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Abstract: Hepatocellular carcinoma (HCC) is a common immunogenic malignant tumor. Although the new strategies of
immunotherapy and targeted therapy have made considerable progress in the treatment of HCC, the 5-year survival rate
of patients is still very low. The identification of new prognostic signatures and the exploration of the immune
microenvironment are crucial to the optimization and improvement of molecular therapy strategies. We studied the
potential clinical benefits of the inflammation regulator miR-93-3p and mined its target genes. Weighted gene co-
expression network analysis (WGCNA), univariate and multivariate COX regression and the LASSO COX algorithm
are employed to identify prognostic-related genes and construct multi-gene signature-based risk model and
nomogram for survival prediction. Support vector machine (SVM) based Cibersort’s deconvolution algorithm and
gene set enrichment analysis (GSEA) is used to evaluate the changes in tumor immune microenvironment and
pathway differences. The study found the favorable prognostic performance of miR-93-3p and identified 389
prognostic-related target genes. The risk model based on a novel 5-gene signature (cct5, cdk4, cenpa, dtnbpl and
flverl) was developed and has prominent prognostic significance in the training cohort (P < 0.0001) and validation
cohort (P = 0.0016). The nomogram constructed by combining the gene signature and the AJCC stage further
improves the survival prediction ability of the gene signature. The infiltration level of multiple immune cells
(especially T cells, B cells and macrophages) were positively correlated with the expression of prognostic signature. In
addition, we found that gene markers of T cells and B cells is monitored and regulated by prognostic signature.
Meanwhile, several GSEA pathways related to the immune system are enriched in the high-risk group. In general, we
integrated the WGCNA, LASSO COX and SVM algorithms to develop and verify 5-gene signatures and nomograms

related to immune infiltration to improve the survival prediction of patients.

Introduction

Liver cancer is the sixth most common malignant tumor, and
its mortality ranks fourth among cancer-induced deaths in the
world (Bray et al., 2018). Hepatocellular carcinoma (HCC)
accounts for about 75-85%, which is the most frequent
histological subtype in primary liver cancer (Lange and
Dufour, 2019). The global burden of HCC is increasing and
may soon exceed the incidence of 1 million cases per year
(Llovet et al, 2018). The 5-year survival rate of HCC
patients is less than 20% due to high recurrence frequency
and heterogeneity (Buonaguro et al, 2019). Although early
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diagnosis is related to long-term survival, the diagnosis rate
of early HCC patients is less than 60% through the current
monitoring system (Zhao et al, 2020). Therefore, the
development of new diagnostic and prognostic biomarkers
is very necessary and urgent.

microRNA (miRNA) is a non-coding single chain RNA
composed of about 22 nucleotides, which participates in the
regulation of post-transcriptional gene expression (He and
Hannon, 2004). The abnormal expression of various
miRNAs has been found to play a key role in cell
carcinogenesis and cancer progression. Furthermore, several
miRNA-related clinical trials have been tried and achieved
positive outcome (Liu et al., 2020b; Piasecka et al, 2018).
Recently, miR-93-3p has been found to be a tumor-sensitive
molecule that can affect the development of various cancers.
For example, the silencing of miR-93-3p can reverse the
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promotion of long noncoding RNA ZNF667-AS1 on tumor
invasion and metastasis in cervical cancer (Li ef al, 2019). In
addition, miR-93-3p was identified as a biomarker and
potential therapeutic target because of the outstanding
prognostic ability in clear cell renal cell carcinoma and triple-
negative breast cancer (Li ef al., 2017; Wang et al., 2017b). The
anti-inflammatory effect and diagnostic performance of miR-
93-3p have also been discovered in non-tumor diseases
(Aguado-Fraile et al., 2015; Tang et al., 2018). Recently, several
studies have exposed the potential regulatory role of miR-93-
3p in liver cancer. The interaction between miR-93-3p and
has_circ_0005075 is closely involved in cell adhesion, which
may be a key part of the proliferation, invasion and metastasis
of liver cancer cells (Shang et al, 2016). In addition, the
abnormally high expression of miR-93-3p accompanies the
whole process of colorectal cancer metastasis to liver cancer.
And targeting CTGF and FOXP1 involved in cell migration
and targeting RFNG and NFATC3 controlled Notch signaling
pathway and tight junction may be potential mechanisms for
accelerating tumor cell proliferation (Salehi et al, 2019). ZEX
has been proven to promote the proliferation and migration of
liver cancer cells (Wang et al., 2017a), and other studies have
found that miR-93-3p promotes the proliferation and
metastasis of keratinocytes through the ZFP36L1/ZFX axis
(Feng et al, 2021). The specific molecular mechanism and
clinical benefits of miR-93-3p in liver cancer are still unclear.

Molecular biomarkers show superior performance in tumor
diagnostic, prognostic assessment, and identification of
potentially high-risk patients. However, the predictive
capability of single biomarker is usually defective. Conversely,
the signature constructed by multiple prognostic biomarker
show better prediction performance (Liu ef al, 2020¢; Zhang et
al., 2020a). Prognostic gene signatures shown an advantage in
the prognosis of HCC due to the development of genome
sequencing technology (Liu et al, 2020a). Nonetheless, the
clinical application of high-throughput sequencing technology
is limited due to the heterogeneity of the tumor
microenvironment. The immune response of tumor cells
escaping from the host immune response and continuing to
grow is widespread in human cancer (Fujita et al, 2020). At
present, the treatment strategies based on the infiltration of
immune cells have achieved considerable progresses in HCC
patients (Chen and Mellman, 2013). The disadvantage is that
the treatment strategy is only applicable to a small number of
patients. The combination of immunotherapy and targeted
therapy is expected to overcome the poor prognosis after
standard treatment in cancer (Gotwals et al, 2017). Several
immune-related events (mainly tumor-infiltrating
lymphocytes) were reported to be closely related to the
prognosis of HCC patients (Kim ef al, 2018). Therefore, an
extensive study of the immune microenvironment would help
elucidate complex anti-tumor responses to provide guidance to
effective treatment strategies.

In our previous studies, we investigated biophysical
properties of nucleic acids computationally (Chi and Jiang,
2012; Chi et al, 2013), and a variety of biomarkers and
potential therapeutic targets for inflammation regulation
were identified by experimental and bioinformatics methods
(Chi et al., 2020; Xu et al., 2019a; Xu et al., 2019b). The
study used the cancer genome atlas (TCGA) database and
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analyzed the diagnosis and prognostic performance of miR-
93-3p in HCC. Weighted gene co-expression network
analysis (WGCNA) was employed to construct co-
expression network based on target genes of miR-93-3p.
Then, the univariate COX regression analysis and the least
absolute shrinkage and selection operator (LASSO)
algorithm were used to establish multi-gene signature-based
risk score and nomogram to predict survival of patients.
Finally, the correlation between prognostic signature and
immune cell infiltration was explored through CIBERSORT,
TIMER and GEPIA2. Gene set enrichment analysis (GSEA)
were used to evaluate pathway differences in different risk
groups. The whole flowchart of the study was shown in Fig. 1.

Materials and Methods

Data collection and preprocessing

Based on the keywords of liver cancer and miRNA, we searched
and randomly selected 3 datasets (GSE40744, GSE98269 and
GSE115016) with miR-93-3p expression levels in the GEO
database. The RMA algorithm was used to extract the
expression matrix from the original chip and complete the
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normalization process. Then, the R language package “Limma”
was adopted to perform differential expression analysis (Tumor
vs. Normal). MiR-93-3p was selected as the seed player in the
follow-up analysis because it satisfies the differential miRNA
screening conditions of P < 0.05 and |logFC| > 1 and has a
good survival prediction effect.

HCC-related genome-wide miRNA-seq and mRNA-seq
expression data and corresponding clinical information in
the TCGA database (https://cancergenome.nih.gov/; January
2020) were downloaded. And the data type of expression
profile is level 3 transcriptome count data. The miRNA-seq
data was extracted from 372 tumor tissues and 50 normal
tissue samples. The mRNA expression profile contains 371
tumor tissues and 50 normal tissue samples. All count type
expression data was preliminarily processed by log2
conversion. The survival information of 365 HCC patients
was retained after excluding samples with survival time of 0.
In addition, the clinical characteristics of 329 HCC patients
with complete survival time, survival status, Gender, age,
AJCC stage, and ISUP grade information were summarized
to perform subsequent analysis (Tab. 1).

Clinical performance and target gene prediction of miR-93-3p
Student’s t-test was used to perform difference analysis based
on miRNA expression profiling in HCC tumors and normal

TABLE 1

Clinical characteristics of 329 HCC patients in training cohort and
validation cohort

Clinical characteristics Training Validation

cohort (N = 165) cohort (N = 164)

Status

Dead 53(32.1%) 60(36.6%)

Alive 112(67.9%) 104(63.4%)
Gender

Female 50(30.3%) 54(32.9%)

Male 115(69.7%) 110(67.1%)
Age

>65 years 59(35.8%) 59(36%)

<65 years 106(64.2%) 105(64%)
BMI

<18.5 9(5.5%) 10(6.1%)

>218.5&=23.9 58(35.2%) 66(40.2%)

>23.9 83(50.3%) 80(48.8%)
pT stage

T1&T2 115(69.7%) 116(70.1%)

T3&T4 35(21.2%) 40(24.4%)
AJCC stage

I&II 123(74.5%) 121(73.8%)

&IV 42(25.5%) 43(26.2%)
ISUP grade

G1&G2 108(65.5%) 96(58.5%)

G3&G4 57(34.5%) 68(41.5%)
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tissues. P < 0.05 was considered to have a significant
difference. The R package “survminer v0.4.6” was utilized to
plot the Kaplan-Meier (K-M) curve of patients. The log-rank
test method was used to compare the prognosis difference
between patients with high and low expression (*P < 0.05).
The R package “survivalROC v1.0.3” was applied to
implement time-dependent ROC analysis to quantify the
predictive potential of miR-93-3p on survival events. The area
under curve (AUC) of ROC curve was characteristic of the
diagnostic performance. AUC should be greater than 0.5.
And the closer to 1, the stronger the diagnostic ability.

A total of 12 databases (Microt4, miRWalk, mir-bridge,
miRanda, miRDB, miRMap, Pictar2, PITA, MiRNAMap,
RNAhybrid, RNA22 and Targetscan) of miRalk2.0 (http://
zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/; January 2020)
were employed to predict the downstream target genes of
miR-93-3p. Meanwhile, GEPIA2 (http://gepia2.cancer-pku.
cn/; January 2020) was used to analyze the differential
expression of the whole genome in tumors and normal
tissues based on TCGA database. Genes satisfying the
condition P < 0.01 and [logFC| > 1 were identified as
differentially expressed genes (DEGs). Furthermore, the
intersection of the target genes predicted by miRWalk2.0
and the DEGs was determined as the downstream target
genes for miR-93-3p in HCC.

Weighted gene co-expression network analysis
An expression matrix was established based on the mRNA
expression profile and the target genes obtained previously.
The R package “WGCNA v1.69” was employed to construct
a co-expression network of target genes of miR-93-3p.
WGCNA is a systematic biology method used to describe
patterns of gene association between different samples. It can
cluster genes with similar expression patterns and analyze the
association between different gene modules and specific traits
or phenotypes. The algorithm steps are as follows:

Outlier samples were removed by hierarchical clustering.
The similarity between any two genes was calculated by using
Pearson’s correlation coefficient, which then establishes the
correlation matrix S.
§ = [Sxv] = [Jeor(X, )]

cor represents pearson’s correlation analysis. X and Y
represent gene X and gene Y, respectively. Select the
exponentialing coefficient B, and the screening criteria must
meet the scale-free network law (fit value RA2 to 0.85). The
relation index of any gene pair (X and Y) was measured
based on the exponential Weighted P square of the
correlation coefficient aXY. Then, a topological overlap
matrix TOM is constructed based on the adjacency matrix A.

A = [axy] = [power(Sxy, )] = “SXY‘/;]

TOM = [oyy] = [ Ixy + axy }

min{kX, ky} +1-— axy

Ixy = E axuauy kx = g axy ky = E ayy
u u u

kx or ky indicate the sum of one node’s adjacency
coefficients. The node is a gene (X or Y). The hierarchical
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clustering tree built using the dissimilarity coefficient dg},, and
the different branches represent the gene modules.

dyy = [1 — oxy]

Module is identified in the dendrogram through dynamic
hybrid tree cutting.

Furthermore, the correlation between each module and
multiple clinical features (Gender, Age, BMI, pT stage, AJCC
stage, and ISUP grade) were assessed by pearson’s correlation
analysis (*P < 0.05). The module that showed significant
clinical relevance was designated as the prognostic module
that miR-93-3p affects the progression of HCC.

Risk prognosis signature and nomogram construction
Based on the simple sampling principle, 329 HCC cases were
divided into training cohort and validation cohort (Tab. 1).
The R package “survival v3.1-8” was employed to perform a
univariate COX regression analysis on the prognostic
module gene in the training cohort. P < 0.05 was used to
screen for genes that were significantly correlated with the
overall survival of the patient. Using R package “glmnet
v3.0-2” to perform LASSO analysis to further optimize the
results. The idea of LASSO is that an L1-norm is utilized to
penalize the of the model parameters to avoid overfitting of
the model.

Assuming a model has a set of parameters
{wy, w1, ..., w, }, the LASSO regularization can be defined as

n
Al
i=0

The complexity of the model is controlled by A. The
greater the A, the greater the penalty for linear models with
more variables. LASSO can also be expressed as a constraint
on the objective function.

m n 2 n
n};nzl (yj - ijiwi> ,s.t‘Z |wi] < A
j= i= i=

An important feature of the LASSO regularization term
is that it can force the parameter value to be 0. The Aim of
LASSO is to generate a sparse parameter space, which is a
desirable characteristic for feature selection.

Based on the results of LASSO analysis, a multi-gene
signature is established. The formula of risk score is:

RS=Y"" B x Exp;
where RS is the patient’s risk score, § represents the LASSO
coefficient, and Expi represents the expression of gene i.
Survival and time-dependent ROC curve analysis were
performed to assess the prognostic performance of the
patient’s risk score in the training cohort. Similarly, P < 0.05
indicates a significant prognostic ability. In addition, survival
analysis and time-dependent ROC curve analysis based on
the validation cohort data were performed to verify the results.
The patient’s risk score and multiple clinical
characteristics (Gender, Age, AJCC stage, and ISUP grade)
were included in wunivariate and multivariate COX
regression analysis. The variables satisfying P < 0.05 in both
univariate and multivariate COX regression analysis were
absorbed into the construction of nomogram. The R
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package “rms v5.1-4” was employed to construct a nomogram
for survival prediction of patients.

SVM-based immune cell infiltration analysis

CIBERSORT is an SVM-based deconvolution algorithm based
on gene expression, which is superior to other methods in the
identification and detailed division of immune cells. This
method uses a LM22 gene signature file (containing 547
genes) to specifically distinguish 22 human hematopoietic
cell phenotypes, including B cells, T cells, natural killer cells,
macrophages, dendritic cells, and myeloid subsets. Like
other linear deconvolution methods, CIBERSORT only
operates on expression values in non-log linear space.
CIBERSORT uses Monte Carlo sampling to derive the P
value for the deconvolution of each sample, thereby
providing a measure of confidence in the result. We
uploaded the gene expression data of 329 HCC samples to
the CIBERSORT web portal (https://CIBERSORT.stanford.
edu/; March 2020) and used the default feature matrix to
run with 1000 permutations. In addition, the wilcoxon test
was used to evaluate the infiltration differences of immune
cells between high and low risk patients (*P < 0.05).

TIMER  (https://cistrome.shinyapps.io/timer/) is an
interactive web application that enables cancer biologists to
analyze and visualize the abundance of tumor-infiltrating
immune cells in a flexible manner. It uses a deconvolution
algorithm to infer the number of immune cells from the
gene expression profile. The TCGA database provides 10897
samples of 32 cancer types for TIMER for approximate
calculation of immune infiltration. We analyzed the
correlation between prognostic signature and immune cell
infiltration. These immune cells include B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells. Furthermore, the “Correlation Analysis” module of
GEPIA2 was utilized to evaluate the correlation of the
prognostic signature with the marker genes of immune cells.

Gene set enrichment analysis

The gseKEGG function in the R package “clusterprofiler
v3.14.3” was applied to evaluate the signal pathways
enriched by the differential expression of the whole genome
in high- and low-risk groups. The patient samples from the
training cohort and validation cohort were combined to
establish a genome-wide mRNA expression matrix. The
edgeR package was employed to perform gene differential
expression analysis. The parameters of the gseKEGG
function were set as follows: Perm = 1000, minGSSize = 50,
and PvalueCutoff = 0.05.

Statistical analysis
All R packages were applied in the R (version: 3.6.3)
environment. P < 0.05 was considered statistically significant.

Results

The clinical performance and target genes of miR-93-3p

Compared with normal tissues, the expression of miR-93-3p
was significantly up-regulated in tumor tissues (P = 6.4 x
1075 Fig. 2A). Furthermore, miR-93-3p has excellent
discrimination between tumor tissue and normal tissue
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FIGURE 2. The clinical performance and target gene of miR-93-3p in hepatocellular carcinoma. (A) MiR-93-3p was differentially expressed in
372 tumors and 50 normal tissues. Student’s t-test was used for differential expression analysis. (B) MiR-93-3p can distinguish tumor and
normal tissues excellently. (C) The Kaplan-Meier (K-M) curve for survival prediction, high expression of miR-93-3p leads to poor
prognosis of patients. (D) Time-dependent receiver operating characteristic (ROC) curve analysis of the ability of miR-93-3p as a
diagnostic factor to predict 1-year, 3-year, and 5-year survival rates of patients. (E) The high expression of miR-93-3p is a danger signal,
and its low expression is associated with a higher progression-free interval of patients. (F) Compared with low expression, high expression
of miR-93-3p was significantly correlated with lower disease-specific survival. (G) Compared with low expression, high expression of miR-
93-3p is significantly correlated with shorter disease-free interval. (H) Combining target prediction of miRWalk2.0 and gene differential
expression analysis of GEPIA2, 1399 target genes were identified. (I) The expression heatmap of 988 up-regulated and 411 down-regulated

genes. The data derived from the TCGA database.

(AUC = 0.664, P = 0.000158; Fig. 2B). Using the median expression
of miR-93-3p in 367 tumor tissues as a cutoff, all patients were
divided into low expression and high expression patients.
Survival analysis showed that low expression of miR-93-3p can
significantly improve the prognosis of patients (P = 0.0023;
Fig. 2C). Time-dependent ROC curve analysis elucidated that the
expression of miR-93-3p has a strong predictive ability for the
prognosis of patients. The 1-year, 3-year, and 5-year AUCs were
0.611, 0.628, and 0.572, respectively (Fig. 2D). In addition, we
found that high expression of miR-93-3p significantly prolonged
the progression-free interval (PFI) (P = 0.0077; Fig. 2E), disease-
specific survival (DSS) (P = 0.00081; Fig. 2F) and disease-free
interval (DFI) (P = 0.01; Fig. 2G) of patients compared with low
expression.

Based on 12 databases of miRWalk2.0, 15916 unique
targets of miR-93-3p were identified. A total of 2206 DEGs
were identified through GEPIA2. And 1399 intersection genes
of targets and DEGs were considered as the target genes of

miR-93-3p (Fig. 2H). The 1399 target genes include 411
down-regulated genes and 988 up-regulated genes (Fig. 2I).

Determination of prognosis-related gene module

WGCNA was performed based on the mRNA expression data
of 1399 target genes in 371 tumor tissues and 50 normal tissue
samples. Three outlier samples were eliminated, and 418
qualified samples were retained by hierarchical clustering.
Selecting soft threshold to 7 to comply with the scale-free
network law (Fig. 3A). A total of 8 gene modules and 394
oligogenes were identified with the clustering criteria of
minModuleSize = 30 and mergeCutH8 = 0.25 (Fig. 3B). The
8 gene modules were brown, black, turquoise, yellow, blue,
red, green, and pink modules. And the number of genes in 8
modules was 89, 36, 389, 88, 266, 39, 50, and 34,
respectively. The correlation analysis between the module
and the clinical phenotype revealed that the turquoise
module was significantly related to multiple prognostic
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FIGURE 3. Co-expression network construction of 1399 target genes and identification of prognostic gene modules. (A) Determine { that
satisfies the law of scale-free networks. (B) 8 modules were successfully clustered. Each branch of the dendrogram represents genes, and
genes clustered into the same module are assigned the same module color. Genes assigned in gray indicate no clustering to any module.
(C) The correlation analysis between the modules and clinical features, the turquoise module showed outstanding correlation. (D) Barplot
of mean significance across modules. The higher mean gene significance represented the higher correlation between module and ISUP grade.

parameters. The genes of turquoise module were closely
related with Gender (cor = -0.17, P = 0.002), Age (cor =
-0.15, P = 0.007), BMI (cor = -0.17, P = 0.003), pT stage
(cor = 0.21, P = 3 x 10~%), AJCC stage (cor = 0.22, P = 8 x
107°) and ISUP grade (cor = 0.31, P = 2 x 10~®) (Fig. 3C).
Using the mean of the gene significance of all genes to
characterize the correlation between the module and the
cancer phenotype. And the turquoise module had the most
prominent correlation with each phenotype (P = 2e-98)
(Fig. 3D). Therefore, the turquoise module was determined
to be a prognostic module for subsequent analysis.

Risk prognosis signature and nomogram
The samples of 329 HCC patients were randomly divided into
training and validation cohorts, and the number of samples
was 165 and 164, respectively. There were 258 genes that
significantly related to the overall survival were identified in
the training cohort through univariate COX regression
analysis (P < 0.05). Using LASSO COX analysis to further
optimize the results. We finally obtained 5 genes (cct5, cdk4,
cenpa, dinbpl and flverl) that significantly relevant to the
survival of patients (Tab. 2, Figs. 4A-4B). A 5-gene
signature was established based on the results of LASSO
COX analysis. The formula is

RS = 0.0143 x CCT5 + 0.0032 x CDK4 + 0.0505 x
CENPA + 0.0377 x DTNBP1 + 0.0400 x FLVCR1

All patients were divided into 117 low-risk patients and
48 high-risk patients by calculating the risk score of each
patient in the training cohort. Correspondingly, the 164
patients were divided into 56 low-risk and 108 high-risk
patients in the validation cohort. Compared with the high
risk, low risk can significantly improve prognosis of patients
(P < 0.0001; Fig. 4C). The risk prognosis signature had a
prominent prognostic effect as confirmed by the I-year,
3-year, and 5-year AUCs (0.795, 0.697, and 0.677) (Fig. 4D).
The results of K-M curve analysis (P = 0.0016; Fig. 4E) and
ROC analysis (Fig. 4F) also confirmed the above results in
the validation cohort. The risk prognosis signature predicts
AUGCs of 1-year, 3-year, and 5-year survival rates were
0.732, 0.679, and 0.61 in the validation cohort, respectively.

Next, we performed univariate and multivariate COX
regression analysis on the risk score and multiple clinical
characteristics. The results showed that both risk score and
AJCC stage had a significant correlation with the overall
survival in the training cohort and validation cohort
(Tab. 3). Subsequently, the risk score and AJCC stage were
incorporated into the construction of the nomogram. The
prediction ability of nomogram established by combining
the risk score and AJCC stage (C-index = 0.678; Fig. 5A)
was obviously better than risk score (C-index = 0.665) and
AJCC stage (C-index = 0.573). And the results of internal
verification showed that the prediction ability of the



AN IMMUNE INFILTRATION-RELATED 5-GENE SIGNATURE AND NOMOGRAM TO IMPROVE

PROGNOSIS PREDICTION

TABLE 2

The genes in the risk prognosis signature in training cohort

407

Symbol Univariate Cox regression analysis LASSO coefficient
HR 95%CI p-value
CCT5 1.054428 1.0349-1.0743 2.82017E-08 0.014327493
CDK4 1.057704 1.0352-1.0807 3.16271E-07 0.003233697
CENPA 1.237187 1.1426-1.3396 1.55053E-07 0.050503456
DTNBP1 1.204734 1.1103-1.3072 7.80046E-06 0.037669199
FLVCRI1 1.30124 1.1519-1.4699 2.29218E-05 0.040048067
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FIGURE 4. The establishment and verification of 5-gene prognostic signature. (A) The distribution of least absolute shrinkage and selection
operator (LASSO) coefficients of 258 genes. (B) Partial likelihood of LASSO coefficient distribution deviation. The vertical dotted line indicates
lambda.min and lambda.1se. (C) Kaplan-Meier (K-M) curve for predicting the survival of patients in the training cohort. The higher risk scores
are associated with poor prognosis of patients. (D) The risk score as a prognostic factor has a strong predictive ability for the 1-year, 3-year, and
5-year survival rates of patients in the training cohort. (E) Verification of the difference in the prognosis of patients with the high or low risk
score. (F) Verifying the predictive ability of the risk score on the survival of patients based on the validation cohort.

nomogram closely matched the best prediction performance in
the training cohort (Fig. 5B). Analogously, the nomogram
established by combining the two prognostic factors (C-index
= 0.691) had a better predictive ability than risk score (C-index
= 0.664) and AJCC stage (C-index = 0.612) in the validation
cohort (Fig. 5C). Furthermore, the results of the calibration
curve also verified the prognostic and predictive performance
of the nomogram in the validation cohort (Fig. 5D).

SVM-based immune cell infiltration and GSEA pathway differences
The infiltrated proportion of 22 immune cells in 329 tumor
tissues was obtained by SVM-based CIBERSORT algorithm.

The results showed that the infiltrated proportion of 22
immune cells in the training cohort was similar to that in
the validation cohort (Figs. 6A-6B). And the T cell CD4
memory resting, macrophage M2, macrophage MO, mast
cell resting and macrophage M1 are the five immune cells
with the largest number in the tumor microenvironment.
Interestingly, macrophages and T cells have the largest
infiltration ratio and accounting for about 60% of immune
cells. T cells CD4 naive, T cells follicular helper (Tth), T
cells regulatory (Tregs) and mast cells resting were found to
have significant infiltration differences between high-risk
and low-risk patients in the training cohort (Fig. 7A).
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TABLE 3

Univariate and multivariate Cox regression analysis of prognostic factors and overall survival of HCC patients in training cohort and

validation cohort

Dataset Characteristics Univariate Cox regression analysis Multivariate Cox regression analysis
HR 95%CI p-value HR 95%CI p-value
Training Aender 0.863 0.488-1.525 0.6124
cohort Age 1.010 0.989-1.031 0.3667
ISUP grade 1.028 0.586-1.803 0.9223
AJCC stage 2.339 1.352-4.043 0.0023 1.558 0.858-2.83 0.146
Risk score 6.572 3.710-11.644 1.1013E-10 5.599 3.037-10.32 3.43E-08
Validation Aender 0.793 0.470-1.340 0.3864
cohort Age 1.005 0.984-1.026 0.6396
ISUP grade 1.213 0.723-2.036 0.4646
AJCC stage 2.424 1.443-4.073 0.0008 2.304 1.366-3.884 0.0017
Risk score 2.125 1.246-3.623 0.0056 2.017 1.140-3.570 0.0159
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FIGURE 5. Nomogram construction and verification. (A) Nomogram of combining the risk score and AJCC stage was constructed in training
cohort. (B) The internal verification calibration curve in the training cohort, the predicted survival closely matches the best prediction
performance. (C) The verification of nomogram in validation cohort. (D) The calibration curve of nomogram in validation cohort.

Meanwhile, T cells CD4 memory resting, Tth, Tregs,
Monocyte, Macrophage MO and mast cells resting
represented infiltration differences in different risk groups in
the validation cohort (Fig. 7B). The infiltrated proportion of
Tth, Tregs and Macrophage MO significantly increased in
the high-risk group compared with the low-risk group. And
the abundance of T cells CD4 memory resting, monocyte
and mast cells resting sharply decreased in the high-risk
group compared with the low-risk group.

In order to demonstrate an intuitive gene regulation
effect, the prognostic signature mediated immune
infiltration changes were obtained by TIMER (Fig. 8). The

results showed that the infiltration of 6 immune cells (B cell,
CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and
dendritic cell) was significantly correlated with the
expression of the 5 genes (cct5, cdk4, cenpa, dtnbpl, and
flverl) in the prognostic signature. And the high expression
of each gene significantly increased the infiltration level of 6
immune cells. In addition, the increased expression of cct5
and dtnbpl showed an inhibitory effect on tumor purity.
Inversely, the increased expression of cdk4, cenpa and flverl
promoted tumor purity.

The expression of gene markers of immune cells
determines the direction of the immune system. We
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FIGURE 6. The relative proportion of 22 immune cells in HCC tumor tissue. (A) The average infiltration ratio of 22 immune cells is ranked in
the training cohort. (B) The ranking of the average infiltration ratio of 22 immune cells in the validation cohort.

analyzed the correlation between the 5-gene signature and the
gene markers of 11 immune cells through the “correlation
analysis” module of GEPIA2. The 11 immune cells were
CD8+ T cells, T cells (general), B cells, neutrophils, natural
killer (NK) cells, T-helper 1 (Th1) cells, T-helper 2 (Th2)
cells, follicular helper T (Tth) cells, T-helper 17 (Th17) cells,
exhausted T cells and mast cells. The gene markers effected
by 5-gene signature expression include CD8A and CD8B of
CD8+ T cell, CD2 and CD3E of T cell (general), CD19 and
CD79A of B cell, CD11b, CCR7 of neutrophils, T-bet,
STAT4, TNF-a of Thl, GATA3, STAT6, STAT5A of Th2,
BCL6 of Tfh, STAT3 of Th17, as well as PD-1, CTLA4,
LAG3 and TIM-3 of T cell exhaustion (Tab. 4).

Six pathways were obtained Based on the genome-wide
GSEA analysis (Figs. 9A-9C). The six pathways were
cytokine-cytokine receptor interaction, oocyte meiosis,
phagosome, cell cycle, ECM-receptor interaction, and
hematopoietic cell lineage.

Discussion

MiR-93-3p is an inflammatory regulator active in several
cancers and non-tumor diseases except liver cancer in prior
studies (Aguado-Fraile et al., 2015; Li et al., 2017; Tang et al,
2018). Our study revealed the favorable diagnostic and
prognostic capabilities of miR-93-3p in HCC for the first time.
A co-expression network of target genes of miR-93-3p was
constructed and a gene module significantly related to the
prognosis was identified based on WGCNA algorithm. Next, a
new 5-gene signature for prognostic stratification was
established by univariate and LASSO COX analysis.
Meanwhile, the prognostic signature-based risk score showed
an excellent predictive effect on the overall survival of the
patient. The high risk was related to the poor prognosis of the

patient. Subsequently, a nomogram including risk score and
AJCC stage was constructed to improve prognosis prediction.
We found that the 5-gene signature had a strong correlation
with immune infiltration through the exploration of the
immune microenvironment. Particularly, the infiltration of T
cells, B cells and macrophages was closely dependent on the
expression of 5-gene signatures. Interestingly, the six pathways
obtained by GSEA were all related to the immune system.
Therefore, the novel 5-gene signature related to immune
infiltration could serve as a promising prognostic marker.

As a tumor sensitive molecule, miR-93-3p has been
found to be involved in the progression of many malignant
diseases. In the pathological process of cardiomyocyte
dysfunction, miR-93-3p reduced inflammation and
apoptosis induced by lipopolysaccharide (LPS) by inhibiting
toll-like receptor 4 (TLR4) (Tang et al, 2018) MiR-93-3p
was found to be expected to regulate pigment epithelium-
derived factor (PEDF), and then played a regulatory role on
apoptosis, migration and invasion in clear cell renal cell
carcinoma (ccRCC) (Wang et al, 2017b). MiR-93-3p was
considered to be an important cancer signaling molecule not
only in tissues, but also in the blood. The study found that
circulating miR-93-3p may be occupied by surrounding
tumor cells and activate the Wnt/B-catenin signaling
pathway, which greatly improved the chemoresistance of
triple-negative breast cancer (Li ef al., 2017). These studies
revealed the anti-tumor effects and possible regulatory
biological mechanisms of miR-93-3p.

Based on prognostic module genes identified by
WGCNA, we used univariate COX regression analysis and
LASSO optimization to determine a novel 5-gene signature
for prognostic prediction (cct5, cdk4, cenpa, ditnbpl and
flverl). Five genes are identified as independent prognostic
factors of HCC. cct5, cdk4, cenpa, and flvcrl have been
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FIGURE 7. Differences of infiltration of 22 immune cells in high- and

low-risk patients. (A) Differences in the infiltration of 22 immune cells

between the high-risk group and the low-risk group in the training cohort. (B) Differences in the infiltration of 22 immune cells between the

high-risk group and the low-risk group in the validation cohort. Wilc

widely reported as active tumorigenic genes in HCC. In
particular, cdk4 has been widely known as one of the
members of the cyclin-dependent kinase family that drives
abnormal cell cycle progression in tumors (Hanahan and
Weinberg, 2011). The combination of cdk4 and cyclin could
control the DNA synthesis of cancer cells from GI to S
phase leading to rapid cell proliferation (Lim and Kaldis,
2013). Conversely, the competitive binding of some CDK
inhibitory proteins and cdk4 plays a key role in inhibiting
tumor cell growth (Yang et al, 2016). Compared with cct5,
cdk4, cenpa, and flvcrl directly regulate the progress of HCC
less reported (Wei et al., 2020; Yao et al., 2019; Zhang et al.,
2020b). Relevant studies on the impact of dtnbpl on HCC
progression and prognosis have not been reported. The
prognostic performance of dtnbpl obtained in the study
may provide guidance for the relevant investigations.

With the popularity of genome sequencing technology,
there have been endless developments of multi-feature
signature and nomograms that enhance prognostic
prediction in recent years. The results obtained based on

oxon test was used for infiltration difference analysis.

different exploration directions and research methods are
also different. A 4-regulator risk signature was established
based on the results of N6-methyladenosine (m6A) RNA
methylation involved in the pathogenesis and prognosis of
cancer (Qu et al, 2020). Also, multi-gene signatures and
nomograms derived from prognosis-related genes, cell
senescence-related genes and differentially expressed genes
have also been reported (Hu et al, 2020; Liu et al, 2019;
Xiang et al., 2019). Unfortunately, the prognostic capabilities
of these signature and nomograms are not ideal. On the
contrary, our 5-gene signature and nomogram show robust
prediction performance of survival of HCC. The AUCs of
the ROC curve of the risk prognostic signature predicting
1-year, 3-year, and 5-year survival rates were 0.795, 0.697,
and 0.677, respectively. Deep analysis algorithms, including
WGCNA and LASSO, also increase the credibility of the
results. In addition, a 4-gene prognostic signature with
cenpa that predicts overall survival of HCC well confirmed
our results to some extent (Long et al., 2018). Recently, a
prognostic signature containing 5 IncRNAs, 11 miRNAs,
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FIGURE 8. Correlation analysis between 5 prognostic gene expression and tumor-infiltrating immune cells based on the TIMER database. (A),
(B), (C), (D) and (E) represent the expression of five prognostic genes (CCT5, CDK4, CENPA, DTNBP1, and FLVCR1), tumor purity, and six
immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells). The expression of CCT5, CDK4, CENPA,
DTNBPI, and FLVCRI showed a significant correlation with tumor purity and infiltration of six immune cells.

30 mRNAs, 4 methylations, and 3 proteins showed a
possibility of reaching 89.32% accuracy (Kaushik et al,
2020). However, the practicability of the signature is
controversial and has not been clinically verified.

So far, many molecular signatures for prognosis
prediction have been developed. Similar to our research,
Chen et al. (2019) and Wang et al. (2018) respectively
constructed a 4-gene prognostic model and a 6-gene
prognostic model for the survive prediction. However, both
studies lack a quantitative assessment of the predictive
ability of the prognostic model for survival prediction.
Compared with previously identified genetic signatures, it
seems that our risk score based on prognostic signatures has
a higher AUC (AUC = 0.795 for 1 year; AUC = 0.697 for
3 years; AUC = 0.677 for 5 years). These signatures include
Chang et al. (2019) (8-gene, AUC = 0.667 for 1 years; AUC
= 0.630 for 3 years; AUC = 0.618 for 5 years), Zheng et al.
(2018) (4-gene, AUC = 0.671 for 1 years; AUC = 0.666 for 3
years; AUC = 0.648 for 5 years) and Xiang et al. (2019)

(7-gene, AUC = 0.686 for 1 years; AUC = 0.644 for 3 years;
AUC 0.615 for 5 years). Compared with previous
prognostic signatures, our 5-gene signature maintains a high
prognostic prediction accuracy while also taking into
account the simplicity of the signature.

At present, AJCC stage is one of the most widely used
prognostic indicators of HCC in clinical practice (Abdel-
Rahman, 2018). The effective prognostic information and
the matching selection of appropriate therapeutic schedule is
a highlight of the AJCC stage system. The results of
univariate and multivariate COX regression analysis show
that AJCC stage is a powerful prognostic tool. Meanwhile,
the new 5-gene signature shows a stronger prognostic ability
than the AJCC stage and has no correlation with the AJCC
stage. In addition, the nomogram constructed by combining
the 5-gene signature-based risk score and the AJCC stage
shows an excellent prognostic prediction effect. This further
shows that the 5-gene signature is a compelling predictor of
prognosis.
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TABLE 4

Correlation analysis between 5-gene signature expression and
gene markers of CD8+ T cells, T cells (general), B cells,
neutrophils, natural killer (NK) cells, T-helper 1 (Thl) cells, T-
helper 2 (Th2) cells, follicular helper T (Tfh) cells, T-helper 17
(Th17) cells, exhausted T cells and Mast cells via “Correlation
Analysis” module of GEPIA2

LIHC
Description Gene markers Tumor Normal
R P R P
CD8+ T cell CD8A 0.23 e 0.56  ***
CDS8B 0.27 o 0.56  ***
T cell (general) CD2 0.23 e 04 bl
CD3E 0.21 e 048
B cell CD19 0.17 e 033 *
CD79A 0.14 o 044 **
Natural killer cell KIR2DL1 0.044 04 034 *
KIR2DL3 0.14 o 0.24  0.099
KIR2DL4 0.21 e 043 **
KIR3DL1 0.026 0.62 039 **
KIR3DL2 0.099 0.057 0.12 042
KIR3DL3 0.039 045 03 *
KIR2DS4 0.096 0.065 0.12 04
Neutrophils CD66b -0.001 098 032 *
CDl11b 0.35 b 0.67 ***
CCR7 0.11 * 0.53
Thi T-bet 0.16 o 0.63  ***
STAT4 0.17 il 055  ***
TNF-a 0.17 ol 0.38 **
Th2 GATA3 0.25 e 033 *
STAT6 0.2 e 0.79 ¥
STAT5A 0.29 e 0.75 ***
IL13 0.055 0.29 0.012 094
Tth BCL6 0.15 o 0.18 0.21
Th17 STAT3 0.23 e 0.3 *
IL17A 0.015 078 021 0.14
T cell exhaustion PD-1 0.24 bl 0.56  ***
CTLA4 0.32 e 047
LAG3 0.26 e 035 *
TIM-3 0.22 b 0.6 ok
Mast cells TPSB2 -0.048 036 0.16 0.25
TPSAB1 -0.053 031 021 0.15
CPA3 -0.013 0.8 0.29  0.039
MS4A2 0.0032 095 034 *
HDC -0.1 0.05 0.01 094

Note: LIHC, Liver hepatocellular carcinoma. *p < 0.05, **p < 0.01, **p < 0.001.

A noteworthy conclusion is that our prognostic signature
is significantly related to the level of immune infiltration of the

tumor microenvironment. We found that several T cells,

MENG FANG et al.

macrophages MO and mast cells resting have huge
abundance differences in different risk groups based on
CIBERSORT analysis. Likewise, the expression of the 5
genes in prognostic signature was obviously positively
correlated with the infiltration levels of 6 immune cells
(especially T cells and macrophages) in TIMER. Therefore,
prognostic signature-based patients with high risk may be
candidates for T cell and macrophage targeted therapies. In
addition, we further found that the prognostic signature was
significantly positively correlated with the expression of
multiple gene markers of T cell and B cell. CD8+ T cell,
Thi1, Th2, Tth, Th17 and T cell exhaustion are different
functional T cells. The prognostic signature increases the
infiltration level of T cell by stimulating the expression of
CD8A, CD8B, CD2, CD3E, CCR7, T-bet, STAT4, TNF-q,
GATA3, STAT6, STAT5A, BCL6, STAT3, PD-1, CTLA4,
LAG3 and TIM-3. Furthermore, CD19 and CD79A may be
bridges for prognostic signatures to regulate B cell
infiltration. These findings indicate that 5-gene signatures
play a key role in the regulation and recruitment of tumor-
infiltrating immune cells in HCC.

At present, the research on the role of tumor infiltrating
immune cells in human tumors is mainly focused on T cells.
These reports are mainly concerned with the suppression of
immune checkpoints and patient survival (Buchbinder and
Mcdermott, 2015; Powles et al, 2014). This study
complements the evidence of T cells as a positive prognostic
factor. Previous studies have found that macrophages
participate in immune responses by activating tumor
antigens and presenting them to T cells. However,
macrophages often promote tumor progression due to
inadequate immune surveillance (Lamagna ef al, 2006). B
cells infiltrate, proliferate and develop driven by signals
within the tumor microenvironment. And B cells secrete
tumor-specific antibodies and promote T cell responses to
exert anti-tumor immunity (Bruno et al, 2017; Campa et
al., 2016). The high abundance of immune cells corresponds
to the high risk, which indicates a possible mechanism
by which the prognostic signature affects the overall survival
of HCC. T cells are divided into two subgroups: CD4+ T
cells and CD8+ T cells according to their functions and
surface markers. The former functions as helper T cells,
while the latter plays a killing and regulating role. The ratio
of both is a sensitive indicator that reflects the immune
balance of the body. Under normal circumstances, the ratio
of the two maintains a dynamic balance (Han et al., 2014).
When liver cancer occurs, the amount of the two will
change. The number of CD4+ T cells decreases and the
number of CD8+ T cells increases. At the same time, the
decline of the CD4+ T cells makes the tumor immune
escape, while CD8+ T cells exhibited immune suppression
and caused cell damage (Mizukoshi and Kaneko, 2019;
Pedroza-Gonzalez et al., 2013).

In addition, GSEA also revealed the different immune
status of the high-risk group compared to the low-risk
group. From low risk to high risk of patients, cancer
deterioration generally accompanies the growth and
metastasis of tumors. Previous studies have shown that cell
cycle dysfunction and ECM receptors are significantly
associated with cancer development (Kang et al., 2015). The



AN IMMUNE INFILTRATION-RELATED 5-GENE SIGNATURE AND NOMOGRAM TO IMPROVE

PROGNOSIS PREDICTION

w

— Cytokine-cytokine receptor interaction
:

— Oocyte meiosis. i

— Phagosome I

RN

‘\W\‘IHH\H‘H\‘ ! lH\l W‘ ‘”HH‘ ' ‘IH" ‘H“H‘ \H‘ ‘HII‘H\\\HIN "‘\“HIH‘ ”\ ‘IHIQI‘I‘“ \‘HW“\IIHH‘I:\IH“\“ a \‘\HH .

Runring Enrichment Score™

Running Enrichment Score

2
0
2
4

| \[\‘ I H‘\ I HH‘\ “\“H ! HWHIWI‘\‘\‘[H ‘\

413

— Ccelieycle -~
— ECM-receptor intergetiph
— Hematopoietc celfineage
3 Phagosome |
. p.adjust
Oocyte meiosis
oon
|| 00i0

‘ Cytokine-cytokine receptor interaction | 003
i

Hematopoietic cell lineage:
ECM-receptor interaction

v .

Cellcycle

Ranked list metric
Ranked list metric

3000 9000 3000

6000
Rank in Ordered Dataset

6000
Rank in Ordered Dataset 3 2 -1

9000

FIGURE 9. Gene set enrichment analysis (GSEA) obtained 6 KEGG pathways with differences between high-risk group and low-risk group.
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pathways.

6 KEGG pathways (cytokine-cytokine receptor interaction,
oocyte meiosis, phagosome, cell cycle, ECM-receptor
interaction, and hematopoietic cell lineage) further provide
evidence for the applicability of the prognostic signature.

Conclusion

The study revealed the favorable diagnostic and prognostic
capabilities of miR-93-3p in HCC. And a novel 5-gene
signature (cct5, cdk4, cenpa, dtnbpl, and flvcrl) based risk
score and nomogram for prognostic prediction were
established based on the combined application of WGCNA,
LASSO Cox and SVM algorithms. In addition, the
infiltration of T cells, B cells and macrophages is closely
dependent on the expression of 5-gene signatures.
Therefore, the 5-gene signature related to immune
infiltration could serve as a promising prognostic marker.
Although abundant work has been done, some
limitations still exist in the paper. The limitations are as
follows: (1) the research data are from online databases, and
experimental verification is lacked; and (2) there are several
hard filtering criteria in the investigation, which may cause
the omission of key genes involved in the progress of HCC.
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SUPPLEMENTARY FIGURE 1. The risk score and 5 prognostic genes expression of HCC patients. (A) The risk scores of 165 patients in the
training cohort. (B) Survival status of 165 patients in the training cohort. (C) The heatmap of the expression of 5 prognostic genes in the
training cohort. (D) Compared with the low-risk group, all 5 genes were highly expressed in the high-risk group of patients in the training
cohort. (E) Compared with the low-risk group, all 5 genes were highly expressed in the high-risk group of patients in the validation cohort.
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