-015-0055-5.

2530 MONICA SAVIO et al.

http://dx.doi.org/10.1007/s12094-021-02770-y
http://dx.doi.org/10.1007/s12094-021-02770-y
http://dx.doi.org/10.1016/j.bbapap.2010.05.002
http://dx.doi.org/10.1016/j.bbapap.2010.05.002
http://dx.doi.org/10.1002/stem.1811
http://dx.doi.org/10.1007/s00109-011-0825-4
http://dx.doi.org/10.1016/j.biopha.2021.112164
http://dx.doi.org/10.1186/s13578-015-0055-5

	Resveratrol-related compounds: Potential for cancer and beyond
	Introduction
	Possible Anti-Cancer Applications
	Diverse Effects on Stem Cell Populations
	Outstanding Issues & Perspectives
	flink5
	References


