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Abstract: Identifying associations between microRNAs (miRNAs) and diseases is very important to understand the

occurrence and development of human diseases. However, these existing methods suffer from the following

limitation: first, some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting

of heterogeneous data sources, i.e., disease similarity, protein interaction network, gene expression. Second, little

approaches infer disease-related miRNAs depending on the network topological features without the functional

similarity of miRNAs. In this paper, we develop a novel model of Integrating Network Topology Similarity and

MicroRNA Function Similarity (INTS-MFS). The integrated miRNA similarities are calculated based on miRNA

functional similarity and network topological characteristics. INTS-MFS obtained AUC of 0.872 based on five-fold

cross-validation and was applied to three common human diseases in case studies. As a results, 30 out of top 30

predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0. 29

out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in

dbDEMC, PhenomiR2.0 and experimental reports. Moreover, INTS-MFS found unknown association with hsa-mir-

371a in breast cancer and lung cancer, which have not been reported. It provides biologists new clues for diagnosing

breast and lung cancer.

Introduction

MicroRNAs (miRNAs) are approximately 22-nucleotide
noncoding RNAs, act as an important regulator involved in
posttranscriptional regulation of gene expression (Bartel,
2004). Recently, increasing evidence has showed that the
development and progression of various complex human
diseases result from the mutation and functional disorders
(Alvarez-Garcia and Miska, 2005; Lynam-Lennon et al., 2009;
Wu et al., 2021). Furthermore, more and more studies have
indicated that miRNAs could influence multiple stages of the
biological processes (Chen et al., 2018a; Lee et al., 1993), such
as differentiation (Karp and Ambros, 2005), cell development
(Miska, 2005), and viral infection (Miska, 2005). Therefore, it
is obvious that miRNAs have critical impact on the human
diseases. However, disease-associated miRNA identifying

methods based on biological experiments is costly and time-
consuming. It is necessary to reveal novel types of disease-
related miRNAs with computational methods.

In recent years, many computational methods have been
developed for miRNA-disease association prediction (Xuan et
al., 2015; You et al., 2017; Zeng et al., 2016; Zou et al., 2016).
Jiang et al. (2010) proposed a novel computational method to
predict latent miRNA-disease associations by integrating
miRNA functional similarity data, phenotype similarity data,
and experimentally validated disease-miRNA association to
evaluate the probability that a miRNA may be included in a
specific disease. However, the accuracy of this method was
serious restricted by predicted miRNA-target interactions
only with the information of miRNA neighbors. Shi et al.
(2013) developed a random walk analysis method to rank
miRNA-disease pairs by searching for functional associations
between miRNAs targets and diseases genes in protein-
protein interaction network. Chen et al. (2017) proposed a
model named RKNNMDA (Ranking-based K-Nearest
Neighbors for MiRNA–Disease Association prediction) to
search the k-nearest neighbors of miRNAs and diseases.
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Zeng et al. (2018) developed a structural perturbation method
on the bilayer network of the miRNA-disease to predict
latent miRNA-disease associations. Liu et al. (2021) proposed
a collaborative filtering method based on neural network to
identify the miRNA-disease association. Experimental results
showed that the proposed method could effectively prioritize
the miRNA associated with disease and obtain the AUC
value of 0.921. Zhang et al. (2019) introduced a meta-
pathway method to select miRNAs for candidate diseases.
The miRNA functional similarity network was reconstructed
by family information, miRNA cluster information,
experimental verified miRNA target association, and the
information between disease and miRNA. The
comprehensive data network and reasonable factors ensure
the high performance of the method. Dong et al. (2019)
proposed a method to predict potential miRNA-disease
associations based on edge perturbation, a feature vector is
designed to describe the structural Hamiltonian information
of each edge of the graph, and the extracted features were
used to train a multi-layer perception model to predict
candidate disease-miRNA associations. The leave one cross
validation and case analysis illustrated the effectiveness of the
proposed method. Wang et al. (2019) developed an
integrated framework for the identification of potential
miRNA-disease based on a new negative sample extraction
strategy. Qin et al. (2015) proposed a novel miRNA-disease
association recognition method based on domains, the
functional and structural blocks of proteins. Experimental
results on real datasets demonstrated the high performance of
the proposed method. Ding et al. (2018) predicted disease-
related miRNAs in a multi-layer heterogeneous network by
combining miRNA target gene information and
heterogeneous flow. Li et al. (2018) proposed a new
computational model to identify potential miRNA-disease
association, the model uses Kronecker product or Kronecker
and a larger miRNA-disease space by combining miRNA
space and disease space. Li et al. (2017) proposed a
similarity-based miRNA-disease prediction method that
calculates similarities within a miRNA-disease association
network. Experimental results and case studies validated the
effectiveness of the proposed method. Chen et al. (2018b)
proposed a global similarity method based on a two-tier
random walk and designed a Laplacian score of graphs to
calculate the global similarity of networks, which revealed the
correlation between miRNAs and diseases. Experimental
results reveal that this method is better than existing
approaches in terms of overall prediction accuracy, a case
study further showed this method is feasible. Chen et al.
(2012) developed a Random Walk with Restart for MiRNA-
Disease Association (RWRMDA) to predict latent miRNA-
disease interactions by implanting random walk on the
miRNA-miRNA functional similarity network. Differing from
classical local network similarity measures, the global network
similarity measures is introduced in this study. Chen et al.
(2016), a novel computational model of WBSMDA is
presented to discover disease-miRNA associations by taking
advantage of within and between scores of each candidate
disease-miRNA pair, which effectively integrated Gaussian
interaction profile kernel similarity. The corresponding
experiment demonstrated the effectiveness of this method.

However, majority of existing methods suffer from the
following limitations. On the one hand, some disease-related
miRNAs are obtained from the miRNA functional similarity
networks consisting of heterogeneous data sources, i.e.,
disease similarity, protein interaction network, gene
expression. On the other hand, little approaches infer
disease-related miRNAs depending on the network
topological features without the functional similarity of
miRNAs. Notably, when the functional similarity network of
miRNAs is constructed, it also has the characteristics of
complex network (Cao et al., 2021; Luo and Xiao, 2017).

To tackle the above problems, inspired by cwMINE (Cao
et al., 2016a), we proposed a novel computational method of
Integrating Network Topology Similarity and MicroRNA
Function Similarity for miRNA-disease association
prediction (INTS-MFS). This model exploited not only the
known miRNA functional similarity but also the network
topological similarity of the miRNA functional similarity
network. To evaluate the effectiveness of INTS-MFS, five-
fold cross-validation was carried out the known miRNA-
disease association data downloaded from HMDD V2.0 (Li
et al., 2014). Furthermore, three diseases (Breast Neoplasm,
Lung Neoplasm, Prostatic Neoplasm) of case studies were
used to evaluate the prediction ability of implementing INTS-
MFS on the data collected from HMDD V2.0. All the
candidate miRNAs of these three diseases were ranked
according to their prediction score, respectively. Then the top
30 predicted miRNAs of these three diseases were examined
in dbDEMC (https://www.picb.ac.cn/dbDEMC/) (Yang et al.,
2010), PhenomiR2.0 (Ruepp et al., 2010), and published
literature. As a result, 30 out of top 30 predicted Prostatic
Neoplasm-related miRNAs were included in the two
databases of dbDEMC and PhenomiR2.0. 29 out of top 30
predicted Lung Neoplasm-related miRNAs were included in
dbDEMC, PhenomiR2.0 and experimental reports. For Breast
Neoplasm, 29 of top 30 predicted miRNAs were included in
dbDEMC, PhenomiR2.0 and published literatures.
Experimental results and case studies demonstrated the
model of INTS-MFS with a reliable performance could be
help for miRNA–disease association prediction. Fig. 1 shows
the overall workflow of INTS-MFS method.

Materials and Methods

Method overviews
The model of INTS-MFS is based on the combination of
functional similarity and network topological characteristics
of miRNA functional similarity network. The miRNA-
disease association identification method mainly consists of
three steps: (1) data collection; (2) similarity calculation and
(3) association identification. To validate the candidate
miRNA associations, the two public databases, i.e., dbDEMC
and PhenomiR2.0, are employed to evaluate the candidate
predictions with case studies.

Human miRNA–disease associations
The disease-miRNA association dataset was downloaded from
the HMDD v2.0 database, which includes 5424 distinct
experimentally confirmed associations between 378 diseases
and 495 miRNAs. It constructs the adjacency matrix A,
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nd �mm, if disease di has association with miRNAmj, then
A di;mjð Þ ¼ 1, else A di;mjð Þ ¼ 0.

MiRNA similarity calculation

1) MiRNA functional similarity
The miRNA functional similarity was computed based on

the following assumption (Cheng et al., 2012; Zhou et al., 2011):
if a disease is associated with a miRNA, the other diseases
similar to that disease will also possibly be related to the
miRNA, and vice versa. In this study, The miRNA functional
similarity data is downloaded from http://www.cuilab.cn/files/
images/cuilab/misim.zip (Wang et al., 2010). According to
Wang et al. (2010), the matrix MFS is constructed to
represent the miRNA functional similarity. The element
MFS m1;m2ð Þ describes the functional similarity of a
miRNA pair m1;m2ð Þ. The corresponding mathematical
formula is defined as follows (Wang et al., 2010):

MFSðm1;m2Þ¼
P

1�i�jDT1j Simðdt1i;DT2Þ þ
P

1�j�jDT2j Simðdt2j;DT1Þ
jDT1j þ jDT2j

(1)

where jDT1j means the number of diseases associated with
miRNA m1. DT1 ¼ dt11; dt12; . . . dti DT1j j

� �
describes one

disease set. Simðdt1i;DT2Þ means the similarity value
between disease dt1i and disease set DT2,
Simðdt;DTÞ ¼ max

P
1�i�k ðsimðdt; dtiÞÞ, it represents the

maximum similarity between one disease and a disease set.

2) Network topological similarity
Considering that the miRNA functional similarity

network has the characteristics of complex network, in this
study, we compute miRNA functional similarity by
integrating miRNA functional similarity and network
topological similarity, which is described as follows
(Cao et al., 2016b):

NTSðm1;m2Þ ¼ Nm1 \ Nm2j j
minðNm1;Nm2Þ (2)

where NTS (m1, m2) denotes the network topological
similarity of miRNA pair (m1, m2). Nm1 denotes the
neighbors of miRNA m1.

3) Association identification
To make full use of functional similarity and network

topology similarity of miRNA similarity network, we
construct the following formula:

xðm1;m2Þ ¼ 2�MFSðm1;m2Þ � NTSðm1;m2Þ
MFSðm1;m2Þ þ NTSðm1;m2Þ þ 1

(3)

where xðm1;m2Þ denotes the miRNA similarity of the
miRNA pair ðm1;m2Þ, which provides a suitable integration
of both miRNA functional similarity and miRNA similarity
network topological similarity. In Eq. (3), to avoid divide-
by-zero conditions, the denominator is set to add 1. The
pseudocode of INTS-MFS for identifying disease-miRNA
associations is sketched in Algorithm 1.

The algorithm of INTS-MFS mainly consists of three
steps. In the first step, the adjacent matrix of disease-
miRNA is constructed through the disease-miRNA
associations (Lines 1–8). In the second step, INTS-MFS
calculates function similarity for each miRNA pair, which
provides the basis for the calculation of network topological
similarity (Lines 9–18). Finally, when the combined
similarity is computed, INTS-MFS generates the miRNA-
disease association matrix and predicts the potential
miRNA-disease associations (Lines 19–26), these results will
be evaluated with the five-fold cross-validation. To identify
the latent association between miRNAs and diseases, the
top-ranked results analysis is executed, the case studies of
diseases are further demonstrated.

Results and Discussion

Evaluation metrics
To systematically evaluate the prediction accuracy of our
method, five-fold cross-validation was implemented on the
basis of disease-miRNA associations downloaded from the
HMDD database. For five-fold cross-validation, we
randomly partition all known associations of each disease
into five disjointed subsections, four of which are used as
testing samples and the remaining one is used as a training
sample through multiple iterations. To avoid data bias
caused by random selection, five-fold cross-validation was
repeated 5 times.

For those disease related to only a few miRNAs, it is
insufficient to evaluate the performance of the identification
method, 22 human diseases, which are associated with at
least 60 miRNAs, are employed to test the capacity of the
prediction approaches. Since the integrated miRNA
similarity for diseases and miRNAs are calculated on the
basis of known disease-miRNA associations, the integrated
similarity should be recomputed for each iteration of the
cross-validation experiments when the known associations
change. The area under the ROC (Receiver Operating
Characteristics, ROC) curve (AUC) was used to assess the
quality of the predicted associations.

FIGURE 1. Overall flowchart of INTS-MFS for identifying latent
miRNA–disease associations.
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Comparison with different similarities
To compare the performance of the proposed method, we
first investigated the effect of different similarity strategies
imposed on INTS-MFS. In this paper, we compared two types of
similarities, i.e., functional similarity, network topological
similarity, which is widely applied in the literature. Table 1 shows
the comparison results using INTS-MFS with different similarities.

From Table 1, we can clearly see that the integrated
similarity outperforms the other two types of similarities. It
demonstrates that our method can effectively improve the
performances of the identification of associations between
miRNAs and diseases. It further shows the integrated
similarity can compensate for the shortcomings of the
network topological similarity or the functional similarity.

Prediction performance evaluation
To show the effectiveness of the INTS-MFS algorithm, we
compared our method with five state-of-the-art algorithms,
namely, DeepWalk (Li et al., 2017), RWRMDA (Chen et al.,
2012), MIDP (Xuan et al., 2015b), WBSMDA (Chen et al.,
2016), KMDR-KS (Li et al., 2018). Notably, RWRMDA and
MIDP were applied to the old version of HMDD, we
recalculated the similarity of diseases or miRNAs pair with
the newest version of HMDD.

Table 2 describes the prediction results for INTS-MFS
and the other five methods by the five-fold cross-validation.
For AUC, the value of 1 represented a perfect prediction,
while the value of 0.5 indicated a purely random
performance. As shown in Table 2, the average AUC value

Algorithm 1. The description of INTS-MFS for identifying disease-miRNA associations

Input: Known miRNA-disease association matrix A

Output: Predicted association set P

1. D ¼ d1;…; dkf g;//D is the disease set in HMDD

2. M ¼ m1;…;mtf g;//M is the miRNA set in HMDD

3. for each disease-miRNA pair, di 2 D;mj 2 M// construct the adjacent matrix of disease-miRNA

4. if di, mj exist associations

5. then Aðdi;mjÞ ¼ 1

6. else Aðdi;mjÞ ¼ 0

7. endif

8. endfor

9. for each miRNA pair, ðmi;mjÞ 2 M //calculate function similarity for each miRNA pair

10. if mi;mj exist in some related disease then calculate the function similarity MFSðm1;m2Þ using Eq. (1);

11. else MFSðm1;m2Þ ¼ 0;

12. endif

13. endfor

14. for miRNA pair with MFSðm1;m2Þ 6¼ 0

15. if m1;m2 have common neighbor nodes then calculate the network similarity NFSðm1;m2Þ using Eq. (2);

16. else NFSðm1;m2Þ ¼ 0

17. endif

18. endfor

19. for each miRNA pair with MFSðm1;m2Þ and NFSðm1;m2Þ value
20. calculate integrated miRNA similarity xðm1;m2Þ using Eq. (3), generate miRNA-disease association matrix;

21. endfor

22. for i ¼ 1 to n// identify miRNA-disease associations by INTS-MFS, n means the number of diseases.

23. for j ¼ 1 to m//m means the number of miRNAs

24. if Axði; jÞ > 0 then // if exists association between some disease and miRNA, and save to p

25. p f;

26. p p [ pa;

27. endif

28. endfor

29. endfor

30. Return p.
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of INTS-MFS, DeepWalk, RWRMDA, MIDP, WBSMDA, and
KMDR-KS for all 22 diseases are 87.2%, 80.1%, 83.3%, 82.9%,
83.2%, respectively. INTS-MFS achieves the best performance
for all the 22 diseases except squamous cell carcinoma and
urinary bladder neoplasms and the AUC is 7.3% 8.2%, 4.4%,
4.5%, 4.7% higher than the other five approaches,
respectively. Moreover, INTS-MFS outperformed the other
five methods with the correctly identified disease–miRNA
associations (Fig. 2). These prediction results demonstrate
that our method obtains effective prediction performance, it
results from the integrated miRNA similarity including
miRNA function similarity and network topology similarity.
Fig. 3 presents the ROC curves of each method using five-
fold cross-validation. The X-axis of the ROC graph is TPR

(the true positive rate) while the Y-axis is FPR (the false
positive rate). It further demonstrates the effectiveness of
our proposed method.

Case studies
Generally, the top-ranked associations are more important for
some disease. The number of correctly identified known
disease-miRNA interactions under different top selections is
shown in Fig. 2. In our study, among the 5425 known
disease-miRNA associations, INTS-MFS correctly identified
3747 (69.08%) known associations in the top 50 predictions.
The result shows the effectiveness of INTS-MFS in
identifying confirmed disease-miRNA interactions.

To further validate the ability of INTS-MFS to mine new
miRNA-disease associations, the case studies of several
important diseases (Breast Neoplasm, Lung Neoplasm, Prostatic
Neoplasm) are presented. All known associations included in
the HMDD database are taken as the training set, and the
miRNA non-related to each disease are ranked according to the
similarity score of each miRNA. The corresponding results were
validated based on two independent databases, namely, dbDEMC
and PhenomiR2.0, and research literature.

The first case study is breast cancer, which causes
women’s cancer deaths, especially in developed countries.

TABLE 1

Comparative results of INTS-MFS with different similarities

Similarity AUC

Network topological similarity 0.662

Functional similarity 0.870

Integrated similarity (INTS-MFS) 0.872

TABLE 2

Prediction results for INTS-MFS and the other five methods by the five-fold cross-validation

Disease name Number of
associated miRNAs

AUC

INTS-MFS DeepWalk RWRMDA MIDP WBSMDA KMDR-KS

Breast Neoplasms 202 0.875 0.861 0.801 0.808 0.827 0.817

Hepatocellular Carcinoma 214 0.847 0.825 0.753 0.762 0.792 0.757

Non-Small-Cell Lung Carcinoma 95 0.905 0.890 0.817 0.846 0.841 0.857

Renal Cell Carcinoma 107 0.845 0.835 0.782 0.809 0.826 0.799

Squamous Cell Carcinoma 80 0.811 0.877 0.839 0.870 0.842 0.873

Colonic Neoplasms 78 0.887 0.884 0.799 0.844 0.791 0.859

Colorectal Neoplasms 147 0.869 0.854 0.793 0.810 0.764 0.825

Endometriosis 62 0.852 0.840 0.777 0.792 0.795 0.813

Esophageal Neoplasms 74 0.835 0.842 0.742 0.865 0.828 0.784

Glioblastoma 96 0.841 0.838 0.771 0.809 0.818 0.800

Glioma 71 0.903 0.887 0.860 0.887 0.844 0.867

Head and Neck Neoplasms 64 0.893 0.886 0.831 0.867 0.852 0.860

Heart Failure 120 0.816 0.805 0.762 0.782 0.795 0.785

Leukemia, Myeloid, Acute 64 0.864 0.856 0.778 0.846 0.841 0.840

Lung Neoplasms 132 0.944 0.937 0.863 0.898 0.864 0.903

Medulloblastoma 62 0.857 0.842 0.770 0.795 0.816 0.790

Melanoma 141 0.869 0.860 0.770 0.816 0.822 0.830

Ovarian Neoplasms 114 0.928 0.900 0.877 0.892 0.866 0.895

Pancreatic Neoplasms 99 0.923 0.911 0.861 0.888 0.864 0.896

Prostatic Neoplasms 118 0.890 0.888 0.804 0.829 0.883 0.835

Stomach Neoplasms 174 0.863 0.857 0.773 0.781 0.790 0.777

Urinary Bladder Neoplasms 92 0.858 0.860 0.787 0.836 0.866 0.844

Average AUC 0.872 0.865 0.801 0.833 0.829 0.832
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Recently, more and more evidence has shown that many
miRNAs are related to the cancers comprised of breast
neoplasms. The American Cancer Society had presented
that there were about 2.1 million newly diagnosed female
breast cancer cases, which accounts for almost 1 in 4 cancer
cases among women in 2018 (Bray et al., 2018). Identifying
more miRNAs associated with breast cancer will help to
assess clinical results accurately. As a result, our method
directly showed 15 out of the top 15 (100%) associations
predicted by our proposed method were supported by
dbDEMC and PhenomiR2.0 database, 28 out of the top 30

potentially related miRNAs to be linked with beast
neoplasms through dbDEMC (as shown in Table 3). And,
some predicted miRNAs were verified by previously
published literature, i.e., hsa-miR-378a. Notably, hsa-miR-
371a (22nd in the prediction list) is not confirmed with all
evidence proposed in this study. However, no association
between hsa-miR-371a and breast cancer has been reported.

Lung cancer (lung neoplasms) has the poorest prognosis
among cancers and is the largest threat to people’s health and
life, it accounts for 18.4% of the total cancer deaths (Bray et al.,
2018). As shown in Table 4, 15 out of the top 15 (100%) and

FIGURE 2. Number of correctly
identified disease–miRNA associations
by different methods.

FIGURE 3. The ROC curves and
average AUCs of INTS-MFS and
other five methods for 22 diseases.

842 BUWEN CAO et al.



28 out of the top 30 latently associated miRNAs were validated by
the two aforementioned databases. In addition, a candidate of hsa-
mir-378a (24th in the prediction list) is supported by previously
published literature. Especially, the association between hsa-miR-
371a (22nd in the prediction list) and lung cancer is not validated.

Hsa-miR-371a is an important miRNA that forms a cluster
with hsa-miR-371b, hsa-miR-372, hsa-miR-373 within 1.1 kb on
chromosome 19 (http://www.mirbase.org/), the sequence shown
that represents the most commonly cloned form from large-scale
cloning study (Landgraf et al., 2007). Although hsa-miR-371a
has been associated with 8, 12 diseases recorded in HMDD
and HMDD V3.2, respectively, no association with breast

cancer and lung cancer has been recorded so far. The
association, between hsa-miR-371a and breast cancer and lung
cancer, needs to be further explored by biologists.

The final case study in this study is prostatic cancer,
which is the second major cause of male cancer to deaths in
developed countries. We implemented our method to
prioritize latent prostatic neoplasm associated miRNAs, the
results show that 15 and 30 out of the top 15 and top 30
identified miRNAs were validated in dbDEMC and
PhenomiR2.0, which is shown in Table 5.

In conclusion, experimental results of cross validation
and case studies full illustrate that our proposed method

TABLE 3

The top 30 breast neoplasm-associated miRNA candidates by INTS-MFS

Rank MiRNAs Evidences Rank MiRNAs Evidences

1 hsa-mir-146a DbDEMC, PhenomiR2.0 16 hsa-mir-134 DbDEMC, henomiR2.0

2 hsa-mir-150 DbDEMC, PhenomiR2.0 17 hsa-mir-494 DbDEMC, henomiR2.0

3 hsa-mir-30e DbDEMC, PhenomiR2.0 18 hsa-mir-98 DbDEMC, henomiR2.0

4 hsa-mir-28 DbDEMC, PhenomiR2.0 19 hsa-mir-212 DbDEMC, henomiR2.0

5 hsa-mir-196b DbDEMC, PhenomiR2.0 20 hsa-mir-192 DbDEMC, henomiR2.0

6 hsa-mir-184 DbDEMC, PhenomiR2.0 21 hsa-mir-208a DbDEMC,

7 hsa-mir-142 DbDEMC, PhenomiR2.0 22 hsa-mir-371a Unconfirmed

8 hsa-mir-181c DbDEMC, PhenomiR2.0 23 hsa-mir-32 DbDEMC, henomiR2.0

9 hsa-mir-144 DbDEMC, PhenomiR2.0 24 hsa-mir-378a Literature

10 hsa-mir-424 DbDEMC, PhenomiR2.0 25 hsa-mir-370 DbDEMC, henomiR2.0

11 hsa-mir-145 DbDEMC, PhenomiR2.0 26 hsa-mir-1254 DbDEMC,

12 hsa-mir-15b DbDEMC, PhenomiR2.0 27 hsa-mir-3940 DbDEMC,

13 hsa-mir-146b DbDEMC, PhenomiR2.0 28 hsa-mir-99b DbDEMC, henomiR2.0

14 hsa-mir-363 DbDEMC, PhenomiR2.0 29 hsa-mir-130a DbDEMC, henomiR2.0

15 hsa-mir-143 DbDEMC, PhenomiR2.0 30 hsa-mir-491 DbDEMC, henomiR2.0

TABLE 4

The top 30 lung neoplasm-associated miRNA candidates by INTS-MFS

Rank MiRNAs Evidences Rank MiRNAs Evidences

1 hsa-mir-122 DbDEMC, PhenomiR2.0 16 hsa-mir-20b DbDEMC, PhenomiR2.0

2 hsa-mir-15a DbDEMC, PhenomiR2.0 17 hsa-mir-208a DbDEMC,

3 hsa-mir-342 DbDEMC, PhenomiR2.0 18 hsa-mir-193b DbDEMC,

4 hsa-mir-28 DbDEMC, PhenomiR2.0 19 hsa-mir-339 DbDEMC, PhenomiR2.0

5 hsa-mir-16 DbDEMC, PhenomiR2.0 20 hsa-mir-371a Unconfirmed

6 hsa-mir-196b DbDEMC, PhenomiR2.0 21 hsa-mir-378a Literature

7 hsa-mir-184 DbDEMC, PhenomiR2.0 22 hsa-mir-204 DbDEMC, PhenomiR2.0

8 hsa-mir-144 DbDEMC, PhenomiR2.0 23 hsa-mir-10a DbDEMC, PhenomiR2.0

9 hsa-mir-106b DbDEMC, PhenomiR2.0 24 hsa-mir-370 DbDEMC, PhenomiR2.0

10 hsa-mir-424 DbDEMC, PhenomiR2.0 25 hsa-mir-1254 DbDEMC,

11 hsa-mir-15b DbDEMC, PhenomiR2.0 26 hsa-mir-3940 DbDEMC,

12 hsa-mir-363 DbDEMC, PhenomiR2.0 27 hsa-mir-141 DbDEMC, PhenomiR2.0

13 hsa-mir-328 DbDEMC, PhenomiR2.0 28 hsa-mir-194 DbDEMC, PhenomiR2.0

14 hsa-mir-23b DbDEMC, PhenomiR2.0 29 hsa-mir-99b DbDEMC, PhenomiR2.0

15 hsa-mir-195 DbDEMC, PhenomiR2.0 30 hsa-mir-130a DbDEMC, PhenomiR2.0
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achieves satisfaction prediction performance. Interestingly, we
identified the miRNA of hsa-miR-371a, which is ranked top
22 and 20 in the breast and lung neoplasm, respectively, the
association with breast and lung cancer is unconfirmed in
existing research. According to dbDEMC, hsa-mir-371a is
associated with other diseases, such as Azoospermia,
Glioma, Lupus Nephritis, and so on. Therefore, we explored
the role of hsa-miR-371a in breast cancer and lung cancer
from the diagnosis of known diseases, in the hope that the
associations between hsa-miR-371a and more diseases will
be validated by future biological experiments.

Conclusion

The identification of potential miRNA-disease associations
would help us understand the pathogenesis of disease and
promote the treatment of diseases. In this paper, we
developed a model of Integrating Network Topology
Similarity and MicroRNA Function Similarity (INTS-MFS)
for identifying miRNA-disease association. In model of
INTS-MFS, the integrated miRNA function similarity and
network topology similarity were combined to calculate the
prediction score of each miRNA–disease pair. The AUC of
INTS-MFS is 0.872 based on five-fold cross-validation,
which showed a better performance than previous methods.
Furthermore, the predicted disease-related miRNAs of three
major human diseases: breast neoplasm, lung neoplasm and
prostatic neoplasm were respectively confirmed by the
human disease databases and experimental reports.

Despite the successful exploitation of integrated similarity
through application of INTS-MFS for miRNA-disease
association prediction, there are also inevitable limitations that
affect the performance of INTS-MFS, and in the hope that
these shortcomings will to be improved in future research.
First, the proposed method fails to predict associations
between new diseases and miRNAs that do not exist within

the similarity network, this is because our method is only
executed by known miRNA-disease associations. Second, the
material including miRNA functional similarity possibly
contains noise and outlier, the prediction accuracy of
associations is affected to some extent. Finally, the existing
known miRNA-disease associations are insufficient. Therefore,
a heterogeneous network integrating disease-gene, miRNA-
gene associations and protein-protein interaction network can
be used for the prediction of miRNA-disease association. It
will further potentially improve prediction results.
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