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Abstract: Long non-coding RNAs (lncRNAs) play an important role in many life activities such as epigenetic material

regulation, cell cycle regulation, dosage compensation and cell differentiation regulation, and are associated with many

human diseases. There are many limitations in identifying and annotating lncRNAs using traditional biological

experimental methods. With the development of high-throughput sequencing technology, it is of great practical

significance to identify the lncRNAs from massive RNA sequence data using machine learning method. Based on the

Bagging method and Decision Tree algorithm in ensemble learning, this paper proposes a method of lncRNAs gene

sequence identification called BDLR. The identification results of this classification method are compared with the

identification results of several models including Byes, Support Vector Machine, Logical Regression, Decision Tree

and Random Forest. The experimental results show that the lncRNAs identification method named BDLR proposed

in this paper has an accuracy of 86.61% in the human test set and 90.34% in the mouse for lncRNAs, which is more

than the identification results of the other methods. Moreover, the proposed method offers a reference for researchers

to identify lncRNAs using the ensemble learning.

Introduction

In the human genome, scientists have found that about 2% of
the total genome can encode proteins (Pennisi, 2012). Many
DNA is transcribed into RNA but not translated into
proteins, these non-coding RNAs are called ncRNAs
(Djebali et al., 2012). Common ncRNAs include tRNA,
snRNA, rRNA, snoRNA, lncRNA, Small ncRNA and so on.
Among them, long non-coding RNAs (lncRNAs) are a class
of RNA molecules whose sequence length is more than 200
nucleotides (Bu et al., 2012; Derrien et al., 2012), lacking
specificity and complete open reading frame, and no protein
coding ability. Scientists previously thought that only genes
encoding proteins can play an important role in various life
activities. They only need to use these genes as the focus of
scientific research, but ignore the function of lncRNAs, they
believe that such molecules are “junk substances” that do
not play any role in life activities. In recent years, massive
biomedical data have shown that lncRNAs play an

important role in many life activities, such as epigenetic
regulation, cell cycle regulation, dosage compensation and
cell differentiation regulation. LncRNAs regulate DNA
methylation, histone modification, chromatin remodeling
and other forms of RNA interference through a variety of
pathways. As an important component of the eukaryotic
transcriptome, lncRNAs have been shown to be associated
with many diseases such as cancer (Cheetham et al., 2013;
Wapinski and Chang, 2011), AIDS (Eilebrecht et al., 2011),
heart failure (Li et al., 2013). Recognition and inclusion of
lncRNAs will help researchers to further study and explore
human diseases at the molecular level. Accurate
identification of lncRNAs is an important step to further
understand long non-coding RNA.

With the rapid development of computing technology,
predicting new lncRNAs using bioinformatics methods has
become a hotspot in RNA genomics. However, biological
experimental methods have some limitations in identifying
and annotating long non-coding RNAs, such as the low
expression levels of most lncRNAs and the challenge of
massive experimental data analysis (Vučićević et al., 2014).
With the development of next generation sequencing
technology, millions of transcript sequence data are generated
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every year. A large number of lncRNAs have been discovered
and many lncRNAs have been annotated in the
transcriptome, which makes it possible to identify from
massive RNA sequences using machine learning. The
machine learning method can combine a variety of gene
sequence features to construct a classifier for identifying
lncRNAs and new input lncRNAs sequences. Support Vector
Machine (Cutler et al., 2007; Schneider et al., 2017), Logical
Regression (Hoo et al., 2016; Xie et al., 2018), Decision Tree
(Gong et al., 2017; Sun et al., 2015) and other supervised
learning methods have been used to identify lncRNAs.

After investigating the related methods of identifying
lncRNAs, it is found that there are few methods to construct
classifier to identify lncRNAs using Bagging method in
ensemble learning. Therefore, this paper proposes a method
based on Bagging and Decision tree to identify LncRNAs
named BDLR. The method uses the ID3 Decision Tree
algorithm as the base learner and uses the Bagging method in
ensemble learning to combine multiple base learners
(Decision Trees) to obtain the BDLR classifier. In this paper,
three types of features are extracted from highly reliable data:
k-mer frequency, GC content, and transcript length. The
classification results of BDLR method are compared with the
results of Support Vector Machine, Logistic Regression and
Decision Tree. The experimental results show that the
identification effect of BDLR classifier based on ensemble
learning is better than that of the other three classifiers.

Therefore, the proposed BDLR method is promising for
the identification and annotation of lncRNAs sequences.

Materials and Methods

In this section, we first introduce the source of the experimental
data, then introduce the features used in the BDLRmethod and
the method of feature selection. Then we discuss the related
algorithms used in the BDLR classification model proposed
in this paper, and finally describe the construction process of
the BDLR classification model. There are three types of
features used in BDLR: k-mer subsequence frequency, GC
content, transcript sequence length. The chi-square test is
used to select the optimal feature subset.

Data set
At present, human biomedical experimental data and gene
annotation information are relatively abundant. Many
genomic databases contain a large number of human
lncRNAs and mRNAs (a common class of protein-coding
transcripts) sequence data, such as ENSEMBL, NONCODE,
GENCODE (Derrien et al., 2012) genomic databases. This
paper uses two types of data sets. The sequencing data of
LncRNA and mRNA were obtained from ENSEMBL
genomic database for both human and mouse data sets. The
human positive dataset used in this paper is the human
lncRNAs sequence downloaded from the ENSEMBL genomic
database. After filtering out the sequence of less than 200
nucleotides in length, 12366 lncRNA sequences were
obtained. The negative dataset was also obtained from the
ENSEMBL genomic database. The human mRNAs sequence,
after filtering out the sequence of less than 200 nucleotides in
length, obtained a total of 61427 mRNA sequences. In order

to ensure the relative balance of the number of positive and
negative samples, 12366 mRNA sequences were randomly
selected from the 61427 mRNA sequences as negative data.
Experimental data related to mouse are similar to those of
humans downloaded from ENSEMBL genomic database.
LncRNA were filtered with 10000 lncRNA sequences and
10000 mRNA sequences. The data set information is shown
in Table 1. The data set in this work is balanced, but there
may be unbalanced data set in the real world. For such
unbalanced data set, we will preprocess it by up-sampling or
down-sampling, so that it can process unbalanced data set.

Feature extraction
(1) K-mer subsequence frequency
K-mer usually refers to all subsequences of a sequence

whose length is k (Zhang et al., 2011). In bioinformatics,
k-mer refers to all k-length subsequences in a DNA or RNA
sequence or to all k-length subsequences in an amino acid
sequence. The frequency features of k-mer subsequences
mainly use the k-mer statistical information to discover the
distribution of the frequency of the k-mer subsequence in the
RNA sequence or the amino acid sequence. The feature of
k-mer frequency is also presented in the work (Li et al., 2019).

According to the characteristics of the k-mer, a sliding
window strategy can be adopted to calculate the frequency of
the k-mer subsequences in each RNA sequence. The step size
of the sliding window is set to 1, that is, the window moves
one base position to the right each time. For a RNA sequence
of length L, let k be a value range of k = 1, 2, 3, ……, n,
because the base at each position of k-mer subsequence in
RNA sequence can be any of the four bases A, T, C and G,
there are 4k possible combinations of k-mer subsequences of
length k, so the total number of k-mer frequency features is:
41+42+43+……+4n. A sliding window of width 1 requires
scanning the RNA sequence k times, and each scan can
obtain L-k+1 k-mer subsequences. As shown in Fig. 1 below,
a schematic diagram of the k-mer subsequence contained in

TABLE 1

Data set

Dataset Sample size Data sources Category

Human_lncRNA 12366 ENSEMBL Positive class

Human_mRNA 12366 ENSEMBL Negative class

Mouse_lncRNA 10000 ENSEMBL Positive class

Mouse_mRNA 10000 ENSEMBL Negative class

FIGURE 1. Sketch of k-mer sliding window.
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the position of the sliding window corresponding to the same
width at k, 2, 3, and 4 in the RNA sequence.

In this paper, the range of k is limited to k = 1, 2, 3 and 4,
a total of 4 + 16 + 64 + 256 = 340 k-mer frequency features can
be extracted. Details are shown in Table 2. For a RNA
sequence with length L, the sliding window needs to be
scanned four times, and each scan will get mk = L – k + 1 k-
mer subsequence; each scan will increase the corresponding
number of k-mer subsequences ni by 1, ni means the
number of occurrences of the i-th k-mer subsequence; then
the frequency of occurrence of each k-mer subsequence Fi =
ni/mk. The i-th feature extracted is represented by Fi, and
the specific calculation formula is as formulas (1) and (2).

Fi ¼ ni
mk

(1)

mk ¼ L� kþ 1 (2)

k = 1, 2, 3, 4; i = 1, 2, 3, 4, ……, 340;
Fi: the frequency of the i-th k-mer subsequence;
ni: the number of occurrences of the i-th k-mer

subsequence in the current RNA;
mk: the number of k-mer subsequences obtained by

scanning the RNA sequence for the kth time;
L: the length of the currently scanned RNA sequence.
(2) GC content and transcript length
Nucleic acid bases are typically biological compounds

found in deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA). The bases mainly include adenine (A), thymine (T),
cytosine (C) and guanine (G), and the GC content refers to
the sum of contents of guanine (G) and cytosine (C) in a gene
sequence. In the related research of genomic sequence, GC
content (Banerjee et al., 2005; (Singer and Hickey, 2000) is a
very important feature. The GC content in DNA double
strands of different species is very different. GC content is also
related to many genetic characteristics, for example, when GC
content is relatively low, the density of genes is relatively small,
and when GC content is relatively high, the density of genes is
relatively large; GC content also has a large influence on the
composition of nucleotides and amino acids. The length of a
transcript refers to the length of an RNA sequence (lncRNA
or mRNA sequence), and the distribution of lengths of
different classes of RNA sequences is also different.

(3) Chi-square test
The chi-square test is a commonly used method of feature

selection, especially in the financial and biological fields (Kowal et
al., 2018). The chi-square is used to describe the independence
between two variables, or to describe the degree of deviation

between the observed actual values and the theoretical
expectations (Dou and Aliaosha, 2018). The larger the chi-square
value, the greater the deviation between the actual value and the
expected value, and the weaker the independence between the
two variables. The formula for calculating chi-square value (x2) is
as follows:

x2 t; cð Þ ¼
X

et20;1

X
ec20;1

Netec � Eetecð Þ2
Eetec

(3)

Explanation:
t: when this feature exists, t = 1, and when this feature

does not exist, t = 0;
c: category 0 or 1 (this paper only considers the two

classifications);
N: observation value;
E: expectations, such as E11, represent expectations when

feature t appears and category c = 1 (originally assumed to be
independent of t and c).

After the chi-square value is obtained, the chi-square value can
be converted into a P-value. The P-value is the probability of sample
results when the original hypothesis is true. When the P-value is
small, it can be considered that the original hypothesis is wrong,
that is, feature t is related to category c. Therefore, chi-square test
can be used to rank the correlation degree of features and
categories to achieve the purpose of feature selection. Feature
selection by chi-square test can reduce the number of features
and improve the training speed of the classification model. At the
same time, it can reduce the impact of noise features and
improve the classification accuracy of the classification model on
the test set. In addition, from the perspective of the complexity of
the model, it can also reduce the complexity of the model and
reduce the possibility of the over-fitting.

Ensemble learning and Decision Tree algorithms
(1) Decision Tree algorithms
In this paper, ID3 Decision Tree algorithm is used as the

base learner of Bagging method. ID3 algorithm uses
information gain criterion to selects features at each node of
the decision tree and constructs the decision tree recursively.

In information theory, entropy is a measure of uncertainty
of random variables. The larger the entropy, the greater the
uncertainty of the random variable. The definition of entropy
is as follows:

H Xð Þ ¼ �
Xn

i¼1

pilogpi (4)

X is a random variable, pi ¼ P X ¼ xið Þ.

TABLE 2

K-mer subsequence feature details

Description Features Number of features

1-mer A%, G%, C%, T% 4

2-mer AA%, AG%, AC%, AT%, GA%, GG%, GC%, GT%, CA%, CG%, CC%, …… 16

3-mer AAA%, AAG%, AAC%, AAT%, AGA%, AGG%, AGC%, AGT%, ACA%,…… 64

4-mer AAAA%, AAAG%, AAAC%, AAAT%,
AAGA%, AAGG%, AAGC%, ……

256
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The conditional entropy H(Y|X) refers to the uncertainty
of random variable Y under the condition of given random
variable X. Conditional entropy is defined as follows:

H Y jXð Þ ¼
Xn

i¼1
piHðY jX ¼ xiÞ (5)

In the above formula, pi ¼ P X ¼ xið Þ.
Information gain represents the degree to which the

classification uncertainty of data set D decreases when the
information of feature F is known. Information gain is
defined as follows:

Gain D; Fð Þ ¼ H Dð Þ � HðDjFÞ (6)

ID3 Decision Tree algorithm (Li, 2012) is described as
follows:

(2) Ensemble learning
Ensemble learning achieves better generalization

performance than single learner by combining multiple single
learners to complete learning tasks together (Xiao et al., 2018;
Zhou, 2016). Bagging (Bootstrap Aggregating) is the most
famous parallel ensemble learning algorithm (Liu et al., 2018;
Zararsız et al., 2017). The basic flow of this algorithm is:
given a data set D containing m samples, randomly extract
one sample into the sampling set, put the sample back into
the original data set D, repeat sampling m times, and get a
sampling set D’, which also contains m samples. According to
the principle of bootstrap sampling, about two-thirds of the
samples in data set D will appear in D’, the remaining one-
third of the samples will not appear in D’, and these samples
not in D’ can be used as test sets for out-of-bag estimation of
generalization performance; repeated T times of the same
operation will result in a set of samples whose number is m.
T base learners are trained by using the T set. Finally, the
classification results of the T base learners are combined
according to the strategy of majority voting or averaging, and
the final classification results are obtained. The base learner
chosen in this paper is Decision Tree. The process of

obtaining BDLR classification model is shown in Fig. 2. The
Bagging algorithm description (Liu et al., 2018) is as follows:

� yi is the real category label of sample xi;
� BSP (D, m) denotes m times of random sampling with

playback for data set D;
� I(*) stands for the indicator function. When * is true

and false, the value is 1,0, respectively.

Design of lncRNA identification method——BDLR
This paper proposes a method to identify human lncRNA
called BDLR, which integrates multiple ID3 Decision Tree
algorithms by using Bagging algorithm. BDLR is an
algorithm with ensemble learning as its core. In order to
obtain generalized ensemble learning, Bagging’s self-help
sampling method is adopted to improve the average value of
the base classifier of ensemble learning when selecting
samples. Decision tree algorithm is often chosen as a base
classifier because of its good generalization ability in
ensemble learning. Therefore, ID3 decision tree algorithm is
selected as the base classifier. The process of identifying
human lncRNA using the method is shown in Fig. 3.

The steps for identifying human lncRNA using the BDLR
method are described below:

1) Highly reliable lncRNA sequence data and mRNA
sequence data were downloaded from ENSEMBL genome
database as positive and negative datasets, respectively.

2) The k-mer subsequence frequency, GC content and
transcript sequence length were extracted from the downloaded
RNA sequence data, and a total of 342 features were obtained.

3) Using chi-square test as feature selection method, the
optimal feature subset of a total of 40 features is selected from
the initial feature set.

4) Using the ID3 Decision Tree algorithm as a base learner,
50 decision trees are combined using the Bagging method in
integrated learning. In this process, the number T of Decision
Trees used is compared. The results show that the classification
accuracy of BDLR classifier is 86.24% when T = 40, 87.02%
when T = 50, 86.30% when T = 60 and 86.29% when T = 500.
Therefore, 50 Decision Trees are selected for integration.

5) The accuracy, precision, recall and F1_score obtained
by BDLR method are compared with those obtained by other
methods to evaluate the advantages and disadvantages of
BDLR method.

Performance evaluation metrics
This paper will use Accuracy (ACC), Precision (P), Recall (R),
F1_score to evaluate the performance of the classification
model. Definitions are as follows:

Input: training set D, feature set F, threshold ∂.

Output: Decision Tree T.

Algorithm:
1) If all samples in training set D belong to the same category Ck,
then T is a single node tree, the category Ck is used as the class
label of the node, and T is returned.
2) If F = Ø, then T is a single node tree, and the category Ck with
the largest number of samples in training set D is used as the class
label of the node, and return T.
3) Otherwise, according to formula (6) to calculate the information
gain of each feature in the feature set F on the data set D, select the
feature Fg with the largest information gain.
4) If the information gain of Fg is less than the threshold ∂, then
T is a single node tree. The category Ck with the largest number
of samples in D is used as the class label of the node, and return T.
5) Otherwise, for each possible value fi of Fg, D is divided into
several non-empty subsets Di according to Fg = fi. The category
with the largest number of samples in Di is labeled, and sub-nodes
are created. The tree T is composed of nodes and their sub-nodes,
and return T.
6) For the i-th sub-node, Di is used as training set, F-{Fg} is used as
feature set, and step 1)~5) is called recursively to get sub-tree Ti

and return Ti.

Input: original training set D = {(x1, y1), (x2, y2), (x3, y3), ……,
(xm, ym)};

basic learner S;
number of training T.

Output: H xð Þ ¼ arg max
PT

t¼1 I ht xð Þ ¼ yð Þ
Algorithm:

for t =1, 2, 3, ……, T do
D’ = BSP(D,m)
ht = S(D’)

end for
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ACC ¼ TP þ TN
TN þ FP þ TP þ FN

(7)

P ¼ TP
TP þ FP

(8)

R ¼ TP
TP þ FN

(9)

F1 score ¼ 2TP
2TP þ FP þ FN

(10)

In the above formula, TP (true positive) refers to the
number of samples correctly predicted as positive classes; FN
(false negative) refers to the number of samples incorrectly
predicted as negative classes; FP (false positive) refers to the

number of samples incorrectly predicted as positive classes;
TN (true negative) refers to the number of samples correctly
predicted as negative classes.

Results
In this section, the optimal feature subset is obtained by
analyzing the performance of BDLR classification model on
different feature subsets in the two types of datasets (human
and mouse). Then the classification performance of BDLR
classification model on the test data set is compared. The
data set is divided into a training set and a test set with the
ratio of 6 to 4 by using the train_test_split function. Using
the training data set to solve the hyperparameters (optimal
feature subset) of BDLR classification model, The obtained
optimal hyperparameters are used in the test set for
evaluating the performance of the BDLR against other models.

Optimal feature subset
According to the definition of k-mer subsequence frequency,
the frequency values of 340 k-mer subsequences are
calculated. Considering the total number of features of
k-mer frequency is large, the distribution of some features is
calculated by box plot (Streiner, 2018). The frequency
distributions of “A%” in partial 1-mer subsequences of
lncRNA (left) and mRNA (right) sequences, “GC%” in
2-mer subsequences, “GGG%” in 3-mer subsequences and
“GGGG%” in 4-mer subsequences were calculated. It is
worth noting that “GC” 2-mer feature and GC-content
feature are two completely different features. “GC” 2-mer
refers to the frequency of 2-mer base pairs like “AC”, “TC”
and “GC” in RNA base pairs. The GC-content feature
indicates the ratio of GC content to AT content in the
whole RNA. As shown in Fig. 4, it can be found that there
are obvious differences in k-mer frequency distribution
between the two types of data. Therefore, k-mer
subsequence frequency can be used as an important feature
to distinguish lncRNA from mRNA.

Similarly, according to the definition of GC content and
transcript length (Karimi et al., 2018), GC content and
transcript length of lncRNA and mRNA sequences were
calculated respectively. In Fig. 5 (left), the GC content
distribution of lncRNA and mRNA was compared using a
box plot, it can be seen that there is a significant difference
in the GC content distribution between the two types of

FIGURE 2. The process of training and integrating multiple decision tree using Bagging method.

FIGURE 3. Human lncRNA identification process based on BDLR
classifier.
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data. In Fig. 5 (right), a statistical analysis of the lncRNA and
mRNA sequence lengths using a box plot reveals that there is
also a significant difference in the sequence length distribution
between the two types of data. In the analysis process, it
should be noted that because the RNA sequence has a large
range of length distribution, it is necessary to
logarithmically transform the initially acquired RNA length
data, and to narrow the numerical distribution range of the

data, which will be more conducive to our statistical
analysis. From the above analysis, GC content and
transcript sequence length are also two important features
to distinguish lncRNA from mRNA.

The three types of features, k-mer frequency, GC content,
and transcript length, were combined to obtain a total feature
set of 342 dimensions. It should be noted that the GC content
and transcript length should be standardized before merging,

FIGURE 4. Frequency distribution of partial k-mer subsequences in lncRNA and mRNA.

FIGURE 5. Left: GC content distributions in lncRNA and mRNA; right: Sequence length distributions in lncRNA and mRNA.
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so that the range of these two types of features is consistent
with the range of k-mer frequency characteristics.

The training set is used to select the optimal feature
subset. Chi-square test was used to select the initial feature
set (Yu et al., 2017), and then the feature subsets with
p-value ranking top30, top40, top50 and top100 were
selected for comparative analysis. The four feature subsets
were selected as input features of BDLR classifier, and the
classification results of this method under each feature
subset were compared. In the human data set, it was found
that BDLR method had the best identification results for
lncRNA under top40 feature subset. The classification
accuracy of BDLR method under top40 feature subset was
87.02%, higher than that of top30 feature subset 84.85%,
higher than that of top50 feature subset 86.48%, and higher
than that of top100 feature subset 86.94%. The recall rate
and F1_score of BDLR method on top40 feature subset are
the highest, with a precision of 87.29% slightly lower than
87.91% of top100 feature subset. However, the training
time of BDLR method on top40 feature subset is 28.7 s,
which is 1/2 of the training time on top100 feature subset.
Considering the classification result of the model and the
training time of the model, the top40 feature subset is
selected as the optimal feature subset. The human
classification results of BDLR classifier under each feature
subset are shown in Table 3. In this paper, the same
experiment has been done on the mouse data set.
Experimental results show that the top 40 feature subset is
superior to other feature subsets in Accuracy, Precision, Recall
and F1_score. The mouse classification results of BDLR
classifier under each feature subset are shown in Table 4. The
40 features in the optimal feature subset of human selected by
Chi-square test are shown in Fig. 6 and the optimal feature
subset of mouse in Fig. 7. They are also used in the test
dataset for measuring the performance of BDLR.

Performance evaluation of BDLR classification model
In the human data set, 12366 lncRNA data were taken as
positive samples and 12366 mRNA as negative samples. In
the mouse data set, 10000 LncRNA data were taken as
positive samples and 10000 mRNA as negative samples. Use
the train_test_split function to randomly divide it into a
training set with size of 0.6 and a test set with size of 0.4. In
order to verify the effectiveness of the proposed method, the
classification method adopted by some popular lncRNA
recognition tools is used to classify the same data set used in
this paper, and the results are compared. The classification
methods used for comparison include the Logistic
Regression (LR) model adopted by CPAT tool (Wang et al.,
2013), the Support Vector Machine (SVM) model adopted
by CPC tool (Kong et al., 2007), and the Decision Tree
(DT) model adopted by the base learner in the BDLR
method proposed in this paper and Traditional Byes model
(Huai et al., 2015) based on statistical method, RF (Random
Forset) (Cutler et al., 2007), which also use ensemble learning
method is compared and analyzed (Only the training set is
selected for hyperparameters). The comparison results shown
in Tables 5 and 6. From the human comparison results, it
can be seen that the proposed method is superior to the
other classification methods in Accuracy (ACC): 86.61%,
Precision (P): 86.62%, Recall (R): 86.61%, F1_score: 86.61%.
And, also for the mouse comparison results, it can be seen
that the proposed method is also superior to the other
classification methods in Accuracy (ACC): 90.34%, Precision
(P): 90.35%, Recall (R): 90.35%, F1_score: 90.34%. The
classification accuracy of BDLR method proposed in this
paper is obviously higher than other compared method. The
classification results of BDLR are the best among all the
methods, and that of Byes is the worst.

The ROC curves (Hoo et al., 2016) of the seven
classification algorithms on the test data are shown in Fig. 8

TABLE 3

Performance of different feature subsets on human data sets

Feature subset Accuracy Precision Recall F1_score Training_time

Top 30 0.8485 0.8576 0.8572 0.8483 23.7 s

Top 40 0.8702 0.8729 0.8677 0.8703 28.7 s

Top 50 0.8648 0.8684 0.8571 0.8627 34.7 s

Top 100 0.8694 0.8791 0.8575 0.8682 58.7 s
Note: Bold numbers indicate the highest value of the metrics.

TABLE 4

Performance of different feature subsets on mouse data sets

Feature subset Accuracy Precision Recall F1_score Training_time

Top 30 0.8681 0.8671 0.8653 0.8661 20.3 s

Top 40 0.8903 0.8944 0.8951 0.8949 25.6 s

Top 50 0.8723 0.8845 0.8826 0.8836 30.9 s

Top 100 0.8756 0.8764 0.8735 0.8726 52.4 s
Note: Bold numbers indicate the highest value of the metrics.
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for human and Fig. 9 for mouse. The BDLR method
proposed in this paper has the largest AUC value of 0.94
for human and 0.97 for mouse; the second largest AUC

value is the Random Forest, which is 0.91 for human and
0.97 for mouse; the Byes algorithm has the smallest AUC
value of 0.69 for human and 0.78 for mouse. Based on the

FIGURE 6. Optimal feature subset
(human).

FIGURE 7. Optimal feature subset
(mouse).

TABLE 5

Comparison of lncRNA classification results based on different
methods of human data set

Method Accuracy Precision Recall F1_score

BYES 0.6490 0.6516 0.6493 0.6478

CPAT 0.6562 0.6577 0.6565 0.6557

CPC 0.6593 0.6642 0.6597 0.6570

DT 0.7863 0.7864 0.7862 0.7862

RF 0.8176 0.8176 0.8176 0.8176

BDLR 0.8661 0.8662 0.8661 0.8661
Note: Bold numbers indicate the highest value of the metrics.

TABLE 6

Comparison of lncRNA classification results based on different
methods of mouse data set

Method Accuracy Precision Recall F1_score

BYES 0.7303 0.7337 0.7302 0.7293

CPAT 0.7317 0.7321 0.7318 0.7316

CPC 0.7598 0.7599 0.7598 0.7598

DT 0.7598 0.8377 0.8377 0.8377

RF 0.8861 0.8862 0.8861 0.8861

BDLR 0.9034 0.9035 0.9035 0.9034
Note: Bold numbers indicate the highest value of the metrics.
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above analysis, the method proposed could effectively
identify lncRNA gene sequences.

Conclusions
In this paper, a lncRNA identification method named BDLR is
proposed. Based on human and mouse RNA sequence data,
three kinds of features: k-mer subsequence frequency, GC
content and transcript sequence length, are extracted. The 342
features are taken as the original feature set, and the optimal
feature subset of 40 features is obtained by feature selection
method of chi-square test. A lncRNA classification model
based on Bagging ensemble learning method was trained. The
results show that the classification accuracy of BDLR is
86.61%, AUC value is 0.94 aiming at the human dataset, and
the accuracy is 90.34%, AUC value is 0.97 aiming at the
mouse data set. The performance of BDLR is higher than
Byes, CPAT (Logistic Regression), CPC (SVM), Decision Tree,
Random Forest aiming at the same test data set. The ensemble
learning method, which is rarely used in the identification of
lncRNA to our best knowledge, effectively improves the
accuracy and training speed of the traditional machine
learning method. Moreover, the proposed method lays a
foundation for researchers in related fields to use the ensemble
learning method to identify lncRNA. Experiments show that
this method has strong generalization ability and can

effectively identify human lncRNA, which is of great
significance for the identification and annotation of lncRNA.
In the future, we could consider combining deep learning to
further improve the classification performance of lncRNA.
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