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Abstract: Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. The knowledge and

understanding of CVD are based on the study of vascular physiology and how the smooth muscle cells and tissues

perform their different functions. Exposure to endocrine disruptors (EDCs), such as phytoestrogens, polycyclic

aromatic hydrocarbons, flame retardants, plasticizers, pesticides, and cosmetics, is an integral and fundamental part of

human exposure. Humans are exposed to EDCs by multiple pathways including air, food, water, and consumer

products. However, this exposure can lead to several adverse effects on human health, including on the cardiovascular

(CV) system. The negative impact that EDC toxicity has on human CV health is a serious problem that must not be

overlooked. In this point of view, we proposed the use of the human umbilical artery as a human model to study the

direct effects of EDCs on the vascular level. Several works where these cells were directly exposed to EDC’s were

presented to highlight this well-established model as a great strategy to be used. In the future, we emphasize the need

to continue to carry out different investigations using HUA to unveil and understand the vascular toxicity of EDCs

and improve human CV health.

Introduction

Cardiovascular diseases (CVD) are one of the leading causes
of death worldwide (Mc Namara et al., 2019). The
knowledge and understanding of CVD are based on the
study of vascular physiology and how the smooth muscle
cells and tissues perform their different functions.

Humans are daily exposed to endocrine disruptors
(EDCs), “exogenous chemicals that interfere with hormone
action” by different cellular and molecular mechanisms (see
review (La Merrill et al., 2020)). Exposure to EDCs, such as
phytoestrogens, polycyclic aromatic hydrocarbons, flame
retardants, plasticizers, pesticides, and cosmetics is an
integral and fundamental part of human exposure and can
occur by multiple pathways including air, food, water, and
consumer products. However, this exposure led to several
adverse effects on human health, including on cancer,
reproductive, metabolic, and neurobiology systems, and
cardiovascular disorders (e.g., coronary artery disease,
hypertension, atherosclerosis, or myocardial infarction)
(Zlatnik, 2016; Gore et al., 2019; Papalou et al., 2019;

Fu et al., 2020; Mariana and Cairrao, 2020; Mesquita et al.,
2021). Concerns about endocrine exposure have increased as
the modulation of EDCs on the actions of natural hormones
is discovered to involve a range of additive, synergistic, or
negative biological effects (Feron et al., 2002; Fowler et al.,
2012; Ribeiro et al., 2017).

Currently, one of the main research challenges is to
discover the mechanisms of action of EDCs (Satpathy, 2020)
to improve human health. However, studying the toxicity of
EDCs presents some challenges, namely the complex network
through which EDCs can act. In this sense, La Merrill et al.
(2020) have recently presented a suggestion to classify into 10
key characteristics EDCs according to their disruptive effects
and respective hormonal actions: 1) EDCs can act by
activating/agonism of hormone receptors; 2) EDCs can act by
inactivating/antagonism of hormone receptors; 3) EDCs can
act by altering the expression of hormone receptors; 4) EDCs
can alter signaling transduction; 5) EDCs can induce
epigenetic changes; 6) EDCs can change hormone synthesis;
7) EDCs can change hormone transport; 8) EDCs can change
hormone distribution; 9) EDCs can alter metabolism; and 10)
EDCs can cause modification in the fate of hormone-
producing or reactive cells (La Merrill et al., 2020).

Furthermore, it is essential not to forget that the
endocrine system is itself a complex, integrative system and
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involves a series of hormonal feedback processes, and
therefore very difficult to understand (Couderq et al., 2020).
The existence of non-monotonic responses by EDCs (in
which their effects change, in an inverted U or U-shape)
also makes the work of researchers very difficult, since it is
necessary to be aware that a high dose of EDC is not always
it is the most toxic, but it can be a lower dose—this event
makes difficult to define the safe dose of a given compound
(Diamanti-Kandarakis et al., 2009; Vandenberg et al., 2012;
Couderq et al., 2020). Indeed, one of the greatest challenges
in toxicology is the choice of concentrations for in vitro
testing, an issue that has been discussed recently (Leist et al.,
2017; Albrecht, 2020; Hengstler et al., 2020). Currently, the
use of relatively high concentrations (20 to 200 times higher
than in vivo blood concentrations (Cmax) is agreed upon, as
these high concentrations lead to better accuracy results
than lower concentrations. Overall, higher concentrations in
the culture medium are required to observe cell damage
compared to the Cmax that is known to cause adverse effects
in vivo (in vitro–in vivo scaling factor). Thus, it is advised to
use a concentration range close to and above the maximum
concentrations observed in human plasma (Hengstler et al.,
2020). Furthermore, most EDCs remain understudied,
which constituted a major force of investigation but,
highlight the need for more emergent investigations to
discover the toxicological effects. Thus, evaluating EDCs as
an integral part of the human exposome has been the
current challenge of greatest interest.

In this point of view, we proposed the use of the human
umbilical artery as a human model to study the direct effects
of EDCs on the vascular level. Several works where these cells
were directly exposed to EDC’s are presented to emphasize
this well-established model as a great strategy to be used.

The Role of Smooth Muscle Cells

The main function of vascular smooth muscle is to regulate
vasodilation and vasoconstriction of vessels. Thus, the
vascular tone depends on the mechanisms that control the
intracellular cytosolic Ca2+ concentration: vasoconstriction
is due to the increase of Ca2+ levels, while vasodilation
occur by decreasing them (Lorigo et al., 2018). The main
mechanisms involved in the vasoconstriction are 1) a cell
membrane depolarization and 2) an agonist stimulation. In
the 1st mechanism, voltage-operated Ca2+ channels are
activated causing a Ca2+ influx. In the 2nd mechanism, there
is an activation of a G-protein, which induces Ca2+ release
by intracellular reservoirs of the cell, such as the
sarcoplasmic reticulum. On the other hand, the main
mechanisms involved in vasorelaxation are the cyclic
nucleotides and K+ channels activation. In this sense, the
smooth muscle cells regulate the contractile properties of
this highly specialized structure (Morgado et al., 2012;
Manoury et al., 2020)—the human umbilical artery—
through responses to a series of hormonal and
hemodynamic stimuli (Owens et al., 2004), but also due to
the expression of several contractile proteins, functional ion
channels and signaling molecules (Owens et al., 1996;
Kudryavtseva et al., 2013; Wang et al., 2015).

The functions of smooth muscle cells result from a
multiplicity of phenotypes (contractile to the synthetic
phenotypes range), with well-defined structural
characteristics (Rensen et al., 2007). As smooth muscle cells
are very plastic, in pathophysiological response, such as
exposure to EDCs, they may alter their contractile state and
signaling mechanisms (Owens et al., 2004; Gloria et al.,
2018; Lorigo et al., 2018), including the cyclic nucleotides
compartmentalization (Feiteiro et al., 2016). This
phenotypic modulation, as it impairs vascular tone
(comprise the vasoconstriction and vasorelaxation
responses), is associated with vascular lesions (Huang et al.,
2016) and may be an inductor of cardiovascular disorders,
as atherosclerosis. As these underlying molecular
mechanisms are not yet clear, the use of smooth muscle
cells is crucial to elucidate them and thus, to understand the
development of some vascular diseases. However, the
obtaining of smooth muscle cells is limited by the difficulty
of acquiring human tissue for isolation and cell culture.

In this sense, the human umbilical artery (HUA) is an
excellent source of vascular smooth muscle cells (Cairrao et
al., 2009) and could be a good model for studying the
effects of endocrine disruptors on the vascular system
(Gloria et al., 2018; Lorigo et al., 2018). Easily isolated from
the tunica media of the vessels (Meyer et al., 1978;
Rockelein and Schneider, 1992), human umbilical artery
smooth muscle cells (HUASMC) play a critical role in
vascular physiology and pathophysiology (Santos-Silva et al.,
2008; Morgado et al., 2012; Lorigo et al., 2018; Lorigo et al.,
2020) (Fig. 1).

Why Study the Human Umbilical Artery?

Normal umbilical vascular reactivity is critical to maintaining
the correct exchange of gases and nutrients between the fetus
and the mother. As HUA does not have innervation (Santos-
Silva et al., 2009; Provitera et al., 2019), unlike other arteries,
its specific physiological regulatory control depends entirely
on local mediators (such as serotonin, 5-HT, and histamine,
His). On the other hand, also catecholamines (such as

FIGURE 1. The human umbilical artery (HUA) can be easily
obtained from the human umbilical cord (background) allowing
the performance of human umbilical artery smooth muscle cells
(HUASMC) cultures. (A) The HUA isolated. (B and C) HUASMC
migrating from the smooth muscle layer and in a confluent state,
respectively.
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adrenaline, noradrenaline, and dopamine) play an important
role in this regulation. However, it has been shown that the
vascular response of HUA may differ from other vascular
systems (Yoshikawa and Chiba, 1991), namely concerning
the adrenergic system. This difference is mainly due to the
portion of the cord that is collected because as shown by
Kawano and Mori (1990), adrenergic nerve fibers are
present only in HUA at the fetal end of the cord (Kawano
and Mori, 1990). The main ex vivo methods used in HUA
to study the vascular response are the organ bath and the
human vessel perfusion system. Both systems allow to
achievement of a physiological blood vessel environment.
The main advantage of the perfusion system is that the
vessel segments are maintained as 3D structures with an
intact native endothelial lining (if isolated and mounted
correctly), allowing quantification of nanoparticles
accumulation and cellular response (Lysyy et al., 2020).
Regarding the organ bath, the main advantage is allowing to
isolate pharmacological responses, drug testing, and easy
repeatable (Jespersen et al., 2015). Thus, we can conclude
that HUA is a good model to evaluate the effects of EDCs
on the local mediators and even to study adrenergic
response in the portion proximal to the newborn.

Exposure to some EDCs can alter the hormone levels of
sex steroids (Sathyanarayana et al., 2014; Johns et al., 2015).
For example, it has been shown that perchlorate inhibits
thyroid hormone synthesis (Wolff, 1998), while phthalates
decrease the synthesis of testosterone (Parks, 2000;
Mylchreest et al., 2002). On the other hand, the estradiol
levels seem to increase by exposure to herbicide atrazine (Jin
et al., 2013). In this sense, some studies have reported that
HUA is more sensitive to the effects of estradiol than the
human umbilical vein (Fausett et al., 1999) and that this
artery allows the short-term and long-term effects of
testosterone to be studied (Cairrao et al., 2008; Cairrao et
al., 2010; Saldanha et al., 2013). Thus, the HUA can be
considered an excellent tool/model for the study of genomic
and non-genomic alterations that EDCs can induce at the
vascular level, resulting from alterations in hormonal levels.

On the other hand, it is known that EDCs also impair
thyroid hormone production (Ghassabian and Trasande,
2018; Vancamp et al., 2019; Street and Bernasconi, 2020),
compromising CV homeostasis and consequently promoting
or increasing the risk of developing CVD (Jain et al., 2013).
The effects of EDCs on vascular contractility relating them
to thyroid homeostasis is practically unexplored. However, a
recent study showed that EDC octylmethoxycinnamate
alters the contractility patterns of the HUA of pregnant
women with hypothyroidism and competes with the natural
hormone T3 for binding to the thyroid hormone receptor
alpha active center. Although these computational
simulations by docking molecular cannot clarify with
certainty the absolute mode of action of an EDC, they are
an asset in understanding them (Lorigo et al., 2021a), even
supporting the different studies of contractility. Therefore,
HUA may be also a good model for the vascular study of
different pathologies, as is the case of thyroid pathologies, so
closely related to the CV system.

Moreover, the HUA can also be used for the study
of hypertensive disorders of pregnancy (HDP), such as

pre-eclampsia or gestational hypertension (Naderi et al.,
2017). Additionally, in HDP and specifically in pre-
eclampsia, it would be interesting also use placenta or
placental chorionic plaque arteries, using the ex vivo
placental perfusion model as described by Hitzerd et al.
(2019), as its pathophysiology is believed to be mainly
originate in the placenta. On the other hand, the use of
more peripheral placental arteries should also be considered
as a model depending on the study to be performed.
Overall, understanding the regulation of vascular reactivity
and the remodeling of blood vessels in the umbilical cord is
essential to understand the pathophysiology of HDP and to
investigate the best therapeutic treatment strategies for HDP.

As mentioned before, HUA is mainly regulated by local
mediators (such as serotonin, 5-HT, and histamine, His)
(Santos-Silva et al., 2009; Provitera et al., 2019). Changes in
5-HT and His receptors increase HUA sensitivity and
reactivity to these mediators, which causes an increase in
vascular resistance (Bolte et al., 2001; Brew and Sullivan,
2006). Consequently, this may promote the development of
gestational hypertension and pre-eclampsia (Bolte et al.,
2001; Brew and Sullivan, 2006; Feinberg, 2006; Gupta et al.,
2006; Lorigo et al., 2018). Different EDCs have already been
shown to interfere with the HUA 5-HT and His receptors
(Gloria et al., 2018), which highlights a possible role of these
EDCs in promoting the development of HDP.

Furthermore, ion channels also play a key role in HDP
(Kuo et al., 2011). The HUA was also used to demonstrate
the role of EDCs tributyltin (Gloria et al., 2018), and
octylmethoxycinnamate (Lorigo et al., 2019; Lorigo et al.,
2021a; Lorigo et al., 2021b) in the blockade of L-type
Ca2+ channels of HUA. Moreover, this effect in EDCs
di-(2-ethylhexyl) phthalate and bisphenol A is also proved by
patch-clamp in rat vascular smooth muscle cells (Feiteiro et al.,
2018; Mariana et al., 2018). The EDC octylmethoxycinnamate
also appears to have effects on K+ channel activation by cGMP-
dependent protein kinase activation (Lorigo et al., 2021b),
which can compromise vascular homeostasis and induce
hypertension (Cox et al., 2001; Cox, 2005).

In summary, and according to the suggested for other
authors (Kelley et al., 2019; Street and Bernasconi, 2020;
Tang et al., 2020), the exposure to EDCs seems to be related
to the promotion and development of some cardiovascular
disorders, such as atherosclerosis, hypertension, or pre-
eclampsia. Therefore, changes in HUA reactivity induced by
EDCs exposure are an asset to understanding the risk of
developing CVD, highlighting the clinical importance of this
artery.

Cultures of HUASMC and Their Vascular Importance

In addition to being used in different studies of arterial
contractility, the HUA is also an important model to
perform isolation of HUASMC (as reviewed by Lorigo et al.
(2018)). These cells can be directly exposed to different
EDCs and used to perform cell contractility, gene
expression, or cell cytotoxicity studies. As demonstrated by
Cairrao et al. (2009) these cells express functional ion
channels (Cairrao et al., 2009), enabling the successful
realization of electrophysiological studies by Patch-Clamp,
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or cell contractility studies, by planar cell surface area. These
cells can also be used for cell viability studies (Gloria et al.,
2018), to assess the toxicity of an EDC to the CV system.
Coherence between the in vitro results of HUASMC with
those ex vivo (using HUA) and electrophysiological studies
(Santos-Silva et al., 2008; Cairrao et al., 2009; Santos-Silva et
al., 2009; Saldanha et al., 2013; Li et al., 2016; Mazza et al.,
2016; Provitera et al., 2019) and the cell contractility studies
(Lorigo et al., 2019; Lorigo et al., 2021a) was verified. Thus,
we can conclude that HUASMC can be an excellent tool for
the study of EDCs in vitro. The use of in silico methods also
complements the assessment of disruptive effects on the
vascular system, through the computational analysis of
structure-activity relationships (Molecular Docking) (Lorigo
et al., 2021a) (Fig. 2). Understanding how the normal
physiological regulation of HUA is impaired because of
exposure to EDCs is critical to understanding the
development of CVD and targeting new possible treatments.

Final Remarks

In summary, the negative impact that EDC toxicity has on
human cardiovascular health is a serious problem that must
not be overlooked. Although several investigations are
already starting to emerge in this field of research, there is
still a long way to go. It should not be forgotten that
exposure to EDCs is complex, often occurs through
mixtures, there are non-monotonic responses, and there is
also the possibility that it is influenced by various external
factors (such as diet, genetics, or gender differences).
Different studies on the vascular function using HUA will
allow addressing this complexity: the studies can be
performed in arteries from women whose births were to
boys or girls, from women with different eating habits,
carriers of various pathologies, whether genetic or not.
However, the occurrence of pathologies, particularly CVD
modulates the vascular response. This phenotypic
modulation by smooth muscle cells, as it impairs vascular
tone, is associated with vascular lesions, and can be studied.
An example where vascular lesions have an important role

to develop phenotypic modulation is atherosclerotic. In this
pathological process, there is lipid accumulation (low-
density lipoprotein levels increase) and mononuclear
leukocyte infiltration in vascular tunica intima. Moreover,
some conditions (e.g., hypertension, smoking, or diabetes)
can be inductors of this disorder. In this sense, the human
umbilical artery can be considered a good model to study
endocrine disruption at the vascular level once allows for
understanding the alterations in the regulation of contractile
mechanisms controlled by smooth muscle cells. On the
other hand, the possibility of non-monotonic responses
induced by EDCs can be achieved by performing different
techniques using the artery itself or its cells.

Therefore, we emphasize the need to continue to perform
different investigations using HUA, to understand the
mechanisms by which EDCs dysregulate the vascular
response and lead to induce CVD in later life. In this way, it
is possible to understand the vascular toxicity of EDCs and
improve human cardiovascular health.
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