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Abstract: Organ-on-a-chip technology aims to reproduce the key physiological features of human organs and tissues,

even complex actions of multi-organ interaction. While organ-on-a-chips at single-organ level has made notable

achievement during the last decade, multi-organ-on-a-chips, which manifests unique advantages, has started gathering

attention only recently. In this viewpoint, we discuss the current status of organ-on-a-chip technology, with a specific

emphasis on multi-organ-on-a-chip. Key technological advances contributing to the maturation of the field, and

challenges that need to be addressed before wider adoption in relevant fields are discussed. We will share our

perspectives on how the multi-organ-on-a-chip can improve the drug development process.

Introduction

The difficulties associated with drug development (Scannell
et al., 2012) mainly comes from the fact that the model
systems used in the process show limited physiological
relevance to humans. Cell-based in vitro systems can
partially reflects cellular physiology, often decaying rapidly
after separation from the body (Freires et al., 2017), and
animal to human extrapolation is often inaccurate (Seok
et al., 2013; Pound and Ritskes-Hoitinga, 2018).

As suggested by recent review articles, organ-on-a-chip
technology is considered as a promising solution to this
problem (Ingber, 2020; Jalili-Firoozinezhad et al., 2021).
Organ-on-a-chips, also known as tissue chips or
microphysiological systems (MPS), offer advantages over
conventional cell-based in vitro models. The precise control
over three-dimensional geometries, flow of fluids, and
transport of molecules in microscales allows recreation of
the tissue microenvironment. It allows manipulation of
experimental conditions, enabling hypothesis-driven
research. For example, the effect of fluid flow on cell
physiology can be studied by applying flow with controlled
flow rates (Chi et al., 2015; Lee et al., 2019). The most
prominent advantage is that it can connect multiple organs
and allow communication between them. So-called multi-
organ-on-a-chip, also often termed body-on-a-chip or
human-on-a-chip, enables realization of complex and

dynamic interactions between multiple organs, analogous to
what happens in the human body (Lee and Sung, 2018a;
Sung et al., 2019b; Sung, 2021).

Advance of Organ-on-a-Chip

The conception of organ-on-a-chip technology came with
the development of soft lithography, which uses elastic
silicone materials, polydimethylsiloxane (PDMS), to create
microscale devices (McDonald et al., 2000) in the field of
microfluidics, which uses precise handling of microscale
liquids. The application of microfluidics in biological
context was demonstrated in early 2000s (Allen and Bhatia,
2003; Sia and Whitesides, 2003).

The concept of multi-organ-on-a-chip was conceived in
its preliminary form as macroscale bioreactors fluidically
connected using pumps to transfer cell culture media
between different organ modules (Shuler et al., 1996).
Termed by the authors as a ‘cell culture analog’, this system
was used to probe the metabolism-dependent toxicity of
naphthalene toxicology (Sweeney et al., 1995). With the
advance of microfluidic technology, the cell culture analog
became microscale, fabricated on a silicon wafer and
connected via microfluidic channels (Sin et al., 2004;
Viravaidya et al., 2004). These proof-of-concept studies
proved that organ-organ interaction can be reproduced in
vitro (Sung and Shuler, 2009; Tatosian and Shuler, 2009;
Sung et al., 2010).

Advancing from these studies, a seminal paper was
published in 2010, where recapitulation of organ-level
functionality of the lung by creating alveolar-capillary
interface and applying cyclic stretching was demonstrated,
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to study pathological mechanism underlying pulmonary
diseases (Huh et al., 2010). Collaborative multi-year research
funding effort from multiple institutes such as US Food and
Drug Administration (FDA), National Institutes of Health
(NIH), and Defense Advanced Research Projects Agency
(DARPA), was initiated in US, and similar funding effort
was initiated in Europe as well (Low et al., 2021). Recent
research works are aimed towards building multi-organ
systems for mimicking complex pathophysiological
processes in the body (Miller and Shuler, 2016).

In addition to the funding effort tin the public sector,
recent effort in commercialization in the industrial sector is
also noteworthy (Ewart et al., 2017; Ribas et al., 2018; Low
et al., 2021). Many US and Eurpose-based companies,
including Mimetas, TissUse, CNBio, Emulate, and Hesperos
are collaborating with major pharmaceutical companies
seeking ways to incorporate organ-on-a-chip technologies in
drug development process.

Key Technologies of Organ-on-a-Chip

Early works on organ-on-a-chip focused on development of
microfluidic devices or fabrication methods for recreating
the tissue microenvironment. For example, a novel method
for fabricating silicon substrate or soft hydrogel into 3D villi
structure of intestinal epithelium was developed to culture
gut epithelial cell line in 3D shape (Sung et al., 2011; Esch
et al., 2012). Cyclic stretching of a porous membrane
structure mimicking the alveolar-capillary interface using
pneumatic vacuum control enabled realization of breathing
motion (Huh et al., 2010) and peristaltic movement of
the intestine (Kim et al., 2012). Control of convection and
diffusion process at microscale enabled spontaneous
formation of perfusable, vascular structure within
extracellular matrix (ECM) (Kim et al., 2013).

One of the most important technological advances
required for organ-on-a-chip systems are improving the
physiological relevance of the system, by incorporating stem
cells, primary cells, or even organoids (Kasendra et al.,
2018). Some obstacles need to be overcome, such as the
high cost of cells and media, and insufficient supply
with inconsistent quality of cell phenotypes. The use of
organoids can be limited, since organoids are self-organized
multicellular 3D tissue models and it is difficult to create
barrier structures commonly seen in the epithelial tissue of
the intestine, skin, and alveolar.

3D bioprinting is another area that has made significant
contribution to organ-on-a-chip field. Early organ-on-a-chip
works relied heavily on photolithography-based fabrication
methods, which is useful for fabricating inorganic materials,
but inadequate for mimicking the extracellular matrix
(ECM) environment of in vivo tissues. The ability to
fabricate natural and synthetic hydrogels in microscale
structures has offered great opportunities for organ-on-a-
chip fields (Zhang et al., 2016).

Real-time, noninvasive detection in organ-on-a-chip
devices is important, and various optical and electrochemical
sensing methodologies have been integrated with organ-on-a-
chip systems (Choi et al., 2016). Thorough validation with
conventional detection methods and standardization efforts

may be needed. Acquisition of a large set of data will also
allow a deeper insight in the interpretation of the
experimental results, particularly when combined with
artificial intelligence technology (de Chiara et al., 2021).

Towards Multi-Organ-on-a-Chip

Organ-on-a-chips offer the possibilities that conventional in
vitro methods cannot. Multi-organ-on-a-chips enable
simulation of dynamic, complex interaction of multiple
organs, which is impossible to achieve with conventional
static systems, as illustrated in Fig. 1 (Lee and Sung, 2018a;
Sung, 2021). Early proof-of-concept studies demonstrated
that pharmacokinetic-pharmacodynamic (PK-PD) profiles
of drugs can be simulated (Sung et al., 2010). A suitable
mathematical framework may be necessary to interpret the
chip data and extrapolation to humans (Sung et al., 2018;
Sung et al., 2019a). More recent studies have demonstrated
the practical ability of multi-organ-on-a-chips to predict the
PK profiles of drugs (Maass et al., 2017; Tsamandouras
et al., 2017; Edington et al., 2018; Herland et al., 2020).

The multi-organ-on-a-chip can be a powerful in vitro
platform for modeling complex diseases. Many diseases,
including obesity, diabetes, metabolic syndromes, and
immune-related diseases show complex mechanisms involving
different organs, and in many cases conventional static in vitro
systems are inadequate for modeling such diseases. Multi-
organ-on-a-chips can be useful for screening therapeutics for
such diseases, as well as probing the unknown mechanisms of
disease progression. For example, non-alcoholic fatty liver
disease (NALFD) manifests its symptoms with excessive fat
accumulation in the liver, but treatment of NAFLD may be
possible by improving the barrier integrity of the gut
epithelium (Lee and Sung, 2018b; Jeon et al., 2021). Lastly,
incorporation of patient-originated cells into the multi-organ-
on-a-chip will lead to personalized humans-on-a-chip.

FIGURE 1. Schematics of the concept of multi-organ-on-a-chip with
constituting technical components and potential applications. The
image was created with BioRender.com.
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Several challenges remain before wider adoption of this
technology will be seen. Validation of physiological
relevance has always been a major target that many
researchers have been addressing. Recent progress seems
promising, as evidences are accumulating that shows
pathophysiological processes can be simulated (Benam et al.,
2020; Tang et al., 2020), with increasing availability of
stem cells, organoids, and primary cells. Improvement
of chip fabrication material is necessary. While
polydimethylsiloxane (PDMS) is ideal material with many
advantages in lab scale, industrial applications will require
material with easier mass production and reduced
adsorption. Connecting multiple organ modules may require
complex fluidic system for recirculation, where novel
perfusion methods such as pneumatic pumping may be
useful (Rebelo et al., 2016), or gravity-induced perfusion
(Lee et al., 2017). This may offer additional advantages by
eliminating the need for tubes, and consequently reducing
the possibility of bubbles and dead volumes in the system.

As the multi-organ-on-a-chip systems grow in its
complexity with increasing number of organs, the
importance of mathematical framework for designing and
interpreting the system will also increase. One aspect that
needs special attention is how to ‘scale’ different organs to
reflect how the human body works. As allometric scaling
law suggests, organisms with different masses have different
organ masses, as well as other physiological parameters
(West et al., 1997). Since the multi-organ-on-a-chip is an
extremely miniaturized version of the human body in terms
of its size, direct application of allometric scaling law may
not be sufficient and rigorous mathematical approach for
chip design may be needed (Abaci and Shuler, 2015). At
least for the early phase of multi-organ-on-a-chip
technology, it will be important to accurately define which
physiological functionalities need to be mimicked. For
example, the intestine chip may be needed to model the
absorption of drugs, or inflammation in response to external
stimulation, or in vitro milieu for commensal bacteria.
Depending on which aspect is being focused on, the optimal
ratio of the intestine relative to organs, for example the liver
may be different (Lee et al., 2017; Maass et al., 2017).
Despite these challenges remaining, the future multi-organ-
on-a-chip technology looks very promising, and recent
progress in commercialization has been impressive with
major pharmaceutical companies actively participating in
the movement.
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