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Abstract: There is currently no effective solution to the problem of poor prognosis and recurrence of HCC. The

technology of immunotherapy and prognosis of genetic material has made continuous progress in recent years. In the

study, a 5-gene signature was established for the prognosis of HCC through biological information, and the immune

infiltration of HCC patients was studied. After studied HCC patients’ immune infiltration, the paper screened the

differential target genes of miR-126-3p in HCC downloaded from TCGA database, and uses WGCNA method to

select the modular genes highly relevant to M2 macrophage. Then we use LASSO and COX regression analysis

technology to establish the 5-gene signature. The nomogram is established by combining the prognostic score and

clinical phenotype. Cibersort was empolyed to observe the immune infiltration in HCC patients. We revealed the

biological pathways of HCC-related genes through GSEA and Metascape. The bioinformatics analysis of 2495

differential target genes finally constructed a 5-gene signature with a reliable prognostic ability (CDCA8, SLC41A3,

PPM1G, TCOF1, GRPEL2). The combination of prognostic score and AJCC_Stage resulted in a more reliable

prognosis ability. At the same time, 10 immune cells that are differentially expressed in HCC patients were also

found. 8 GSEA pathways related to the prognosis were found. In the study, a reliable 5-gene signature was established

based on the differential target gene of miR-126-3p to study the immune infiltration in HCC patients. It provides help

for HCC-related prognosis research and immunotherapy.

Abbreviations
HCC: hepatocellular carcinoma
AUC: area under curve
DETGs: differentially expressed target genes
GEO: gene expression omnibus
HCC: hepatocellular carcinoma
K–M: Kaplan–Meier
LASSO: least absolute shrinkage and selection operator
OS: overall survival
ROC: receiver operating characteristic
RS: risk score
TCGA: the cancer genome atlas
WGCNA: weighted gene co-expression network analysis
GSEA: gene set enrichment analysis

Introduction

Primary hepatocellular carcinoma (HCC) and the
corresponding chronic hepatitis or liver cirrhosis are widely
regarded as precancerous lesions (Kanai et al., 1997). This
disease is the third most common cause of death from
cancer for human-beings (Pinato et al., 2020). The
occurrence and progression of HCC are related to many
factors (HBV infection, eating habits and drinking, etc.)
(Piñero et al., 2020). Because there are no nerves in the liver
tissue, most cancers have entered the advanced stage when
patients feel pain and other discomfort. Untimely diagnosis
leads to an extremely poor prognosis of patients. Owing
to the high recurrence and metastasis characteristics of
HCC, patients even lose the chance of radical treatment
(Giannini et al., 2015). Therefore, a new and reliable method
for the diagnosis and prognosis of liver cancer is urgently needed.

Carcinogenesis is a multi-step process that is caused by
changes in signal pathways triggered by multiple genes that
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transform normal cells into malignant cells (Fantini et al.,
2015). microRNAs (miRNAs) are small non-coding RNAs.
As a kind of genetic material, miRNAs affect many biological
processes of cancer by regulating genes. Studies have shown
that the interacting genes revealed by HCC-related pathways
are potential biomarkers and therapeutic targets for cancer
(Guo et al., 2020). Simultaneously, in vivo detection
technology feasibility has been improved, providing technical
support for theoretical research on prognosis using genes.
Therefore, the study of prognostic analysis of HCC human
patients through the construction of multi-gene signatures is
of great value. Studies reported hsa-miR-126-3p was
differentially expressed and the progonostic role in various
kinds of cancers (Han et al., 2020a; Nowicki et al., 2021).
However, the prognostic role remainded to be expolored in
liver cancer. Therefore, the study studied the expression of
hsa-miR-126-3p, and established a prognostic gene-signature
with the target genes of hsa-miR-126-3p.

Studies have shown that cancer development is closely linked
to the immune system, especially the tumor microenvironment in
human bodies (Han et al., 2020b). The HCC tumor immune
microenvironment involves a series of non-cancer cell types,
including normal liver cells, endothelial cells, pericytes, hepatic
stellate cells (HSCs), portal fibroblasts and differential immune
cell subgroups (Hou et al., 2020). Studies have shown that a
variety of immunotherapy programs may significantly change
the clinical outcome of HCC (Elsegood et al., 2017; Khemlina
et al., 2017). Therefore, investigating the immune infiltration of
HCC patients may be of great help to the judgment of cancer
progression and prognosis.

In the paper, hsa-miR-126-3p and its target genes in liver
cancer tissues were studied. Based on the TCGA and GEO
databases, the 5-gene signature was constructed through
WGCNA, LASSO regression analysis and other bioinformatics
methods. The nomogram and survival curve are used to verify
the 5-gene signature. Subsequently, we investigated the immune
infiltration in HCC patients through the Cibersort deconvolution
method. In this paper, the expression levels of 22 immune cells
are related to gene expression levels, and the changes in the
proportion of immune cells are analyzed. Finally, the tool GSEA
was used to enrich the genes in HCC patients, 8 pathways were
found (cell cycle, ECM–receptor interaction, herpes simplex virus
1 infection, p53 signaling pathway, inositol phosphate
metabolism, microRNAs in cancer, phosphatidylinositol signaling
system, renal cell carcinoma), GO and KEGG pathways related
to HCC were found. The paper links the differential expression
of genes, the level of immune infiltration, survival time, and
clinical phenotypes in HCC patients, and provides help for HCC
prognosis study and immunotherapy.

Materials and Methods

Data preparation
Twelve databases based on miRwalk2.0 (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk2) identified potential target
genes of miRNA-126-3p for subsequent research.

Both the transcriptome information expression matrix
and clinical information matrix of HCC patients are
downloaded from the TCGA database (https://cancergenome.
nih.gov). The transcriptome expression matrix is composed

of the expression levels of MiRNAs and genes in tissue samples
and normal samples. The clinical information matrix is
composed of visit information such as the age, survival time,
tumor grade, tumor type, pathological stage of patients with
tumor tissue samples. The tumor samples in the clinical
information matrix correspond to the tumor tissue samples in
the transcriptome expression matrix. Genes that were not
recorded in more than a quarter of the samples were
eliminated. The transcriptome information expression matrix
was standardized by FPKM. Clinical samples with zero survival
time were excluded. The HCC-related data set downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo) is
used as an external verification set for 5-gene signatures.

The clinical evaluation
By selecting the method of analyzing the expression of miRNA-
126-3p in each sample of the HCC transcriptome from the
TCGA database, we observed the difference in the expression of
miRNA-126-3p in the tumor group samples and the normal
group samples, and study its clinical significance. To observe
the differential expression of miRNA, we compared the
expression of miRNA-126-3p in tumor samples and normal
samples in groups. Based on the R language program package
“survival”, the survival curves of the tumor group and the
normal group are drawn. Based on the R language program
package “ROCR” to draw the ROC curve of the tumor group
and the normal group, with AUC value greater than 0.7 and
P-value less than 0.05 as the standard, the differential expression
of miRNA-126-3p in HCC patient samples was determined.

Immune infiltration analysis
To study the various immune cells infiltration levels in HCC
patients, we uploaded the gene expression matrix of HCC patient
samples to the Cibersort website (https://CIBERSORT.stanford.
edu/). Based on the Cibersort deconvolution method, we can get
the expression levels of 22 kinds of immune cells for each
sample. The immune cells with the highest level of infiltration are
selected, and the individual expression of the sample is used as
the clinical phenotype for subsequent WGCNA analysis.

To study the difference in immune infiltration level
between samples from high-risk groups and low-risk ones, we
used the average of expression of 22 kinds of immune cells in
samples from different risk groups as the ratio of immune
cell infiltration. Then, we set perm = 1000 and selected
immune cells with P < 0.05 as immune cells with significant
differential expression. Visualization completed based on R
language package “vioplot” and “ggplot2” Identification of
differential target genes and modular genes.

Utilizing comparing the identified potential target genes
with the genes in the transcriptome matrix in the TCGA
database, the common genes were screened out. The common
gene was screened based on the R language program package
“DESeq2” with |logFC| > 1, P < 0.05 as thresholds, and used as
a differential target gene (DETG) for subsequent research.

We analyzed the DETG obtained by WGCNA, and
selected the modular gene by combining the sample gene
expression with clinical information. This process is based on
the R language package “wgcna”. WGCNA is a statistical
method that constructs genes into a gene-weighted co-
expression network through weighted processing of gene
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expression. The co-expressed gene set was identified through the
analysis, the modules and the phenotype data were associated
with the analysis, and the potential core genes were discovered.

First, performing a cluster analysis on the expression
profile, calculate the Pearson correlation coefficient of the
gene, and establish a correlation matrix.

S ¼ Sij
� � ¼ cor i; jð Þj j½ �
Next, we build the adjacency matrix:

A ¼ aij
� � ¼ power Sij; b

� �� � ¼ Sij
�� ��bh i

Among them, β is empolyed to indicate the weighted
value which conforms to the scale-free network law (fit
value R2 to 0.85). The gene pair correlation index aij is used
to construct an adjacency matrix A. aij equals the β square
of the correlation coefficient Sij.

Finally, the topological adjacency matrix was constructed:

TOM ¼ xij
� � ¼ lij þ aij

min ki; kj
� �þ 1� aij

" #

So far, we believe that genes with similar expressions are
functionally related and can be clustered into the same module
based on the correlation. Genes that cannot be successfully
aggregated into a certain module are oligogenes and are not
included in the follow-up study due to weak correlation.
According to the tree cutting method, the number of
modules and the number of genes gathered in each module
can be set. Then we imported the clinical data of the patient
sample and correspond to the expression sample one-to-
one, calculate the correlation and significance of the clinical
traits and each module. And the module gene with the
strongest correlation with the clinical phenotype can be
taken as the modular gene.

Gene ontology and KEGG pathway
Based on the online tool Metascape (https://metascape.org/),
the modular gene was enriched with GO Biological Processes,
GO Cellular Components, GO Molecular Functions and
KEGG. Enrichment is performed under the condition of
perm = 1000, and the P-value is arranged from small to large.
The enrichment of genes into pathways is visualized through
the R package “GOplot”.

Development of prognostic model
Genes related to patients’ overall survival (OS) were identified
through univariate Cox and Lasso Cox regression. Firstly,
univariate COX regression analysis was used, with P < 0.05
as the standard, to initially screen out genes related to
OS. Subsequently, the selected genes were analyzed by
LASSO regression, and the LASSO analysis coefficient was
calculated for subsequent risk model construction. LASSO
regression applied the L1 norm summation method to
punish the model parameters to fit the model properly,

k �
Xn
i¼0

bik k1
Among them βi is a set of variables of the model, and λ

controls the complexity of the model. Through LASSO
regression analysis, an accurate and streamlined regression

model was established. In this paper, the ten genes with the
smallest partial likelihood deviation in the LASSO regression
analysis were selected for ROC analysis, and they were
sorted according to the AUC value. The top five genes with
the AUC value were applied to construct the prognostic
gene signature. The risk score (RS) of each sample can be
calculated linearly:

RS ¼
Xn

i¼1
Coefi � Expi

In the equation, n is the number of genes contained in
the final prognostic signature model. Coefi means the
LASSO coefficient of gene i. Expi is the expression value of
gene i. we selected the median of RS in HCC patient
samples to complete the cutoff value, divided the patient
samples into two groups accroding to their each RS, and
completed the visualization of the relationship between
different risk groups and patient survival. Simultaneously,
based on the R language package “timeROC”, K-M curve
and time-dependent ROC curve are applied to estimate the
prognostic and diagnostic value of gene signature.

The patient’s risk score and other clinical information
were analyzed together to analyze the variables, and the
second univariate and multivariate COX regression analysis
was performed. The C-index index of the regression analysis
model is calculated to evaluate the predictive ability of the
regression model for patient survival. The R program
package “rms” is used to incorporate the prognostic factors
obtained from the COX regression into the nomogram and
calibration chart construction. Set the parameter perm =
1000, and select the 6-node difference fitting method to
verify the consistency between the patient's survival
prognosis and the real survival situation.

Gene set enrichment analysis
According to the predicted expression value of RS based on the
patient sample, and the median as the screening criterion, the
patient samples were divided into high risk or low risk groups.
Based on the R speech package “limma”, the logFC value of
the high and low risk group genes is calculated. Use the R
package “clusterprofiler” to perform GSEA (Gene Set
Enrichment Analysis) analysis on the whole genome. GSEA
can find the biological pathways that are significantly enriched
by the two sets of samples through the amount of gene
expression, and find the phenotype with the expression pattern
of the gene set closer. Set perm = 1000, and use |NES| > 1, P <
0.05 as the screening conditions to determine the significantly
enriched gene set. Obtain and visualize the enriched pathways.

Statistical analysis
The R language package analyzed by WGCNA is called on the
“R v3.6.1” platform. The rest of the R language packages for
statistical analysis are all called on the “R v4.0.2” platform. P
value less than 0.05 is considered to have statistically
significant reliability. AUC value greater than 0.7 is
considered to have significant specificity. TCGA database
(https://cancergenome.nih.gov). miRwalk 2.0 website (http://zmf.
umm.uni-heidelberg.de/apps/zmf/mirwalk2). GEO database
(https://www.ncbi.nlm.nih.gov/geo). Cibersort website (https://
CIBERSORT.stanford.edu/). Online tool Metascape (https://
metascape.org/).
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Results

Transcriptome and clinical data
We downloaded 372 HCC tumor tissue samples and 50
normal tissue samples from the TCGA database to study the
expression level of miRNA-126-3p; download the gene
expression matrix of HCC samples to obtain 19753 gene
expression data. A total of 8671 potential target genes of
miR-126-3p were identified for subsequent analysis. 8372
overlapped genes were prepared for the following study
(Fig. 1A). The expression difference analysis of each gene
finally determined that 5838 DEGs genes were studied, a
total of 4760 up-regulated genes and 1078 down-regulated
genes were identified (Fig. 1B). Downloaded 378 samples of
clinical data, and eliminated 6 samples with missing visit
information, which corresponded to samples of HCC tumor
gene expression.

The paper obtained 21218 gene expression data in 219
tumor samples in GSE14520 in GEO data, and obtained
clinical information of tumor samples through platform
GPL3921-25447. Two samples with a survival time of 0 are
eliminated, and the remaining data is used for 5-gene
signature verification.

Clinical performance of miRNA-126-3p
By comparing miR-126-3p expression in tumor samples and
normal samples, the expression of miR-126-3p in HCC
tumor tissues was down-regulated (P = 2.9e−8) (Fig. 2A).
Simultaneously, the expression of miR-126-3p has better

recognition in tumor samples and normal samples (AUC =
0.7789, P = 0.029) (Fig. 2B). K–M curve analysis illustrated
that the survival time of samples with low expression of miR-
126-3p was significantly shortened (P = 0.0064) (Fig. 2C).

Selection of modular genes highly relevant to macrophages
By comparing the target genes of miR-126-3p with the DEGs
obtained by pretreatment, we obtained 2495 overlapping
genes. Among the overlapping genes, there are 2033 up-
regulated genes and 462 down-regulated genes (Fig. 1C).
Based on the WGCNA algorithm, we established a scale-free
co-expression network with 2495 overlapping genes under
the condition of β = 8. According to the tree cutting
method, setting the parameters minModuleSize = 50 and
mergeCutHeight = 0.15 as the conditions, we got 4 modules
with 833 oligogenes. By calculating the Pearson correlation
coefficient of each module and the patient's clinical
information, we found that the turquoise module and
ISUP_Grade (cor = 0.35, P = 6e−12) showed the most
significant positive correlation (Figs. 4A and 4B). At the
same time, the turquoise module has a significant positive
correlation with AJCC_Stage (cor = 0.2, P = 3e−4) and
Pathology Tumor (cor = 0.2, P = 1e−4). The turquoise
module is negatively correlated with the expression of
macrophages M2 (cor = −0.21, P = 3e−5), which is the most
prominently expressed macrophages in patients (Fig. 3).
Therefore, we identified 833 genes in the turquoise module
as the modular genes that are the key to research in this
study (Figs. 4C and 4D).

FIGURE 1. DETGs’ identification.
(A) Venn plot for TCGA database
and miRwalk database, a total of
8372 potential target genes were
selected. (B) Volcano plot for DEGs,
a total of 4760 up-regulated genes
and 1078 down-regulated genes were
identified. (C) Venn plot for DEGs
and target genes, 2495 genes were
overlapped and defined as DETGs.
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Enrichment analysis
We accomplished the GO and KEGG enrichment analysis of the
modular genes obtained by WGCNA analysis. In the GO
biological processes analysis, 109 genes were enriched in the
DNA repair pathway. 44 genes were enriched into DNA
replication pathway. 45 genes were enriched into the DNA
recombination pathway. 60 genes were enriched into the DNA
conformation change pathway (Fig. 5A). In cellular
components analysis, 117 genes were enriched in the
chromosomal region pathway. 49 genes were enriched into
the spindle pathway. 52 genes were enriched into the
centrosome pathway. 16 genes were enriched into the
replication fork pathway (Fig. 5B). In molecular functions
analysis, 36 genes were enriched in catalytic activity, acting on
DNA pathway. 58 genes were enriched into the chromatin
binding pathway. 27 genes were enriched into the helicase
activity pathway. 64 genes were enriched into the transcription
coregulator activity pathway (Fig. 5C). In the KEGG analysis,

54 genes were enriched into the Herpes simplex virus 1
infection pathway. 22 genes were enriched into the cell cycle
pathway. 12 genes were enriched into the DNA replication
pathway. 20 genes were enriched into the cellular senescence
pathway (Fig. 5D). All the above-enriched genes are up-
regulated genes (Suppl. Tables 1–4).

Construction of target gene signature and nomogram
Through univariate COX regression analysis of 833 modular
genes, we confirmed 511 genes significantly related to OS
(P < 0.01). Based on the LASSO regression analysis of 511
genes, 10 genes (TCOF1, SLC41A3, FARSB, PFKFB4, OLA1,
PPM1G, GRPEL2, CDCA8, MAFG, MEX3A) (Fig. 6) that
are significantly related to the patient’s prognosis were
further determined (Fig. 7A). Through ROC analysis of
these 10 genes, we selected 5 genes with diagnostic
significance to construct the gene signature CDCA8 (AUC =
0.9773), SLC41A3 (AUC = 0.9749), PPM1G (AUC =

FIGURE 2. Clinical performance of miR-126-3p in HCC patients. (A) Differential expression of miR-126-3p between HCC group and normal
group. (B) ROC curve of two groups with a high AUC value. (C) K-M analysis for differential miR-126-3p expression patients.
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0.9704), TCOF1 (AUC = 0.9701), GRPEL2 (AUC = 0.9631)
(Figs. 6A–6E). The prognosis of these 5 genes does not
influence clinical phenotype.

Finally, a prognostic formula is constructed based on
gene expression and the corresponding LASSO coefficient,
which is:

RS = 0.0324 × Expression of CDCA8 + 0.0087 × Expression
of SLC41A3 + 0.0103 × Expression of PPM1G + 0.0039 ×
Expression of TCOF1 + 0.0954 × Expression of GRPEL2.

The median of the RS value was taken as the cutoff value,
and 169 patient samples with RS values higher than the cutoff
value were divided into high-risk groups, and 169 patients
with RS values lower than the cutoff value were ranked into
low-risk groups (Fig. 7B). By observing the dot-line and
scatter plots that express the relationship between the two
groups and the survival of patients, it is easy to find low-risk
patients’ survival situation is better (Fig. 7C). By observing
the heat map of signature gene expression in high and low-
risk groups, RS increases with the increase of signature
genes expression (Fig. 7D).

The risk score obtained based on this gene signature has
diagnostic significance for the survival prediction of HCC
patients at 1 year (AUC = 0.791), 3 years (AUC = 0.686),
and 5 years (AUC = 0.645). At the same time, the K–M
curve of gene level grouping also shows that low-risk
samples’ prognosis is significantly better (P < 0.0001) (Figs.
8A and 8B). The differential expression of 5 signature genes
was studied. CDCA8 (P < 2.22e−16), SLC41A3 (P = 1.5e−11),
PPM1G (P < 2.2e−16), TCOF1 (P < 2.2e−16), GRPEL2
(P < 2.2e−16) In the high-risk group, the expression was high
(Figs. 8C–8E).

We performed univariate and multivariate COX
regression on RS and AJCC_Stage to explore the prognostic
performance of the 5-gene gene signature. Univariate COX
analysis illustrated that risk score and AJCC_Stage highly

FIGURE 3. Proportion of immune cells for HCC patients.
Macrophage M2 is the most abundant immune cell in HCC
patients’ immune microenvironment.

FIGURE 4.Modular gene selection. (A) Cluster Dendorgram. Genes were clustered into 4 modules by tree cutting method, failed to clustered
ones marked grey. (B) Eigengene adjacency heatmap. Pairwise correlation between four modules. (C) Scale independence and mean
connection. (D) Module-trait relationships. Correlations between genes and clinical trait in modules and P-value.
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correlated with the survival of patients (P < 0.05). Nomogram
analysis shows that the nomogram created by RS and
AJCC_Stage (C-index = 0.644) is better than the nomogram
created by RS (C-index = 0.607) or AJCC_Stage (C-index =
0.593) (Fig. 9A). Analyze the results separately. Simultaneous
analysis of the prediction results of 1-year, 3-year and 5-year
overall survival rate shows that the nomogram analysis based
on the joint establishment of RS and AJCC_Stage has a better
predictive ability for HCC patients (Fig. 9B).

According to the obtained 5-gene signature, the 1-year
(AUC = 0.656), 3-year (AUC = 0.597), and 5-year (AUC =
0.605) survival predictions of data set GSE14520 for HCC
patients have diagnostic significance. K–M curve
demonstrated the high-risk samples showed a low overall
survival time and poor prognosis (P < 0.0001) (Figs. 10A and
10B). The 5 genes that make up the gene signature CDCA8
(P = 9.1e−11), SLC41A3 (P = 1.5e−11), PPM1G (P = 0.0041),
TCOF1 (P = 0.0037), GRPEL2 (P < 2.2e−16) High expression
in the high-risk group (Figs. 10C–10G).

Subsequently, the sample RS and AJCC_Stage in the data
set GSE14520 were used to complete univariate multivariate
COX regression analysis, and jointly constructed a nomogram
(C-index = 0.765) with good prognostic ability (Fig. 11A). At
the same time, the 1-year, 3-year and 5-year prediction-true
survival curves obtained better fitting results (Fig. 11B).

Immune infiltration and GSEA between high- and low- group
We obtained the proportion of 22 immune cells in each
patient by applying Cibersort’s deconvolution method. The
top five subtypes of immune cells in the HCC patient group
are (19.336%), T cells CD4 memory resting (15.039%),
Macrophages M0 (12.645%), T cells CD8 (9.949%), and

macrophages M1 (8.396%) (Fig. 3). Based on the method of
dividing risk groups according to RS, the top five subtypes
in the high-risk samples we obtained are Macrophages M2
(17.735%), Macrophages M0 (16.725%), and T cells CD4
memory resting (13.368%), T cells CD8 (9.949%),
macrophages M1 (8.158%) (Fig. 12A). The top five subtypes
of immune cells in the low-risk samples we obtained were
Macrophages M2 (20.919%), T cells CD4 memory resting
(17.039%), T cells CD8 (10.036%), Macrophages M0 (8.631%),
macrophages M1 (8.627%) (Fig. 12B). Subsequently, we
compared the immune infiltration situation of the high-risk
group and the low-risk group, using P < 0.05 as the screening
condition, and determined a total of 10 immune cells with
significant differential expression. Among the 10 immune
cells, T cells CD4 memory resting, T cells regulartory (Tregs),
NK cells resting, monocytes, and macrophages M2 were
reduced in the high-risk group, while the expression of B cells
memory, T cells CD4 memory activated, and T cells follicular
helper, macrophages M0 and neutrophils in the high-risk
group was significantly higher than in the low-risk group
(Fig. 12C).

Eight pathways were analyzed by GSEA based on the
gene expression of high- and low-risk patients: Cell cycle,
ECM-receptor interaction, Herpes simplex virus 1 infection,
p53 signaling pathway, Inositol phosphate metabolism,
MicroRNAs in cancer, Phosphatidylinositol signaling
system, Renal cell carcinoma (Fig. 13).

Discussion

As a malignant tumor disease, the development process of
HCC is highly related to the expression of transcriptome

FIGURE 5. GO and KEGG enrichment analysis. (A) Biological Process enrichment analysis. (B) Cellular Component enrichment analysis. (C)
Molecular Function enrichment analysis. (D) KEGG pathway enrichment analysis.
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genetic material (Boyault et al., 2007). At the same time, the
process of HCC tumor growth is very complicated, and it is
affected by a variety of genetic materials and immune
microenvironment. Therefore, the investigation of multiple
genetic materials and the comprehensive investigation of

multiple genetic materials need to be completed urgently.
The study started with the differentially expressed
microRNAs in HCC patients, found the core differential
target genes of this miRNA by constructing a weighted gene
co-expression network, and finally constructed a prognostic

FIGURE 6. ROC curve of LASSO COX regression analysis result. 10 hub genes were selected and ordered by AUC value.
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model through COX regression analysis and LASSO
regression analysis. The survival analysis and nomogram
confirmed that the proposed model has better predictive
ability. The model and immune infiltration were
investigated comprehensively, and the immune infiltration
of patients with different prognostic scores was observed.

MicroRNAs are small non-coding endogenous
regulatory RNA molecules that bind to target mRNA
through base pairing, thereby regulating gene expression at
the post-transcriptional level. Studies have shown that miR-
126-3p is related to the development of HCC (Du et al.,
2014). At the same time, some target genes of miR-126-3p
are indeed involved in the relevant pathways of HCC (Lou
et al., 2018). However, the construction of a prognostic
model based on the target gene of miR-126-3p has not yet
been completed. This study first analyzed the expression

and prognosis of miR-126-3p in HCC patients. The obvious
low expression of miRNA and outstanding prognostic
differences proved that miR-126-3p has great research value
in HCC. Then, by clustering the differential target genes of
miR-126-3p with respect to HCC, a gene-weighted co-
expression network was constructed. The differential target
gene expression level is linked with the clinical phenotype
Macrophages M2 expression level, Tumor, Node,
Metastases, AJCC_Stage, ISUP_Grade, and the core genes
are screened out. These genes are more closely related to
other genes and are also more closely associated with the
clinical phenotype of HCC patients. In this study, the core
genes were enriched and analyzed. The main enriched
KEGG pathways include Herpes simplex virus 1 infection,
Cell cycle, DNA replication, and cellular senescence, and
found the main ways for these core genes to regulate the

FIGURE 7. 5-gene-signature established and patients were divided into two groups by their risk score. (A) LASSO COX regression analysis. (B)
Scatter plot of different RS patients’ survival. (C) Dot-line plot of patients’ risk score. Patient samples were divided into two groups according to
their each RS, chose the median as the cut-off value. (D) Heatmap of the 5 signature genes in two risk groups.
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development of HCC. The TNM staging system of the
American Joint Committee on Cancer (AJCC_Stage) is
based on the most important prognostic indicators, namely:
tumor number (Tumor), lymph node positive and distant
metastasis (Node), and whether there is vascular invasion
(Metastases) in the tumor (Xing et al., 2016). And the
ISUP_Grade grading system has the dual benefits of
predicting patient outcomes and promoting patient
communication (Egevad et al., 2016). This article links the
expression of Macrophages M2 in patients with clinical
phenotypes such as AJCC_Stage, ISUP_Grade and the
patient’s survival time, and completes the high correlation
between differential target genes and clinical phenotypes to
ensure that the core genes screened have better prognosis.

Studies have shown that in the process of Herpes simplex
virus 1 (HSV-1) infection, the level of IFI16 protein is
greatly reduced. IFI16 interacts with tumor suppressor
proteins p53 and BRCA1 and affects the process of tumor
development (Llaca, 2016). At the same time, cell cycle and
DNA replication have long been studied and proved to be
highly relevant to the process of cancer, and the molecular
mechanism of cell transformation has been proposed, which
may help determine potential targets for improving cancer
treatment (Hartwell and Kastan, 1994; Tachibana et al.,
2005; Zhang et al., 2016b). Similarly, cellular senescence has
also been studied extensively and has an impact on the
progression and prognosis of cancer (Hartwell and Kastan,
1994; Tachibana et al., 2005; Zhang et al., 2016b). Therefore,

FIGURE 8. Gene signature prognosis. (A) Time dependent ROC curve for two risk groups. (B) K–M plot for two risk groups survival. (C–G)
Signature genes differential expression in two groups.
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this study found the primary way that miRNA-126-3p
differentially target genes in HCC affect tumor progression.
It also proved that the modular-genes obtained by screening
significantly related to the prognosis of cancer.

In the study, univariate COX regression analysis and
LASSO regression analysis were used to select the 10 genes
with the smallest partial likelihood deviation among the core
genes. In order to make the prediction model have a more
accurate prognostic ability, this study selected the 5 genes
with the largest expression differences (CDCA8, SLC41A3,
PPM1G, TCOF1, GRPEL2) by drawing ROC curves to
complete the construction of gene signatures. Studies have
shown that Cell division cycle associated 8 (CDCA8) as a
component of the chromosome complex, it participates in
the formation of the mitotic spindle (Jeon et al., 2017).
According to research, CDCA8 is highly correlated with
activating inflammation-induced motility, manifesting in
liver tissues and affecting lung tissues and breast tissues
(Zhou et al., 2015). Meanwhile, the significant pathways of
CDCA8 are metabolism of proteins and cell cycle, same as
the major pathway of GRPEL2. Both of the two genes up-
regulated in HCC, may suppress hepatocellular carcinoma
growth. As reported CDCA8 can prevent HCC tumors keep

growing by altering protein expression. In this study, the
expression of CDCA8 in the high-risk group was significantly
increased, which is consistent with previous studies. SLC41A3
encodes protein with cation transmembrane transport protein
activity, which may help Mg2+ transport (de Baaij et al.,
2016). At the same time, a lot of research work has included
the gene SLC41A3 in their gene signatures (Liu et al., 2020;
Zhou et al., 2020b). The ectopic expression of PPM1G
enhances the stability of p27 protein and delays the
progression of the cell cycle from G1 to S phase (Sun et al.,
2016). PPM1G dephosphorylates USP7S, which plays a major
role in cancer prevention, thereby affecting the progress of
cancer (Khoronenkova et al., 2012). The significant pathways
of PPM1G are mRNA splicing, development Dopamine D2
receptor transactivation of EGFR. And the epidermal growth
factor receptor (EGFR) is reported as a rational target for
cancer therapy because it is commonly expressed at a high
level in a variety of solid tumours and implicated in the
control of cell survival, proliferation, metastasis and
angiogenesis (Ciardiello and Tortora, 2003). Thus, PPM1G
may influence the survival, proliferation, metastasis of tumor
cells. TCOF1 may cause tumor formation by affecting the
expression of p53 (Al-Sayegh, 2009). Increased p53 protein

FIGURE 9. Nomogram analysis
prognosis. (A) Nomogram created by
RS and AJCC_Stage. (B) Prediction
results of 1-year, 3-year and 5-year
overall survival rate.
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levels in response to DNA damage activate a G1-phase cell cycle
checkpoint (Graeber et al., 1994). It affected the proliferation of
HCC in the liver tissue. And it affect the proliferation and
division of bone marrow cells in the bone marrow, leading to
the occurrence of leukemia (Kastan et al., 1991). Research has
shown that GrpEL2 as a stress resistant protein in higher
vertebrates, can maintain the activity of molecular chaperone
under specific conditions (Srivastava et al., 2017). The
expression level is multiplied by the corresponding LASSO
regression coefficient and summed to obtain the prognostic
score of each sample. Subsequently, the median of the overall
prognostic score of the HCC sample was selected as the
cutoff value, and the high-scoring samples were classified as
the high-risk group and the low-scoring samples as the low-
risk group. The time-dependent ROC curve and K–M

survival curve results show that the scoring formula has
credible prognostic ability.

Subsequently, the prognostic score and clinical data
AJCC_Stage were used as variables for multivariate COX
regression analysis, and the nomogram C-index = 0.644 was
constructed, indicating that it also has a good prognostic
ability. Stage III&IV patients’ risk score is higher than I&II
one’s with a long span, as seen from the nomogram. It
means high-risk patients’ primary tumor is larger, metastasis
of the tumor in the distant organs and tissues is farther and
the involvement of local lymph nodes is worse, considering
from the pathological aspect. The analysis from the
validation data set confirmed the results. Although some
people have investigated these genes (Luyao et al., 2017),
and proposed a variety of biological beacons for HCC,

FIGURE 10. Gene signature verification with GSE14520 dataset. (A) Time dependent ROC curve for two risk groups in GSE14520 dataset. (B)
K–M plot for two risk groups survival in GSE14520 dataset. (C–G) Signature genes differential expression in two groups.
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including protein symbols (Nan et al., 2018), RNA symbols
(Zhou et al., 2020a), 22-gene signature (Zhou et al., 2020b),
4-lncRNA signature (Zhang et al., 2016a), but no one has
constructed a gene signature for the target genes of
differentially expressed miRNAs. The 5-gene signature was
finally grouped based on the risk score, and 8 GSEA
pathways that differentiated into high and low groups
enriched by HCC genes were found.

In the study, the immune status of HCC patients was
linked with gene expression, and the proportion of 22
immune cells was analyzed. It was observed that
Macrophages M2, which has the highest level of infiltration
in patients, had a significant decrease in infiltration level in
the high-risk group. According to research, Macrophages
M2 activity can promote cell proliferation and tissue repair
(Mills, 2012). At the same time, it was observed that the
infiltration level of macrophages M0 showed a significant
upward trend from low risk to high risk, which may be
caused by the differentiation of M2 to M0. T cell CD4
memory resting after stimulation in culture produced a wide
range of T-cell cytokines, inhibiting spontaneous tumour
necrosis factor-alpha (Brennan et al., 2008). And it shown

that T cell CD8 is involved in the process of liver cirrhosis,
a high-risk factor for liver cancer (Behboudi and Pereira,
2010). These research conclusions are consistent with the
results of the work. This study links the target genes of
miRNA with the level of immune cell infiltration, observes
the changes in the level of immune cell infiltration,
enhances the accuracy of the prognosis of gene signatures,
and also investigates the immune infiltration of HCC.

The study innovatively selected the differential target
genes of miRNAs differentially expressed in HCC patients
as the research object, and applied WGCNA technology to
find the core differential target genes to ensure the
correctness of subsequent analysis and provide a guarantee
for the prognostic ability of gene signatures. At the same
time, LASSO regression analysis is used to construct gene
signatures, which avoids the excessive punishment of
coefficients. In the process of constructing the gene
signature, the gene is screened to ensure that the obtained
gene signature is highly correlated with the patient’s survival
prognosis. Finally, AJCC_Stage and survival time are used
as variables to construct a nomogram, which further
improves the prognostic ability.

FIGURE 11. Nomogram analysis
verification with GSE14520 dataset.
(A) Nomogram created by RS and
AJCC_Stage in GSE14520 dataset.
(B) Prediction results of 1-year, 3-
year and 5-year overall survival rate
in GSE14520 dataset.
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FIGURE 12.Differential expression of immune cell between high risk group and low risk ones. (A) Immune infiltration in high risk group. (B)
Immune infiltration in low risk group. (C) Differential immune infiltration between high risk group (red) and low risk one (blue).

FIGURE 13. (Continued)
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Conclusion

In summary, the paper revealed five hub genes that
significantly associated with patients’ prognosis and immune
cell infiltration in HCC. And the paper constructed a 5-gene
signature (CDCA8, SLC41A3, PPM1G, TCOF1, GRPEL2)
and a nomogram based on the differential target genes of
miRNA-126-3p, which have been verified to have a good
prognostic ability. The comprehensive evaluation of patient
gene signature may help guide us to more effective
immunotherapy strategies.
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SUPPLEMENTARY TABLE 1

The first four pathways of Biological Process enrichment analysis

DNA repair DNA replication DNA recombination DNA conformation change

BARD1 enriched

CDK1 enriched enriched enriched

CHEK1 enriched enriched enriched enriched

CSNK1E enriched

FANCA enriched

FANCD2 enriched enriched

FANCE enriched

FANCF enriched

FOXM1 enriched

FUS enriched enriched

HMGB2 enriched enriched enriched

HMGA1 enriched enriched enriched

LIG1 enriched enriched enriched

LIG3 enriched enriched enriched

MCM2 enriched enriched enriched enriched

MCM4 enriched enriched enriched enriched

MCM5 enriched enriched enriched enriched

MCM6 enriched enriched enriched enriched

MUTYH enriched

RAD1 enriched

RAD51 enriched enriched enriched

RAD51D enriched enriched

RFC1 enriched

RFC2 enriched enriched

RFC3 enriched enriched

TP73 enriched

UBE2A enriched enriched

XRCC2 enriched enriched

TRIM25 enriched enriched

CHAF1B enriched enriched enriched

CDC7 enriched enriched enriched

RAD54L enriched enriched enriched

RUVBL1 enriched enriched enriched

TIMELESS enriched enriched enriched

RNF8 enriched enriched enriched

TRIP13 enriched enriched

RECQL5 enriched enriched enriched enriched

RECQL4 enriched enriched enriched enriched

AP5Z1 enriched enriched

MCRS1 enriched enriched

POLD3 enriched enriched

POLQ enriched enriched enriched

POLG2 enriched

PAXIP1 enriched enriched

ZFYVE26 enriched enriched

RAD54B enriched enriched enriched

(Continued)
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Supplementary Table 1 (continued).

DNA repair DNA replication DNA recombination DNA conformation change

POLM enriched enriched

UHRF1 enriched

WDR70 enriched

RFWD3 enriched enriched enriched

NPLOC4 enriched enriched

RAD18 enriched enriched enriched

UVSSA enriched enriched

FANCM enriched enriched enriched

FIGNL1 enriched enriched

DCLRE1C enriched enriched

COPS7B enriched enriched

DCLRE1B enriched

AUNIP enriched enriched

PIF1 enriched enriched enriched

RHNO1 enriched enriched enriched

BRIP1 enriched enriched enriched

GINS4 enriched enriched enriched enriched

DOT1L enriched

MCM8 enriched enriched enriched enriched

CDCA5 enriched enriched

SFR1 enriched enriched

EME2 enriched enriched enriched

MMS22L enriched enriched enriched

TCF3 enriched enriched

TFRC enriched enriched

ALYREF enriched enriched

C11orf80 enriched enriched

CHD3 enriched enriched

DKC1 enriched

DNMT1 enriched

DNMT3A enriched

DNMT3B enriched

TOP3B enriched enriched

TATDN2 enriched

EXOG enriched

HELLS enriched enriched

SMARCA4 enriched enriched

TTF2 enriched

DDX27 enriched

EP400 enriched

DHX37 enriched

DDX55 enriched

EZH1 enriched enriched

EZH2 enriched

PPP1CC enriched

TELO2 enriched

CBX1 enriched

(Continued)
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Supplementary Table 1 (continued).

DNA repair DNA replication DNA recombination DNA conformation change

THOC2 enriched

THOC3 enriched

ATP1B3 enriched

KIF2A enriched

MYO9B enriched

NSF enriched

NVL enriched

KIF20B enriched

ABCC5 enriched

ABCF2 enriched

KIF3A enriched

ATAD2 enriched

OLA1 enriched

HSPA14 enriched

RNF213 enriched

KIF18B enriched

CDC6 enriched

PRIM2 enriched

RRM2 enriched

CCNE2 enriched

GINS1 enriched

GTPBP4 enriched

ORC6 enriched

REPIN1 enriched

DONSON enriched

FAM111A enriched

CDT1 enriched enriched

ING5 enriched

E2F7 enriched

CDAN1 enriched enriched

RNASEH1 enriched

POLR1A enriched

SOX4 enriched

CCNB1 enriched

CDKN2A enriched

CENPA enriched

CENPI enriched

INCENP enriched

SOX9 enriched

SMC2 enriched

NCAPH enriched

NCAPH2 enriched

UBN1 enriched

NCAPG2 enriched

ASF1B enriched

CENPN enriched

CENPM enriched

(Continued)
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Supplementary Table 1 (continued).

DNA repair DNA replication DNA recombination DNA conformation change

KAT2A enriched

HCFC1 enriched

MYB enriched

SMARCC1 enriched

HDAC4 enriched

BAZ2A enriched

CDCA4 enriched

PABPC1L enriched

ZMIZ2 enriched

CENPF enriched

SOX12 enriched

TAF11 enriched

THRA enriched

SUPPLEMENTARY TABLE 2

The first four pathways of Cellular Component enrichment analysis

Chromosomal region Spindle Centrosome Replication fork

ALYREF enriched

ANAPC7 enriched

ANLN enriched enriched

AP3B1 enriched

ARL2 enriched

ATAT1 enriched

AUNIP enriched enriched

AURKA enriched enriched enriched

AURKB enriched enriched enriched

BICD1 enriched

BOD1 enriched enriched enriched

BRIP1 enriched

C11orf80 enriched

CABLES2 enriched

CBX1 enriched enriched

CCDC15 enriched

CCDC77 enriched

CCNB1 enriched enriched

CCNE2 enriched enriched

CCNF enriched enriched

CCSAP enriched enriched enriched

CDC25A enriched

CDC25B enriched enriched enriched

CDC6 enriched enriched

CDC7 enriched enriched

CDCA5 enriched

CDCA8 enriched enriched

CDK1 enriched enriched enriched

(Continued)
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Supplementary Table 2 (continued).

Chromosomal region Spindle Centrosome Replication fork

CDK3 enriched

CDK4 enriched

CDT1 enriched

CENPA enriched enriched

CENPF enriched enriched enriched

CENPI enriched

CENPJ enriched enriched

CENPM enriched

CENPN enriched

CEP19 enriched enriched

CEP41 enriched

CEP68 enriched

CEP72 enriched

CHD3 enriched

CHEK1 enriched enriched

CSNK1D enriched

DCLRE1B enriched enriched

DCLRE1C enriched

DCTN2 enriched

DNM1L enriched

DNMT1 enriched enriched

DNMT3A enriched

DONSON enriched

DOT1L enriched

DSN1 enriched enriched

DTNBP1 enriched

E2F1 enriched

E2F7 enriched enriched

EFHC1 enriched enriched enriched

EME2 enriched

EZH1 enriched

EZH2 enriched

FAM110A enriched

FANCA enriched

FANCD2 enriched

FANCM enriched

FIGNL1 enriched

GDAP1 enriched

GINS4 enriched

GPSM2 enriched enriched enriched

HAUS3 enriched enriched

HAUS5 enriched enriched enriched

HELLS enriched

HMGB2 enriched

IFT81 enriched

INCENP enriched enriched

IQCB1 enriched enriched

ITGB1BP1 enriched enriched enriched

(Continued)
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Supplementary Table 2 (continued).

Chromosomal region Spindle Centrosome Replication fork

KAT2A enriched

KIF18B enriched enriched

KIF20B enriched enriched enriched

KIF2A enriched enriched enriched

KIF3A enriched enriched

L3MBTL1 enriched

LIG1 enriched

LIG3 enriched

MAPKBP1 enriched

MARK4 enriched enriched enriched

MCM2 enriched

MCM4 enriched

MCM5 enriched

MCM6 enriched

MKI67 enriched

MMS22L enriched

NCAPG2 enriched

NCAPH enriched

NCAPH2 enriched

NDE1 enriched enriched enriched

NEK2 enriched enriched enriched

NUP107 enriched

NUP43 enriched

NUP62 enriched enriched enriched

NUP85 enriched

OLA1 enriched

ORC6 enriched enriched

PARD6G enriched

PHF6 enriched

PIF1 enriched enriched

PLK1 enriched enriched

POLD3 enriched

PPP1CC enriched enriched

PRC1 enriched

PRIM2 enriched

RABL6 enriched

RAD1 enriched

RAD18 enriched enriched enriched

RAD51 enriched

RAD51D enriched enriched enriched

RAD54B enriched

RAD54L enriched

RAN enriched

RASSF1 enriched

RBL1 enriched

RCC1 enriched

RECQL4 enriched

RECQL5 enriched

(Continued)
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Supplementary Table 2 (continued).

Chromosomal region Spindle Centrosome Replication fork

REEP4 enriched

RFC1 enriched

RFC2 enriched

RFC3 enriched

CEP89 enriched

RNF8 enriched enriched

FBF1 enriched

RUVBL1 enriched

SHCBP1 enriched

SMC2 enriched

SPAG8 enriched

SPC25 enriched

SPDYA enriched

SUN1 enriched

SUV39H1 enriched

TAF1D enriched enriched

MARCKS enriched

TCHP enriched

TELO2 enriched

THOC2 enriched

THOC3 enriched

TIMELESS enriched enriched

TMEM201 enriched

TOP3B enriched

TRIP13 enriched

TTL enriched

TUBA1B enriched

TUBA1C enriched

UHRF1 enriched

UNC119 enriched enriched enriched

WDR62 enriched enriched

XRCC2 enriched enriched

YEATS2 enriched

ZFYVE26 enriched enriched

ZMIZ2 enriched

ZNF207 enriched enriched

ZWINT enriched
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SUPPLEMENTARY TABLE 3

The first four pathways of Molecular Function enrichment analysis

Catalytic activity, acting on DNA Chromatin binding Helicase activity Transcription coregulator activity

ATAD2 enriched

ATN1 enriched

BAHCC1 enriched

BAZ2A enriched

BRIP1 enriched enriched enriched

CBFA2T2 enriched

CBX1 enriched

CBX2 enriched

CDCA5 enriched

CDK1 enriched

CDKN2A enriched

CDT1 enriched

CENPA enriched

CENPF enriched enriched

CENPJ enriched

CHAF1B enriched

CHD3 enriched

CRAMP1 enriched

DCLRE1B enriched

DCLRE1C enriched

DDX27 enriched

DDX55 enriched

DGKQ enriched

DHX37 enriched

DKC1 enriched

DNMT1 enriched enriched

DNMT3A enriched enriched enriched

DNMT3B enriched enriched enriched

E2F1 enriched

E2F2 enriched

E2F3 enriched

E2F7 enriched

EID2B enriched

EP400 enriched enriched

EXOG enriched

EXOSC9 enriched

EZH1 enriched enriched

EZH2 enriched enriched

FANCM enriched enriched enriched

FHL3 enriched

FUS enriched enriched

GINS4 enriched enriched

HCFC1 enriched enriched

HDAC4 enriched enriched

HELLS enriched enriched

(Continued)
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Supplementary Table 3 (continued).

Catalytic activity, acting on DNA Chromatin binding Helicase activity Transcription coregulator activity

HIF1AN enriched

HMGA1 enriched enriched enriched

HMGB2 enriched enriched

ING5 enriched

JMJD6 enriched

KAT2A enriched enriched

KMT2D enriched

L3MBTL1 enriched

LEMD2 enriched

LIG1 enriched

LIG3 enriched

MAML1 enriched

MCM2 enriched enriched

MCM4 enriched enriched

MCM5 enriched enriched

MCM6 enriched enriched

MCM8 enriched enriched enriched

MED15 enriched

MED20 enriched

MED22 enriched

MED24 enriched

MLLT6 enriched

MRE11 enriched enriched

MTA3 enriched enriched

MUTYH enriched

NCAPG2 enriched

NCAPH enriched

NCAPH2 enriched

NCOR2 enriched enriched

NSD1 enriched enriched

NUP62 enriched

PCGF2 enriched

PHF19 enriched

PHF21A enriched

PIAS3 enriched

PIF1 enriched enriched

PITX1 enriched

POLD3 enriched

POLG2 enriched

POLM enriched

POLQ enriched enriched enriched

POLR1A enriched

PPARD enriched

PSMD10 enriched

PTPN14 enriched

RAD1 enriched

RAD51 enriched enriched enriched

(Continued)
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Supplementary Table 3 (continued).

Catalytic activity, acting on DNA Chromatin binding Helicase activity Transcription coregulator activity

RAD54B enriched enriched

RAD54L enriched enriched

RALY enriched

RAN enriched

RBL1 enriched enriched

RBMX enriched

RCC1 enriched

RCOR2 enriched

RECQL4 enriched enriched

RECQL5 enriched enriched

REPIN1 enriched

RFC2 enriched enriched

RFC3 enriched enriched

RNF8 enriched

RPTOR enriched

RUVBL1 enriched enriched enriched

SFR1 enriched

SMARCA4 enriched enriched enriched

SMARCC1 enriched enriched

SOX12 enriched

SOX4 enriched

SOX9 enriched enriched

SRC enriched

STK36 enriched

SUB1 enriched

SUV39H1 enriched

TAF11 enriched

TATDN2 enriched

TCERG1 enriched

TCF3 enriched

THRA enriched enriched

TNRC18 enriched

TOP3B enriched

TP73 enriched

TRIP13 enriched

TTF2 enriched

UHRF1 enriched

USP22 enriched

YEATS2 enriched

ZIC2 enriched

ZMIZ2 enriched

ZNF431 enriched
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SUPPLEMENTARY TABLE 4

The first four pathways of KEGG pathway enrichment analysis

Herpes simplex virus enriched infection Cell cycle DNA replication Cellular senescence

BAK1 enriched

CDK1 enriched enriched enriched

HCFC1 enriched

PPP1CC enriched enriched

RHEB enriched enriched

SKP2 enriched

SRC enriched

ZNF354A enriched

TRAF2 enriched

TRAF3 enriched

TSC1 enriched enriched

ZNF2 enriched

ZNF7 enriched

ZNF26 enriched

ZNF74 enriched

ZNF84 enriched

ZNF85 enriched

ZNF195 enriched enriched

ZNF200 enriched

ZNF224 enriched

ZNF282 enriched

GTF2IRD1 enriched

ZNF623 enriched

ALYREF enriched

MCRS1 enriched

ZNF234 enriched

ZNF473 enriched

ZNF285 enriched

ZNF544 enriched

ZNF248 enriched

MAVS enriched

ZNF398 enriched

ZNF624 enriched

ZFP14 enriched

ZNF606 enriched

ZNF607 enriched

ZNF382 enriched

ZNF587 enriched

ZNF764 enriched

ZNF101 enriched

ZNF714 enriched

ZNF519 enriched

ZNF320 enriched

ZNF169 enriched

ZNF431 enriched

(Continued)
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Supplementary Table 4 (continued).

Herpes simplex virus enriched infection Cell cycle DNA replication Cellular senescence

ZNF778 enriched

ZNF707 enriched

ZNF530 enriched

ZNF324B enriched

ZNF793 enriched

ZNF286B enriched

ZNF316 enriched

ZNF605 enriched

ZNF783 enriched

CCNB1 enriched enriched

CDC6 enriched

CDC25A enriched enriched

CDC25B enriched

CDK4 enriched enriched

CDKN2A enriched enriched

CHEK1 enriched enriched

E2F1 enriched enriched

E2F2 enriched enriched

E2F3 enriched enriched

MCM2 enriched enriched

MCM4 enriched enriched

MCM5 enriched enriched

MCM6 enriched enriched

PLK1 enriched

RBL1 enriched enriched

CDC7 enriched

CCNE2 enriched enriched

ORC6 enriched

ANAPC7 enriched

LIG1 enriched

PRIM2 enriched

RFC1 enriched

RFC2 enriched

RFC3 enriched

POLD3 enriched

POLR1A enriched

RNASEH1 enriched

FOXM1 enriched

MRE11 enriched

MAPK13 enriched

RAD1 enriched

RASSF3 enriched

LIN9 enriched
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