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Abstract: The link of the metazoan nucleus to the actin cytoskeleton is highly important for actin polymerization and

migration of multiple cell types as well as for mechanotransduction and even affects the cellular transcriptome. Several

mechanisms of organization of actin filaments next to the nuclear envelope have been identified. Among these

mechanisms the most studied one is the Linker of nucleoskeleton and cytoskeleton (LINC) complex-dependent

perinuclear actin organization. However, recently additional mechanisms have been identified: an Actin-related protein-2/3

(Arp2/3)-dependent perinuclear actin polymerization during migration of dendritic cells and a perinuclear actin rim that is

formed in response to external force application or migration cues. In parallel, there are also reports on cancer cells that

migrate in a LINC complex independent manner and on cancers with reduced expression of the LINC complex

components. Thus, suggesting that LINC complex independent migration may be associated with tumour formation.

Abbreviations
2/3D: Two/three-dimensional
MRTF-A: Myocardin related
ARP2/3: Actin-related protein-2/3 transcription factor-A
CaAR: Calcium-mediated actin reset
NPC: Nuclear pore complex
INF2: Inverted formin-2
ONM: Outer nuclear membrane
INM: Inner nuclear membrane
PNS: Perinuclear space
KASH: Klarsicht, ANC-1, Syne Homology domain
SUN: Sad1p, UNC-84
LINC: Linker of nucleoskeleton and cytoskeleton
TAN: Transmembrane actin-associated nuclear

Introduction

The nuclear envelope separates the eukaryotic nucleus from the
rest of the cell. Apart from generating a physical barrier, the
nuclear envelope is actively involved in several processes
including organization of nuclear architecture, transcriptional
control, and migration of both the nucleus and the cell. The

nuclear envelope is composed of the Nuclear Pore Complexes
(NPCs) and the nuclear membrane, encompassing an inner
nuclear membrane (INM, facing the inside of the nucleus) and
an outer nuclear membrane (ONM, facing the cytoplasm)
(Hetzer, 2010; Wilson and Berk, 2010). The ONM can interact
with various cytoskeletal elements, including actin filaments,
while in metazoans the INM is connected to a filamentous
network termed the nuclear lamina (de Leeuw et al., 2018;
Gruenbaum and Medalia, 2015). The nuclear lamina is
composed of lamins, which are type V intermediate filament
proteins classified into A-type and B-type lamins. They are key
components for determining the structure and the
mechanostability of the nucleus, but they have many other
roles, for example in chromatin organization and DNA damage
repair (Donnaloja et al., 2020; Gruenbaum and Foisner, 2015;
Ho and Lammerding, 2012; Patil and Sengupta, 2021).

The nuclear envelope is connected to the various
cytoskeletal networks in the cytoplasm including actin
filaments. Actin association with the nuclear envelope is
important for correct positioning of the nucleus in polarized
cells, cell migration, mechanotransduction and transcriptional
control (Davidson and Cadot, 2021).

The LINC Complex

The major known nuclear envelope component that facilitates
interaction between the nucleus and the cytoskeleton is the
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Linker of nucleoskeleton and cytoskeleton (LINC) complex.
This complex is formed by Sad1p/UNC-84 (SUN) domain
proteins and Klarsicht, ANC-1, Syne Homology (KASH)
domain proteins, which cross the INM and the ONM,
respectively. SUN domain proteins were shown to form
trimers while their C-termini interact with the C-termini
of three KASH domain proteins to form stable hexamers.
These hexamers may further interact with each other to
generate higher order complexes (Hao and Starr, 2019;
Jahed et al., 2021). The N-terminus of the SUN domain
proteins extends into the nucleus to interact with nuclear
factors such as the nuclear lamina, nuclear membrane
proteins and chromosomes. The N-terminus of the KASH
domain proteins extends into the cytoplasm to interact
with various cytoskeletal elements including actin filaments
and microtubule motor proteins (Fig. 1) (Jahed and
Mofrad, 2018; Rothballer and Kutay, 2013; Stewart-
Hutchinson et al., 2008).

The LINC complex was shown to be crucial for linking
several cytoplasmic actin structures to the nucleus including
the actin cap and the transmembrane actin-associated
nuclear (TAN) lines (Davidson and Cadot, 2021). The actin
cap is a structure composed of thick and highly contractile
bundles of actomyosin filaments loaded on top of the
nucleus in polarized primary cells that functions in
maintaining nuclear shape and in pulling the nucleus
towards the front of the cell during migration (Khatau et al.,
2009; Kim et al., 2014; Maninova et al., 2017). TAN lines
are linear arrays of nuclear envelope membrane proteins
composed of the LINC proteins Nesprin-2G and SUN2,
which are formed on the dorsal surface of the nuclear
envelope. TAN lines are formed along actin cables that
move towards the rear end of the cell. The link of the actin
cables to the nucleus by the LINC complex and lamin A
results in rearward nuclear movement during early stages of
cell migration to polarize the cell (Kutscheidt et al., 2014;
Luxton et al., 2010).

As the major linker of the cytoskeleton to the nucleus, the
LINC complex was found to have a key role in multiple

processes including mechanotransduction, chromosome
organization, DNA repair, cell migration and cytoskeleton
organization (Bone and Starr, 2016; Hao and Starr, 2019;
Hieda, 2019; Jahed and Mofrad, 2018; Khilan et al., 2021;
Osorio and Gomes, 2014; Wong et al., 2021). However, in
recent years it appears that in some cases actin filaments
may accumulate next to the nucleus by LINC complex
independent mechanisms.

Perinuclear Actin Independent of the LINC Complex

One type of a LINC complex independent perinuclear actin
structure is a transient actin polymerization around the
nucleus by the Arp2/3 complex. This phenomenon was
found in mouse dendritic cells migrating through small
constraints in both in vitro and in vivo systems (Fig. 1).
Knockdown of SUN1 in SUN2 knockout cells did not
interfere with this perinuclear actin accumulation, whereas
knockdown of lamin A did lead to reduced accumulation of
actin around the nucleus (Thiam et al., 2016). Notably,
lamin A is known to associate with increased nuclear
rigidity (Goldberg et al., 2008; Harada et al., 2014;
Lammerding et al., 2006; Stephens et al., 2017; Swift et al.,
2013; Zhang et al., 2019). In addition, the observation that
internalized large beads accumulated similar actin filaments
around them during confined cell migration (Thiam et al.,
2016) suggests that the trigger for actin polymerization
is just the relative high stiffness of the nucleus. It was
shown that these perinuclear actin filaments deform the
nucleus to enable its passage through small constraints,
though it is still not clear how Arp2/3 is activated
(Thiam et al., 2016).

Another perinuclear actin structure that is LINC-
independent is the perinuclear actin rim (Fracchia et al.,
2020; Shao et al., 2015a; Shao et al., 2015b) that was also
termed Calcium-mediated actin reset (CaAR) (Wales et al.,
2016). A transient formation of perinuclear actin filaments
around the cytosolic side of the nuclear envelope of cells in
two-dimensional (2D) culture was found in several cell

FIGURE 1.Major mechanisms of perinuclear actin organization. The nucleus is separated from the cytoplasm by the nuclear envelope, which
is composed by an outer nuclear membrane (ONM) and an inner nuclear membrane (INM) that are separated by the perinuclear space (PNS).
The INM is connected to the nuclear lamina that is generated by A and B-type lamins. One mechanism to link actin filaments to the nucleus is
by SUN domain and KASH domain proteins that interact inside the PNS to form the Linker of nucleoskeleton and cytoskeleton (LINC)
complex. Perinuclear actin filaments can be generated by Inverted formin 2 (INF-2) to form a perinuclear actin rim. Perinuclear actin rim
was also found to be sensitive to increased lamin B1 levels. In dendritic cells that pass through small constraints Actin-related protein-2/3
(Arp2/3) promotes the formation of perinuclear actin filaments.
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types including mouse fibroblasts, breast cancer cells and
kidney epithelial cells (Shao et al., 2015a; Shao et al., 2015b;
Wales et al., 2016). This actin structure was found to form
for a period of 1-5 minutes in response to application of
external force that led to calcium ions influx, which in turn
activated the actin polymerization promoting factor Inverted
formin 2 (INF-2) (Fig. 1) (Shao et al., 2015b; Wales et al.,
2016). In mouse fibroblasts inhibition of the LINC complex
by overexpression of a dominant negative KASH domain did
not interfere with the perinuclear actin rim formation (Shao
et al., 2015b). Overexpression of the KASH domain of either
Nesprin 1 or Nesprin 2 saturates the endogenous SUN
domain proteins, thus it interferes with the formation of the
endogenous LINC complex (Lombardi et al., 2011; Stewart-
Hutchinson et al., 2008).

We were able to detect a similar perinuclear actin rim in
mouse melanoma cells migrating in a 2D system or embedded
in a 3D system of collagen fibers that was also LINC complex-
independent but had a much longer lifetime, on a time scale of
hours. This stable perinuclear actin rim was induced by
migration cues and was sensitive to elevated levels of lamin
B1, while it was not affected by either higher levels of lamin
A or inhibition of the LINC complex by overexpression of a
dominant negative KASH domain (Fig. 1) (Fracchia et al.,
2020). The ability of lamin B1 that is localized at the inner
side of the nuclear envelope, to affect LINC complex
independent actin filaments at the outer side of the nuclear
envelope suggests an inside-out signal transduction
mechanism. It may be based on force transmission due to
altered nuclear envelope stiffness upon changes in lamin B1
levels. Alternatively, it may indicate the existence of a
protein-based physical linkage between the nuclear lamina
and perinuclear actin filaments that is not based on KASH
domain and SUN domain proteins.

The role of the perinuclear actin rim is not clear. The
transient perinuclear actin rim was suggested to promote
cell migration by supporting changes in transcription that
occurred due to translocation of the transcription
coactivator Myocardin related transcription factor-A
(MRTF-A) from the cytoplasm to the nucleus (Wales et al.,
2016). On the other hand, we found that the stable
perinuclear actin rim in melanoma cells reduced the cellular
migration rate (Fracchia et al., 2020). Intensive nuclear
envelope stretching during cell migration can disrupt its
integrity and lead to DNA damage (Denais et al., 2016;
Raab et al., 2016). Thus, we hypothesize that the stable
perinuclear actin rim may be involved in protection of
chromatin from a mechanical damage during the migration
process by increasing the rigidity of the nuclear envelope
and limiting nuclear envelope folding.

LINC Complex Independent Cell Migration

The findings of perinuclear actin structures that are LINC
complex independent suggest that there should be cells that
migrate without the support of the LINC complex. Indeed,
migration of cells in a LINC complex independent manner
or even in a faster rate upon inhibition of the LINC
complex was reported for mouse melanoma cells (Fracchia
et al., 2020), human lung cancer cells (Lv et al., 2015) and

rat mammary adenocarcinoma cells (Sharma et al., 2021).
Still, it should be noted that there are other cancer cells that
do require the LINC complex to support their migration
(Colón-Bolea et al., 2020; Imaizumi et al., 2018; Infante et
al., 2018). Interestingly, in parallel there are accumulating
reports on down-regulation of LINC complex components
in various cancer types such as breast cancer, lung cancer,
prostate cancer and liver cancer (Cartwright and
Karakesisoglou, 2014; Lv et al., 2015; Marmé et al., 2008;
Matsumoto et al., 2015; Sharma et al., 2021; Sur-Erdem et
al., 2020; Tessema et al., 2008; Yajun et al., 2017). Taken
together, these recent data may suggest that some cancer
cells acquire alternative mechanisms that are LINC complex
independent to connect actin filaments to their nuclei or to
disconnect their nucleus from the actin network to enhance
their migration capabilities. These mechanisms are still to be
discovered.
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