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Abstract: N6-Methyladenine is a dynamic and reversible post translational modification, which plays an essential role in

various biological processes. Because of the current inability to identify m6A-containing mRNAs, computational

approaches have been developed to identify m6A sites in DNA sequences. Aiming to improve prediction

performance, we introduced a novel ensemble computational approach based on three hybrid deep neural networks,

including a convolutional neural network, a capsule network, and a bidirectional gated recurrent unit (BiGRU) with

the self-attention mechanism, to identify m6A sites in four tissues of three species. Across a total of 11 datasets, we

selected different feature subsets, after optimized from 4933 dimensional features, as input for the deep hybrid neural

networks. In addition, to solve the deviation caused by the relatively small number of experimentally verified samples,

we constructed an ensemble model through integrating five sub-classifiers based on different training datasets. When

compared through 5-fold cross-validation and independent tests, our model showed its superiority to previous

methods, im6A-TS-CNN and iRNA-m6A.

Introduction

There are more than 160 identified types of RNA post-
transcriptional modifications. Among them, the 5’ cap and 3’
poly modifications play important roles in transcriptional
regulation, while the function of internal modification is
maintaining the stability of mRNA in eukaryotes (Cao et al.,
2016; Yan et al., 2021). One of the most common internal
modifications is N6-Methyladenine (m6A). Since discovered
in the 1970s, it has been observed in a wide range of
eukaryotes, including yeast, Arabidopsis thaliana, Drosophila,
and mammals, as well as in the RNA of viruses (Cao et al.,
2016; Yang et al., 2020). N6-Methyladenine is a dynamic,
reversible post translational modification, and is essential in
post transcriptional regulation, regulating gene expression,
splicing, editing RNA and maintaining genomic stability (Cao
et al., 2016). However, m6A modifications were considered
static and unalterable, owing to both the ignorance of m6A
demethylating enzymes and the short lifetime of most RNA
species (median mammalian RNA half-lives are
approximately 5 h) (Cao et al., 2016; Yan et al., 2021). The

inability to identify m6A-containing mRNAs has also
hindered investigation into their biological roles.

Developing computational tools for predicting m6A sites
from DNA sequences could help overcome above-mentioned
problems (Zhao et al., 2019; Li et al., 2018; Wei et al., 2018;
Chen et al., 2017; Xing et al., 2017; Shahid and Maqsood,
2018; Wei et al., 2016; Qi et al., 2019; Liu et al., 2016; Chen
et al., 2018). Computational methods to identify m6A sites
can be classified as either shallow or deep learning,
according to the classification algorithm adopted.

There are several representative examples of classification
models based on shallow learning. Feng et al. (2019)
integrated nucleotide physicochemical properties into PseKNC
(Pseudo K-tuple Nucleotide Composition) and SVM (Support
vector machine) so as to build a prediction tool called
iDNA6mA-PseKNC. Another prediction model, SDM6A, was
developed by Basith et al. (2019) to identify m6A sites in the
rice genome. Basith et al. (2019) used numerical
representations of nucleotides, mono-nucleotide binary
encoding, di-nucleotide binary encoding, local position-
specific di-nucleotide frequency, ring-function hydrogen
chemical properties and K-nearest neighbor in order to select
features by F-score. Then, they tried four traditional machine
learning (ML) classifiers, namely SVM, ERT (extremely
randomized tree), RF (random forest) and XGB (extreme
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gradient boosting), to predict DNA N6-methyladenine. Finally,
two classifiers were integrated to construct the model. Hasan et
al. (2020) implemented five encoding schemes (mono-
nucleotide binary, din-ucleotide binary, k-space spectral
nucleotide, k-mer, and electron–ion interaction pseudo
potential compositions) to build five single-encoding RF
models for identifying the DNA m6A sites in the Rosaceae
genome. They then combined the prediction probability
scores of these five RF models and used a linear regression
model to construct an i6mA-Fuse classifier.

Several predictors based on deep learning algorithms
have also been developed. Tahir et al. (2019) built a deep
learning automatic computing model, iDNA6mA, which
could predict m6A sites by integrating one-hot encoding
and a convolutional neural network (CNN). Nazari et al.
(2019) used not only a convolutional neural network but
also the natural language processing model Word2Vec in
order to extract features from sequences automaticly, and
succeeded in constructing the iN6-Methyl model, which was
able to identify m6A sites in multiple species.

Moreover, with the deepening understanding of the
spatial specificity of gene expression, there were two studies
offering insight into distinguishing m6A modification sites
in various tissues of human, mouse and rat. Dao et al.
(2020) extracted three kinds of features, containing physical-
chemical property, mono-nucleotide binary encoding and
nucleotide chemical properties, and combined them with
SVM to construct a predictor called iRNA-m6A. In another
study, Liu et al. (2020) proposed a predictor called im6A-
TS-CNN which employed one-hot encoding and CNN. But
neither model gave satisfactory performance because of the
limitation in the feature extraction and classifier architecture
designation. These two studies did not consider location and
context information, and did not pay attention to redundant
information as well. In addition, the deep network
architecture should be further explored and designed so that
its deep feature learning ability should be promising.

To address these limitations, we proposed a novel
computation model, considering three kinds of feature
descriptors: one-hot encoding, sequence features derived from
iLearn, and K-tuple nucleotide frequency pattern (KNFP), to
characterize the nucleic acid sequence. To scale down the
information noise caused by excessive unrelated features, we
used the F-score and reduced feature dimension through a
series of triple 5-fold cross-validation tests. Following this, we
used a hierarchical deep learning network composed of a
multi-channel convolutional neural network, a capsule
network, and a bidirectional gated recurrent unit (BiGRU)
with the self-attention mechanism to learn local and
contextual information. Moreover, we randomly divided the
positive and negative training datasets into five mutually
exclusive parts of similar size, and then selected four parts
combined as new training datasets, with the remaining one
part adopted as cross-validation test set to optimize the model
at each time. Finally, we built an ensemble model and gave
the forecast labels according to the majority voting strategy.
To evaluate the effectiveness of the ensemble model, we
compared its performance with im6A-TS-CNN and iRNA-
m6A through a 5-fold cross validation and an independent
test. For all the 11 datasets, our model gave the best

performance with measures of accuracy and Matthews
correlation coefficient. In addition, we visualized the analysis
results of the brain in human, mouse and rat using
t-distributed Stochastic Neighbor Embedding (t-SNE). Fig. 1
demonstrates the design and optimization process of our model.

Materials and Methods

Datasets
In this study, we trained and evaluated our model on the
benchmark datasets containing a total of 11 training and 11
testing datasets from human, mouse and rat, which were
also used in iRNA-m6A and im6A-TS-CNN models (Dao et
al., 2020; Liu et al., 2020). Each dataset contains the same
number of positive and negative samples. Each sample is a
41nt-length RNA sequence with Adenine in the center.
Detailed information about these datasets can be found in
the work of Dao et al. (2020).

Feature extraction and feature selection
It is vital to extract efficacious features when developing new
computational model based on machine or deep learning
algorithms (Zhang and Liu, 2019). In this study, we
extracted three categories of features from the sequence:
one-hot encoding, sequence features, and order features.

One-hot encoding
Given a DNA sequence D, its intuitive expression is

D ¼ R1R2R3R4R5R6R7 � � �RL (1)

where RI represents the i-th nucleic acid residue at position i
in the DNA sequence.

Each sequence with 41 nt is represented with a 41 × 41
vector, in which (1, 0, 0, 0) stands for G, (0, 1, 0, 0) stands
for C, (0, 0, 1, 0) stands for U, and (0, 0, 0, 1) stands for A.

Sequence features
Transforming a DNA sequence sample into a vector based on
its sequence characteristic composition is a simple but
universal strategy, which can capture significant biological
information (Zhen et al., 2020; Zou et al., 2019). iLearn is a
comprehensive and versatile Python-based toolkit including
a variety of descriptors for DNA, RNA and proteins (Zhen
et al., 2020). We used iLearn to calculate and extract four
types of features: nucleic acid composition, binary electron-
ion interaction pseudopotentials, autocorrelation and cross-
covariance, pseudo nucleic acid composition, and achieved a
total of 1325 features. The names and dimensions of
features used in this section are listed in Table 1. As for the
specific definitions of these features, please refer to (Zhen et
al., 2020; Zou et al., 2019).

K-tuple nucleotide frequency pattern
KNFP integrates the information from K-mer as well as one-
hot encoding, and can compensate for insufficient short-range
or local sequence order information effectively (Yang et al.,
2020). It has been used to identify protein-RNA binding
sites and protein-circRNA interaction sites (Yang et al.,
2020). K-mer can map any DNA sequence to a vector with
4k dimensions as follows:
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FIGURE 1. The framework of our model.

TABLE 1

The information of features set in this study

Descriptor groups Descriptor Dimension

Nucleic acid composition Nucleic Acid Composition (NAC) 4

Enhanced Nucleic Acid Composition (ENAC) 148

Di-Nucleotide Composition (DNC) 16

Tri-Nucleotide Composition (TNC) 64

Composition of k-spaced Nucleic Acid Pairs (CKSNAP) 64

Basic kmer (Kmer) 84

Reverse Compliment Kmer (RCKmer) 12

Binary Binary (Binary) 164

Electron-ion interaction pseudopotentials Electron-ion interaction pseudopotentials of trinucleotide (EIIP), 41

Electron-ion interaction pseudopotentials of trinucleotide (PseEIIP) 64

Autocorrelation and cross-covariance Dinucleotide-based Auto Covariance (DAC) 30

Dinucleotide-based Cross Covariance (DCC) 150

Dinucleotide-based Auto-Cross Covariance (DACC) 180

Trinucleotide-based Auto Covariance (TAC) 10

Trinucleotide-based Cross Covariance (TCC) 10

Trinucleotide-based Auto-Cross Covariance (TACC) 20

Pseudo nucleic acid composition Pseudo Dinucleotide Composition (PseDNC) 18

Pseudo k-tupler Composition (PseKNC) 66

Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC) 18

Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC) 66

Series Correlation Pseudo Dinucleotide Composition (SCPseDNC) 28
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R ¼ ½’1’2 � � �’u � � �’4k�T (2)

where ’u u ¼ 1; 2; � � � ; 4k� �
is the frequency of the u-th k-mer

along the sequence (k = 1,2,3 in this work).
On one hand, R can be transformed to a diagonal matrix

RD, if multiplied by the identity matrix. On the other hand, for
a DNA sequence D of length L, the number of k-mer is
L�k + 1. Each k-mer can be encoded as a one-hot vector
with dimension of 4k. The product of the L� kþ 1ð Þ � 4k
matrix (M) and RD is KNFP.

For example, given a sequence S = ‘ACGACGAA’, 1-mer is
encoded as one-hot vectors: G = (1, 0, 0, 0), C = (0, 1, 0, 0), U =
(0, 0, 1, 0), and A = (0, 0, 0, 1). Then according to the position
information, S can be transformed to a matrix as follows:

M ¼

0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

For S, the frequency vector of 1-mer (G, C, U, A) is R =
(0.25, 0.25, 0, 0.5). Then through multiplying R by an identity
matrix, it is converted to a diagonal matrix as follows:

RD ¼
0:25 0 0 0
0 0:25 0 0
0 0 0 0
0 0 0 0:5

0
BB@

1
CCA

The KNFP ¼ M� RD is given as

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

�

0:25 0 0 0

0 0:25 0 0

0 0 0 0

0 0 0 0:5

0
BBB@

1
CCCA

¼

0 0 0 0:5

0 0:25 0 0

0:25 0 0 0

0 0 0 0:5

0 0:25 0 0

0:25 0 0 0

0 0 0 0:5

0 0 0 0:5

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Feature optimization
Experiments have shown that excessive feature information
can interfere with the performance of classifiers. Therefore,
feature selection methods should be applied to find the most
informative features for training classifiers and thus reduce
the dimensionality of the feature vector. F-score has been
extensively applied in bioinformatics because of its

effectiveness in balancing accuracy and stability (Bui et al.,
2016; Li et al., 2018).

The F-score of the j-th feature is defined as

F� score jð Þ ¼
�x þð Þj � �xj

� �2
þ �x �ð Þj � �xj
� �2

1
mþ�1

Pmþ
k¼1

�x þð Þk;j � �x þð Þj

� �2
þ 1

m��1
Pm�
k¼1

�x �ð Þk;j � �x �ð Þj

� �2
; (3)

where �xj; �x
þð Þ
j and �x �ð Þj denote average values of the j-th

feature in the combined positive and negative training
datasets, the positive datasets, and the negative datasets,
respectively. mþ is the total number of positive samples; m�

is the total number of negative samples; �x þð Þk;j represents the

j-th feature of the k-th positive sample and �x �ð Þk;j represents

the j-th feature of the k-th negative sample. The higher the
F-score is, the more useful the corresponding feature is for
the classification.

Multi-input hybrid neural network
The model architecture consisted of a multi-channel CNN, a
capsule network and a BiGRU network. Each of these three
networks has, respectively, been shown to be effective in
object detection (Li et al., 2018), protein post-translational
modification site prediction (Wang et al., 2019) and social
bots detection (Wu et al., 2020). The structure of the multi-
input hybrid neural network is shown in Fig. 2.

Multi-channel CNN
The input of the multi-input hybrid neural network is the one-
hot encoding, sequence features and KNFP, respectively. For
each type of features, we applied 32 convolution filters and
performed batch normalization to readjust the data
distribution. The input of a batch in the neural network is
X ¼ x1; x2; � � � ; xn½ �, where xi represents a sample and n is
the batch size.

The mean value of elements in each batch is obtained by:

lB ¼
1
n

Xn
i¼1

xi (4)

Then, the variance of a batch is calculated by

r2B ¼
1
n

Xn
i¼1

xi � lBð Þ2 (5)

This allows us to normalize each element:

x0i ¼
xi � lBffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ e

p (6)

The final output of the network is given by

yi ¼ ci � x0i þ bi (7)

where e is a small positive number used to prevent the
denominator from being 0.

Finally, we merge three outputs using the Swish
activation function r, which is defined as follows:

r xð Þ ¼ 1= 1þ exp �xð Þð Þ (8)

Because of the limited size of our datasets, we add a 1 × 1
multi-channel CNN to enhance representational capabilities
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of the model. The 1 × 1 convolution is used to maintain the
size of the feature map and integrate the information by
linearly weighting the input feature map of each channel.
With additional layers of such 1 × 1 convolution, the final
extracted features would become more concise.

Capsule network
The capsule network (CapsNet) was proposed by Sabour et
al. (2017) and applied in stance detection (Zhao and Yang,
2020), image recognition (Qian et al., 2020) and automated
classification (Mobiny et al., 2019). Since the capsule
network collects location information, it can learn a good
representation from a small amount of data. We use the
capsule network and focus on the hierarchical
relationship of local features. The output of the multi-
channel CNN is adopted as the input vector of the
capsule network. We make an affine transformation of the
input vector as follows:

bujji ¼Wijui; (9)

where Wij is the weight matrix that needs to be trained and uI
is the input vector of the capsule neural network.

Next, the weighted sum is applied to all the prediction
vectors as follows:

sj ¼
X
i

cijbujji; (10)

where cij is the coupling coefficient in the dynamic routing
process.

Finally, we obtain output vectors through a non-linear
activation function as follows:

vj ¼
sj

�� ��2
1þ sj

�� ��2
sj
sj

�� �� : (11)

BiGRU network
The third segment of this model is the BiGRU network,
which helps to extract deep-level features of sequences.
The current hidden layer state of the BiGRU is determined
by three factors: the current input xt, the output of the

forward hidden layer state at time-step (t–1) ht�1
��!

and the

output of the reverse hidden layer state ht�1
 ��

. BiGRU can
be regarded as two GRUs, so the state of hidden layer ht at
time-step t can be obtained by the weighted sum of the

forward hidden layer state ht�1
��!

and reverse hidden layer

state ht�1
 ��

:

ht
!¼ GRU xt; ht�1

��!� �
(12)

ht
 ¼ GRUðxt; ht�1 ��Þ (13)

ht ¼ wt � ht!þ vt � h t þ bt; (14)

where GRUðÞ represents a nonlinear transformation of the
input word vector; wt and vt are the weighed matrices; and
bt is the bias term.

Parameter setting
Considering the number of datasets and the precision of the
model, three feature maps were obtained from batch
normalization and 1D convolution with 32 filters (kernel
size = 3). The multi-channel CNN contained three 1 × 1
convolution layers and took the Swish as activation
function. Considering time cost, we only employed one
capsule layer with 14 num_capsule (dim_capsule = 41,
routings = 3). The BiGRU had 32 hidden units followed by
a fully connected layer and used the ReLU activation
function. We also used dropout with a keep probability of
0.3 to prevent the model from over fitting. For stochastic
gradient descent, we selected the Adam optimization
algorithm. The entire program was written in Python 3.6.

Performance assessment
To evaluate the performance of our prediction model, we used
four measurements including accuracy (Acc), sensitivity (Sn),
specificity (Sp), and Matthew’s correlation coefficient (MCC)
on 5-fold cross-validation and independent dataset tests. The
formulas are provided as follows:

Sp ¼ TN
TNþFP

Sn ¼ TP
FNþTP

Acc ¼ TPþTN
TPþTNþFNþTP

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ FPþTNð Þ TPþFPð Þ FNþTNð Þ

p

8>>><
>>>:

(15)

where TP, TN, FP, and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively.

Results

We observed a deviation in the process of 5-fold cross-
validation test (Table S1), probably due to the limited
number of experimentally verified samples. A general
strategy to solve the problem of insufficient samples is to
construct an ensemble prediction model. On this purpose,

FIGURE 2. The structure of the multi-input hybrid neural network.
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we randomly divided the positive and negative training datasets
into five mutually exclusive parts of similar size. And then, we
selected the combination of four parts as a new training dataset,
while the remaining one part was adopted as validation test
dataset to train and optimize the three-layer hybrid neural
network at each time. Thus, we got five sub models which
were then integrated into a novel ensemble prediction model
based on a majority voting strategy.

In order to verify the effectiveness of the ensemble model,
we compared it with two previous prediction methods: im6A-
TS-CNN and iRNA-m6A. The same training and
independent datasets were used for our model, im6A-TS-
CNN and iRNA-m6A; therefore, both 5-fold cross-
validation and independent test could be used to evaluate
these methods objectively. There was a total of 132 results
from 11 datasets involving four indicators (Sn, Sp, Acc,
MCC), among which our model achieved superior
predictive performance as measured by average MCC and
Acc. Specifically, on the 5-fold cross validation, for Homo
sapiens, our model gave MCC = 0.581, vs. 0.550 for the
second-placed im6A-TS-CNN; for Musmusculus, our model
gave MCC = 0.558 vs. 0.517 for the second-placed im6A-
TS-CNN; for Rattusnorvegicus, our model reached MCC =
0.626 vs. 0.600 for the second-placed im6A-TS-CNN. On
the independent dataset, for Homo sapiens, our model
showed MCC = 0.572 vs. 0.547 for the second-placed im6A-
TS-CNN; for Musmusculus, our model gave MCC = 0.546
vs. 0.525 for the second-placed im6A-TS-CNN; for
Rattusnorvegicus, our model reached MCC = 0.617 vs. 0.604
for the second-placed im6A-TS-CNN.

To observe the comparison results intuitively, we showed
MCC values of these three models in Figs. 3 and 4. Moreover,
the comparison results measured with other indicators are
provided in Tables S2 and S3.

Discussion

Effectiveness of feature selection
If too many features are extracted, the generalizability of the
model will be weakened. Thus it is important to determine
the appropriate step size for feature selection. As the
dimension of the input matrix was 41 × N, we chose the
step size as 41 and evaluated the performance of our model
with feature matrices of different dimensions (41 × N,
N 2 5; 6; 7; � � � ; 24; 25ð Þ) on 5-fold cross-validation tests
successively. To reduce the deviation caused by the

fluctuation of the neural network, we ran each test three
times for the 11 datasets from the brain, liver, kidney, heart,
and testis of Homo sapiens, Musmusculus, and
Rattusnorvegicus. The optimal feature subset was finalized
according to the average accuracy. The detailed feature
selection results are shown in Fig. 5. As should be noticed,
dimensions of optimal features were various for different
datasets; their corresponding dimensions are listed in Table 2.
These results indicate that it is necessary to establish a
specialized model for each tissue type in each species.

Parameter selection
Generally, there are two ways to select parameters, i.e.,
empirical choice and Bayesian optimization. With Homo
sapiens as an example, we tried both methods to find the
most suitable parameters. The initial parameters were set
based on a previous work to compare the prediction
results roughly. Then, if the prediction model was under
fitting, we attempted to add more convolution kernels and
neurons; otherwise if the prediction model was over
fitting, we attempted to reduce the number of convolution
kernels and neurons. In addition, batch normalization,
dropout, and regularization were introduced to avoid over
fitting during the optimizing process. Alternatively,
Bayesian optimization (Snoek et al., 2012) was used to
tune the key parameters including batch size, dropout
rate, filter1, filter2, pool_size and etc. Finally, the optimal
parameters wereselected according to the AUC value. The
Baysian optimization of parameters in models for Homo
sapiens and corresponding AUC values are provided in
Table S4 and Fig. 6A. We compared the best results
obtained by the two methods and concluded the result
given by empirical adjustment parameters showed more
advantages (Fig. 6B). Thus, for Musmusculus and
Rattusnorvegicus, we used the empirical method to
determine the parameters in neural network.

Comparison of different classifiers
To verify the effectiveness of hybrid neural network, we
compared its prediction performance with several traditional
classification algorithms including logistic regression,
decision tree, support vector machine (SVM), random forest
(RF), gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost) and light gradient boosting
machine (LightGBM) for Homo sapiens. The average
accuracies of 5-fold cross-validation tests obtained by the

FIGURE 3. Comparison with MCC
measure of different models on 5-
fold cross validation test.
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seven algorithms are listed in Table 3. On three datasets of
Homo sapiens, our model achieves the mean accuracy of
74.29%, 1.28% higher than the second best algorithm,

LightGBM, which demonstrates that hybrid neural network
is capable of improving the recognition performance for
m6A sites of various tissues in different species.

FIGURE 4. Comparison with MCC
measure of different models on
independent tests.

FIGURE 5. The accuracy comparison of different feature dimension on 11 datasets of three species.
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Visualization of feature representations
To observe the effectiveness of extracted features intuitively, we
applied t-distributed stochastic neighbor embedding (t-SNE) to
visualize the feature representations. We took the brain tissue
as an example and demonstrated the features after mapped
through the concatenate layer and the attention layer. Each dot
in Fig. 6C represents a sample, with purple dots representing
m6A sites and yellow dots representing non-m6A sites. The
overlapping of the two sample types on the left side of Fig. 6C

indicates that it is difficult to distinguish m6A sites from
non-m6A sites. However, the features were relatively
separated, as shown on the right side of Fig. 6C, after selected
and processed by the deep hierarchical network, which was,
multi-channel CNN, capsule network and BiGRU network
with the self-attention mechanism. The t-SNE plots indicated
that the hybrid deep hierarchical networks could learn
sequence motif information from selected features. But there
are still some overlaps between the two types, indicating that
our model is not completely specific for all m6A sites. This
fact is consistent with the need to establish specialized models
for each tissue type.

TABLE 2

The dimensions of optimal features and prediction accuracy for
different datasets

Datasets Feature Dimension Acc

h_b 41 × 19 73.91%

h_k 41 × 5 80.76%

h_l 41 × 5 81.49%

m_b 41 × 5 79.86%

m_h 41 × 12 75.87%

m_k 41 × 12 81.87%

m_l 41 × 11 73.43%

m_t 41 × 15 77.23%

r_b 41 × 15 78.23%

r_k 41 × 13 83.25%

r_l 41 × 7 82.43%

FIGURE 6. (continued)

TABLE 3

Comparison of different classifiers for identifying m6A sites on
5-fold cross-validation

Method h_b h_k h_l

Support Vector Machines 71.82 79.03 79.90

Decision Tree 62.75 71.29 71.24

Logistic Regression 65.81 71.33 71.91

Random forest 70.92 78.49 79.65

GBDT 73.55 80.31 80.77

XGBoost 72.13 79.14 80.16

LightGBM 73.01 80.00 80.68

Our model 74.29 80.75 81.80
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Conclusion

In this work, we introduced a novel ensemble computational
approach to identify m6A sites, based on three hybrid
neural networks. For different tissues of different species, we
selected different optimized feature subsets from 4933
features as multi-input for the deep hybrid neural networks.
Our predication model consisted of a multi-channel CNN, a
capsule network and a BiGRU network with the self-
attention mechanism, and was evaluated on 11 datasets. To
solve the deviation caused by the relatively small number of

experimentally verified samples, we constructed an ensemble
model through integrating five sub-classifiers based on
different training datasets. To estimate the performance of
this model, comparisons were made on 11 datasets by 5-fold
cross validation and independent test datasets. Results of all
tests revealed that when measured with Acc and MCC, our
model is superior to two previous tools, iRNA-m6A and
im6A-TS-CNN. However, the specificity of our model is not
satisfactory on h_b, h_k, m_h, m_k and r_b datasets. In
future work, we will extract more types of information and
further optimize these models.

FIGURE 6. (A) Boxplot comparison results among the Baysian optimization of parameters of the models forHomo sapiensmeasurements. (B)
The comparison results of empirical choice and Bayesian optimization. (C) The t-SNE comparison of different stage for brain tissue.
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Supplementary Tables

TABLE S1

The detailed results on 5-fold and independent tests of different datasets

Data Time Method Sn (%) Sp (%) MCC Acc (%)

h_b 1 5-fold 80.37 67.73 49.08 74.00

independent 81.78 66.18 48.55 73.98

2 5-fold 82.03 65.77 48.48 73.85

independent 82.99 64.68 48.50 73.84

3 5-fold 80.00 68.48 48.94 74.29

independent 81.82 67.42 49.76 74.62

4 5-fold 83.61 64.19 48.79 73.93

independent 85.12 63.18 49.51 74.15

5 5-fold 79.08 68.73 48.08 73.91

independent 80.30 68.09 48.76 74.20

h_k 1 5-fold 82.69 78.79 61.56 80.73

independent 80.89 79.23 60.12 80.06

2 5-fold 82.05 79.00 61.18 80.54

independent 80.52 79.27 59.79 79.89

3 5-fold 83.59 77.90 61.62 80.75

independent 82.33 77.35 59.75 79.84

4 5-fold 84.39 77.07 61.67 80.71

independent 83.21 76.80 60.13 80.00

5 5-fold 83.25 77.89 61.25 80.59

independent 82.05 77.78 59.88 79.91

h_l 1 5-fold 84.85 78.74 63.75 81.80

independent 84.13 77.79 62.05 80.96

2 5-fold 84.79 77.79 62.85 81.36

independent 84.28 78.06 62.46 81.17

3 5-fold 84.26 78.50 62.92 81.42

independent 83.79 78.82 62.68 81.30

4 5-fold 83.77 79.36 63.22 81.61

independent 83.14 79.23 62.42 81.19

5 5-fold 85.02 77.76 81.36 81.36

independent 84.05 77.83 62.00 80.94

m_b 1 5-fold 83.09 76.51 59.75 79.80

independent 83.48 75.90 59.55 79.69

(Continued)
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Table S1 (continued).

Data Time Method Sn (%) Sp (%) MCC Acc (%)

2 5-fold 82.65 77.06 59.91 79.91

independent 82.92 75.85 58.91 79.38

3 5-fold 83.81 75.58 59.64 79.69

independent 84.27 74.64 59.19 79.46

4 5-fold 82.07 77.52 59.67 79.79

independent 82.44 76.02 58.59 79.23

5 5-fold 82.96 76.32 59.49 79.68

independent 83.48 75.90 59.55 79.69

m_h 1 5-fold 79.77 71.26 51.59 75.62

independent 80.27 69.73 50.28 75.00

2 5-fold 81.56 70.64 52.53 76.10

independent 80.36 70.32 50.94 75.34

3 5-fold 79.82 71.97 52.23 75.90

independent 79.27 71.36 50.80 75.32

4 5-fold 79.53 72.24 51.96 75.92

independent 78.27 72.64 50.99 75.45

5 5-fold 79.29 72.36 51.89 75.87

independent 78.09 70.82 49.04 74.45

m_k 1 5-fold 83.41 79.94 63.40 81.66

independent 83.05 79.83 62.91 81.44

2 5-fold 67.97 78.93 63.61 81.74

independent 84.19 78.62 62.90 81.40

3 5-fold 84.26 79.19 63.56 81.72

independent 83.63 78.64 62.35 81.14

4 5-fold 83.57 79.45 63.11 81.51

independent 83.91 78.34 62.34 81.12

5 5-fold 83.97 78.96 63.05 81.47

independent 83.76 78.52 62.36 81.14

m_l 1 5-fold 77.35 69.45 47.18 73.37

independent 76.07 69.61 45.78 72.84

2 5-fold 77.76 69.04 47.06 73.43

independent 77.16 68.84 46.16 73.00

3 5-fold 81.37 65.03 47.28 73.25

independent 81.15 64.77 46.55 72.96

4 5-fold 76.95 70.87 47.98 73.92

independent 75.34 70.72 46.12 73.03

5 5-fold 79.39 67.63 47.36 73.48

independent 78.30 67.70 46.26 73.00

m_t 1 5-fold 83.08 70.78 54.30 76.93

independent 83.60 70.29 54.37 76.94

2 5-fold 79.98 73.97 54.15 77.01

independent 80.41 74.20 54.72 77.31

3 5-fold 82.28 72.01 54.74 77.20

independent 81.68 72.23 54.15 76.96

4 5-fold 84.01 69.92 54.63 77.02

independent 84.17 70.17 54.88 77.17

(Continued)
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Table S1 (continued).

Data Time Method Sn (%) Sp (%) MCC Acc (%)

5 5-fold 83.67 70.32 54.55 77.00

independent 84.06 70.38 54.96 77.22

r_b 1 5-fold 81.25 75.22 56.71 78.27

independent 79.71 75.29 55.05 77.50

2 5-fold 81.31 74.47 55.94 77.87

independent 79.80 74.99 54.85 77.39

3 5-fold 82.43 73.29 56.02 77.83

independent 81.28 73.37 54.83 77.33

4 5-fold 82.67 73.59 56.55 78.10

independent 82.18 72.91 55.32 77.54

5 5-fold 80.36 75.99 56.42 78.17

independent 79.20 75.71 54.95 77.46

r_k 1 5-fold 86.19 79.59 65.96 82.89

independent 86.98 79.08 66.26 83.03

2 5-fold 84.91 80.87 65.83 82.89

independent 85.58 80.91 66.56 83.25

3 5-fold 85.13 80.47 65.78 82.84

independent 86.54 80.42 67.08 83.48

4 5-fold 84.78 80.82 65.84 82.84

independent 85.81 80.54 66.44 83.17

5 5-fold 83.53 82.47 66.02 83.00

independent 84.82 82.08 66.92 83.45

r_l 1 5-fold 83.57 80.74 64.32 82.12

independent 84.96 78.49 63.58 81.73

2 5-fold 83.69 80.93 64.72 82.26

independent 85.24 77.87 63.28 81.56

3 5-fold 83.43 81.64 65.08 82.46

independent 84.17 78.83 63.09 81.50

4 5-fold 83.58 81.02 64.69 82.29

independent 84.62 79.17 63.89 81.90

5 5-fold 83.66 80.83 64.61 82.29

independent 84.85 78.60 63.57 81.73

TABLE S2

Comparison of our model with im6A-TS-CNN and iRNA-m6A on 5-fold cross-validation test

Species Methods Sn (%) Sp (%) Acc (%) MCC

h_b iRNA-m6A 74.79 66.19 71.26 0.41

im6A-TS-CNN 75.35 69.71 72.53 0.4523

our model 80.00 68.48 74.29 0.4894

h_k iRNA-m6A 80.85 76.34 78.99 0.57

im6A-TS-CNN 81.70 78.25 79.98 0.6006

our model 83.59 77.90 80.75 0.6162

h_l iRNA-m6A 81.32 78.13 80.13 0.59

im6A-TS-CNN 80.18 79.69 79.94 0.5992

our model 84.85 78.74 81.80 0.6375

(Continued)
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Table S2 (continued).

Species Methods Sn (%) Sp (%) Acc (%) MCC

m_b iRNA-m6A 79.32 76.90 78.75 0.58

im6A-TS-CNN 81.50 75.85 78.67 0.5749

our model 82.65 77.06 79.91 0.5991

m_h iRNA-m6A 75.24 68.97 72.76 0.44

im6A-TS-CNN 78.37 67.60 72.99 0.4633

our model 81.56 70.64 76.10 0.5253

m_k iRNA-m6A 82.60 77.31 79.98 0.60

im6A-TS-CNN 79.91 81.00 80.46 0.6094

our model 84.10 78.93 81.74 0.6361

m_l iRNA-m6A 74.93 65.59 70.59 0.41

im6A-TS-CNN 72.39 70.24 71.32 0.4288

our model 76.95 70.87 73.92 0.4798

m_t iRNA-m6A 78.14 70.02 74.40 0.48

im6A-TS-CNN 75.21 75.61 75.41 0.5090

our model 82.28 72.00 77.20 0.5474

r_b iRNA-m6A 77.00 73.47 75.96 0.50

im6A-TS-CNN 79.04 74.23 76.64 0.5379

our model 81.25 75.22 78.27 0.5671

r_k iRNA-m6A 82.46 80.05 81.78 0.63

im6A-TS-CNN 84.15 80.77 82.46 0.6500

our model 83.53 82.47 83.00 0.6602

r_l iRNA-m6A 83.09 76.33 80.90 0.60

im6A-TS-CNN 81.56 79.63 80.59 0.6126

our model 83.43 81.64 82.46 0.6508

TABLE S3

Comparison of our model with im6A-TS-CNN and iRNA-m6A on independent test

Species Methods Sn (%) Sp (%) Acc (%) MCC

h_b iRNA-m6A 69.50 72.98 71.10 0.42

im6A-TS-CNN 75.17 70.20 72.69 0.4543

our model 81.82 67.42 74.62 0.4976

h_k iRNA-m6A 77.13 78.42 77.76 0.56

im6A-TS-CNN 79.95 78.53 79.24 0.5848

our model 82.33 77.35 79.84 0.5975

h_l iRNA-m6A 78.19 79.87 79.01 0.58

im6A-TS-CNN 84.81 75.02 79.92 0.6012

our model 84.13 77.79 80.96 0.6205

m_b iRNA-m6A 77.20 79.41 78.26 0.57

im6A-TS-CNN 86.22 70.74 78.48 0.5765

our model 82.92 75.85 79.38 0.5891

m_h iRNA-m6A 70.52 72.13 71.30 0.43

im6A-TS-CNN 75.82 71.36 73.59 0.4723

our model 80.36 70.32 75.34 0.5094

m_k iRNA-m6A 78.37 80.32 79.31 0.59

im6A-TS-CNN 80.52 81.00 80.76 0.6151

our model 84.19 78.62 81.40 0.6290

(Continued)
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Table S3 (continued).

Species Methods Sn (%) Sp (%) Acc (%) MCC

m_l iRNA-m6A 67.82 69.86 68.79 0.38

im6A-TS-CNN 75.56 67.58 71.57 0.4328

our model 75.34 70.72 73.03 0.4611

m_t iRNA-m6A 72.19 75.08 73.54 0.47

im6A-TS-CNN 83.45 68.87 76.16 0.5288

our model 81.68 72.23 76.96 0.5415

r_b iRNA-m6A 73.93 76.48 75.14 0.50

im6A-TS-CNN 78.05 75.84 76.95 0.5391

our model 79.71 75.29 77.50 0.5505

r_k iRNA-m6A 80.18 82.77 81.42 0.63

im6A-TS-CNN 84.85 80.59 82.72 0.6550

our model 84.82 82.08 83.45 0.6692

r_l iRNA-m6A 77.74 82.31 79.85 0.60

im6A-TS-CNN 84.51 75.94 80.22 0.6067

our model 84.17 78.83 81.50 0.6309

TABLE S4

The Baysian optimization of parameters of the models for Homo sapiens and their corresponding AUC values

Site Iter AUC BatchSize Dropout Filter1 Filter2 Pool_size

h_b 1 0.8179 58.26 0.4733 36.93 18.32 4.421

2 0.8138 28.18 0.3217 49.46 59.49 1.396

3 0.8151 59.94 0.4248 53.48 52.05 1.087

4 0.8147 25.95 0.262 35.09 23.58 3.233

5 0.8083 37.67 0.7697 45.2 54.46 4.385

6 0.8148 59.45 0.404 40.12 16.06 1.833

7 0.8281 54.73 0.1725 35.69 20.81 5

8 0.812 54.37 0.3625 35.45 23.15 4.707

9 0.7931 57.46 0.8763 37.05 18.55 3.137

10 0.8198 41.53 0.3397 18.51 57.52 3.572

11 0.8185 58.46 0.5256 36.27 18.39 4.917

12 0.8166 42.22 0.6375 19 55.76 3.65

13 0.8099 40.6 0.1195 19.13 57.7 4.218

14 0.7949 42.41 0.8663 18.45 58.83 3.549

15 0.8108 37.71 0.1253 60.34 20.41 1.787

16 0.8083 26.62 0.7123 35.1 23.44 2.947

17 0.7872 58.62 0.8791 36.55 18.45 4.474

18 0.8067 47.71 0.7671 46.4 62.58 3.441

19 0.8004 56.99 0.2105 32.53 34.94 1.373

20 0.815 31.8 0.5697 42.38 37.04 4.057

21 0.8191 33.78 0.5886 20.38 35.46 1.81

22 0.8116 29.97 0.7187 34.7 44.49 4.749

23 0.8158 61.54 0.6018 37.22 17.1 3.574

(Continued)

TISSUE SPECIFIC PREDICTION OF N6-METHYLADENINE SITES 1119



Table S4 (continued).

Site Iter AUC BatchSize Dropout Filter1 Filter2 Pool_size

24 0.8104 39.34 0.1123 18.12 26.62 4.678

25 0.808 51.52 0.7274 21.13 35.18 1.646

26 0.8146 30.16 0.7064 28.67 28.26 3.524

27 0.807 20.28 0.6955 63.51 60.14 1.745

28 0.8017 54.06 0.1049 20.94 20.32 2.206

29 0.7925 47.68 0.8692 48.22 43.16 4.589

30 0.7836 52.37 0.8856 26.76 51.14 4.636

h_k 1 0.8865 27.62 0.1822 63.49 57.64 1.022

2 0.8862 17.25 0.8519 19.04 18.11 4.207

3 0.8852 30.91 0.8505 55.14 60.01 1.146

4 0.8957 24.91 0.4471 55.84 58.81 3.029

5 0.8892 62.59 0.6936 35.71 58.66 1.323

6 0.8892 36.86 0.8033 53.87 32.8 1.581

7 0.8959 29.23 0.4374 16.45 27.14 4.664

8 0.8877 25.2 0.8051 61.32 46.61 2.356

9 0.8898 21.21 0.1127 62.65 32.66 4.801

10 0.8932 26.14 0.2924 55.64 59.26 3.719

11 0.8881 28.12 0.7712 16.7 26.53 2.585

12 0.8935 29.44 0.6128 17.31 26.67 4.812

13 0.8901 24.43 0.2625 55.98 58.03 4.167

14 0.8927 23.66 0.6515 56.06 59.04 2.588

15 0.8923 31 0.7073 16.62 25.86 4.236

16 0.8917 25.56 0.1618 55.95 60.06 2.138

17 0.8923 25.66 0.7022 55.78 57.91 2.251

18 0.8805 24.92 0.9 54.85 59.18 3.011

19 0.8958 59.21 0.5495 16.44 31.61 4.712

20 0.8887 53.69 0.2379 52.76 47.04 1.124

21 0.8937 44.33 0.3335 33.72 46.8 1.279

22 0.8934 51.61 0.5804 50.05 62.51 4.767

23 0.8877 19.55 0.8194 34.65 57.58 4.131

24 0.8924 18.18 0.2217 18.58 33.29 3.279

25 0.8866 26.36 0.8189 55.52 59.83 4.239

26 0.8922 53.93 0.6832 27.44 45.65 2.076

27 0.8966 63.69 0.2681 32.11 57.99 3.167

28 0.8817 53.69 0.8958 36.72 24.32 1.576

29 0.8883 58.26 0.7604 32.55 48.2 2.216

30 0.8958 38.95 0.3098 31.45 25.63 3.056

h_l 1 0.8916 53.6 0.311 31.46 22.42 2.128

2 0.8839 17.65 0.2256 17.22 56.2 2.226

3 0.8885 60.54 0.304 51.54 60.88 4.216

4 0.8955 52.81 0.4069 30 43.98 2.922

5 0.8864 34.16 0.2884 25.94 54.17 1.926

6 0.8938 64 0.5 24.79 40.7 5

7 0.8952 63.53 0.1774 23.88 39.39 4.683

8 0.8914 54.86 0.1 21.84 36.41 1.494

9 0.8889 57.41 0.1 31.49 37.73 4.523

10 0.8953 55.69 0.3392 26.53 46.24 2.447

(Continued)
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Table S4 (continued).

Site Iter AUC BatchSize Dropout Filter1 Filter2 Pool_size

11 0.8825 51.8 0.1 30.6 50.1 1

12 0.8939 54.38 0.5 26.92 42.96 3.386

13 0.8878 57.71 0.109 30.3 44.69 3.078

14 0.8951 51.12 0.2503 26.74 44.41 4.487

15 0.8948 50.52 0.5 28.24 42.28 1.554

16 0.8915 53.2 0.4991 22.75 45.03 1.885

17 0.8963 50.22 0.5 30.3 42.07 5

18 0.8926 63.98 0.4724 22.37 36.93 1.27

19 0.8932 48.51 0.3468 32.98 39.46 1.988

20 0.8958 61.73 0.3842 19.5 39.64 4.381

21 0.8881 60.1 0.1462 20.13 44.58 3.484

22 0.8929 64 0.1 18.74 36.75 5

23 0.8951 46.45 0.1 28.38 42.1 5

24 0.897 45.1 0.4244 33.07 43.02 4.536

25 0.8958 41.83 0.265 33.43 41.34 4.753

26 0.8931 43.31 0.1812 37.88 43.07 4.694

27 0.8972 42.26 0.5 30.96 45.29 5

28 0.8935 43.09 0.3186 30.57 43.63 2.289

29 0.8903 42.32 0.2771 34.9 47.72 4.69

30 0.896 38.85 0.5 29.44 43.49 5
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