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Abstract: Exogenously delivered mesenchymal stromal cells (MSCs) are therapeutically beneficial owing to their

paracrine effect; they secrete various cytokines, nucleic acids, and proteins. Multiple bioengineering techniques can

help MSC cultures to release secretomes by providing stem cell niche-like conditions (both structurally and

functionally). Various scaffolds mimic the natural extracellular matrix (ECM) using both natural and synthetic

polymers, providing favorable environments for MSC proliferation and differentiation. Depending on material

properties, either topographically or elastically structured scaffolds can be fabricated. Three-dimensional scaffolds

have tunable substrate rigidities and structures, aiding MSC cultivation. Decellularized ECM-derived hydrogels are

similar to the natural ECM, thus improving the paracrine effects of MSCs. Here, we discuss recent research on the

application of scaffolds to maximize the immunomodulatory function of MSCs.

Introduction

Mesenchymal stromal cells (MSCs) are defined by the International
Society for Stem Cell Research (ISSCR) as fibroblast-like non-
hematopoietic cells (Ullah et al., 2015). They are multipotent but
are CD40, CD80, and CD86 negative and have low major
histocompatibility complex (MHC) I/II values; thus, they are less
immunogenic than other stem cells. MSCs are therefore
increasingly being utilized for tissue engineering and
immunotherapy applications. In particular, MSCs have the
potential to modulate inflammatory or immune-activated
circumstances by secreting immune modulation factors, nucleic
acids or proteins (Li et al., 2019). These immune-modulating
factors include indoleamine 2,3-dioxygenase (IDO), heme
oxygenase-1 (HO-1), transforming growth factor-β (TGF-β),
TNF-α stimulated gene/protein 6 (TSG-6), cyclooxygenease 2
(COX2), prostaglandin E2 (PGE2), hepatocyte growth factor
(HepGF), galectins-1 (Gal-1), iNOS, interleukin-6 (IL-6),
interleukin-1 receptor antagonist (IL-1Rag), interleukin-10 (IL-10)
and human leukocyte antigen-G (HLA-G) (Pittenger et al., 2019).
Additionally, secretome from MSCs can regulate the proliferation,
differentiation, and activity of most immune cells, including T

cells, B cells, natural killer (NK) cells, dendritic cells (DCs), and
macrophages (Lee and Song, 2018). MSCs can therefore alleviate
inflammatory or immune-related diseases. Emphasis regarding
regenerative medicine using MSCs has been shifting toward
either producing cytokines or other factors (termed the paracrine
effect), rather than the differentiation and rebuilding of damaged
tissues using MSCs themselves. The potentiation of the
immunomodulatory function of MSCs means that they constitute
an emerging and potentially important tool for cell therapy.

To enhance the capacity of the immunomodulatory function
of MSCs, multiple bioengineering techniques can be employed
during their cultivation. Scaffolds can be utilized during cell
culturing to preserve the tissue architecture and provide a three-
dimensional (3D) biomimetic milieu to MSCs, similar to a stem
cell niche. It has been known that the dimensionality, physical
characteristics, topographical cues, surface chemistry of
biomaterials, and micro-structure of scaffolds can regulate the
immunomodulatory function of MSCs. Here, we review the link
between the immunomodulatory function of MSCs and the
properties of scaffolds, particularly topographical cues or
substrate elasticities of biomaterials.

Scaffolds with Topographical Features

The ECM consists of networks of fibrous proteins, collagens,
and elastic fibers, which are immersed in a viscoelastic gel
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that is rich in proteoglycans (Mecham, 2011). Thus, diverse
synthetic polymers and natural polymers have been used to
generate scaffolds with fibrous structures, so as to mimic the
natural ECM. Synthetic polymers such as polycaprolactone
(PCL), poly(lactic-co-glycolic acid) (PLGA), and polylactic
acid (PLA) can be utilized to generate fine-tuned fibrous
structures via electrospinning. Su et al. (2017) reported that
electrospun PCL scaffolds promoted pro-angiogenic and
anti-inflammatory paracrine factors in adipose-derived stem
cells [MSCs(A)]. They also further analyzed the effects of
aligned, randomized, or meshed patterns fabricated with
PCL on MSCs(A), revealing that meshed scaffolds best
enhanced their paracrine effects. This finding indicates that
the orientations of the fibers and the substrate rigidity might
also be important factors for controlling the functions of
MSCs. biocompatible material that can be used to fabricate
several forms, including fibers, gels, and films (Qi et al., 2017).
A recent study demonstrated that the meshed scaffolds
comprising silk fibroin nanofibers strongly elevated the levels of
immunomodulatory factors such as IDO-1, COX2, and PGE2
in bone marrow-derived stem cells [MSCs(M)] (Kim et al.,
2019a). Furthermore, MSCs(M) on mesh form of silk fibroin
nanofibers reduced mouse mortality from polymicrobial sepsis
through their improved immunomodulatory functions than
MSCs(M) only (Kim et al., 2021). ECM like structured silk
fibroin seems to provide a favorable environment for MSC
cultivation through its structural and material properties. Vallés
et al. also demonstrated the effect of topographical cue on
immunomodulatory function of MSCs (Vallés et al., 2015).
MSCs(M) on 3D polystyrene scaffolds showed smaller cell
bodies, but secreted a higher level of soluble factors than
MSCs(M) on two-dimensional (2D) polystyrene scaffolds,
indicating that topographical cue affects cell function differently.
The pore size in hydrogel-based scaffolds also can make a
critical difference even in the same hydrogel. For example,
sponge or foam porous scaffolds contain connected pore

structures that favorably transport gas and nutrients into
cells. Hydrogels made of natural materials such as fibrin,
alginate, or silk fibroin have been used as scaffolds for cells
to promote cell growth and function (He et al., 2020).
However, if the pores are too small, the cellular penetration,
ECM deposition, or neovascularization can be inhibited
(Shruti et al., 2013). Meanwhile, pores that are excessively
large can decrease the cell-to-cell contact ratio, as the cells
exhibit 2D growth patterns on the substrate rather than
adopting a 3D organization (Marrella et al., 2018). The
effective pore sizes for cellular function in tissue engineering
applications are listed in Table 1. The micro-architecture
supporting MSCs seems to be an important cue to manage
the paracrine effect of MSCs.

Substrate Stiffness and Biochemistry of Scaffolds

Since the effect of matrix elasticity on the MSC function and
fate was demonstrated by Engler et al. (2016) for the first
time, many studies have been performed to find the optimal
substrate rigidity for MSC cultivation. Hydrogels are
favorable for MSC cultivation as they can be tuned regarding
to their substrate rigidity. Drzeniek et al. (2021) reported that
a microporous 3D hydrogel composed of collagen
significantly improved the paracrine effects of MSCs,
compared with a 2D collagen-coated polystyrene. They used
a customizable collagen I-hyaluronic acid (COL-HA)-based
hydrogel to encapsulate MSCs for mimicking stem cell
niches. Compared with a 2D surface coated with COL-HA,
the 3D hydrogel comprising COL-HA elevated the secretion
of angiogenesis-, immunomodulation-, hemostasis-, and ECM
remodeling-related cytokines from MSCs. Similarly, Wong
et al. (2020) also demonstrated that soft extracellular matrix
(~2 kPa) mimicking bone marrow maximized the ability of
MSCs(M) to produce paracrine factors and induce chemotaxis
upon inflammatory stimulation. In addition to matrix elasticity,

TABLE 1

Cellular function and pore size of scaffolds

Cellular function Scaffold Pore size (nm) Reference

Vascularization/angiogenesis Fibrin 100–11,000 Francis et al., 2008

Collagen 1,000–11,000 Francis et al., 2008

Cellulose acetate 800–8,000 Brauker et al., 1995

Mixed esters cellulose 1200–8000 Brauker et al., 1995

Polytetrafluoroethylene (PTFE) 1000–15000 Brauker et al., 1995

Acrylic copolymer 800–5000 Brauker et al., 1995

Chitosan >90,000 Lim et al., 2008

Poly(ethylene glycol) (PEG) 100,000–150,000 Chiu et al., 2011

Wound healing Collagen-glycosaminoglycan copolymers 20,000–120,000 Yannas et al., 1989

Paracrine activity Alginate hydrogel 5 or 120,000 Qazi et al., 2017

Alginate hydrogel 10 or 125,000 Qazi et al., 2020

Proangiogenic, immunomodulatory,
paracrine factors, neuroprotective

Collagen I-hyaluronic acid
(COL-HA)-based hydrogel

30,000–40,000
90,000–100,000

Drzeniek et al., 2021

Differentiation Photo-crosslinked oligo[(polyethylene
glycol) fumarate] (OPF) hydrogels

100,000–400,000 Dadsetan et al., 2008
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composite scaffolds that mimic natural conditions may greatly
enhance the paracrine effect of MSCs. In order to maximize the
similarity to the natural ECM, decellularized ECM (dECM)
from various tissues and organs have been investigated and
applied via a number of techniques that utilize chemical,
enzymatic, or mechanical disruption. As the ECM is an
essential non-cellular component of the tissue
microenvironment, decellularized scaffolds composed entirely of
ECM can help to reconstruct stem cell niches in vitro. Hydrogel
forms of dECM can both affect stem cell differentiation and
exert a functional effect, according to the origin of the organ or
tissue in question. One disadvantage of ECM-derived hydrogels,
however, is their poor self-supporting ability, which arises from
their low viscosities and mechanical properties as scaffolds. Due
to this characteristic, which hinders the possibility of making
large and complex 3D structures with hydrogels (Yi et al.,
2019), the combination with other ECM components, such as
collagen, can be applied for enhancing the stiffness of hydrogels.
There are, however, limitations to the use of dECM in standard
clinical treatments, since there is no standard process for the
dECM (Kim et al., 2019b) and the current process is unable to
completely remove all cell materials in a practical setting
(Gilbert et al., 2009). Thus, the general standard guideline for
processing dECM will accelerate the clinical trials of MSCs and
dECM-derived scaffolds.

Apart from the above mentioned factors, some reports
have indicated that the cell source might affect the
immunomodulatory function of MSCs, as they can be
harvested from various adult tissues as well as neonatal
tissues. Although MSCs(M) seem to be designated as the
gold standard of MSCs (Hall et al., 2013), MSCs(A) and
cord blood-derived MSCs [MSCs(CB)] have also been
widely used in clinical studies due to their easy accessibility.
Although it is hard to conclude which MSCs are more
appropriate to use, it has been reported that human
MSCs(A) are more genetically and morphologically stable in
long-term culture, display a lower senescence ratio, show a
higher proliferative capacity, and retain differentiation potential
for a longer period in culture compared with human MSCs
(M) (Elman et al., 2014). Further, the yield of MSCs(A) is
approximately 500-fold greater than that of MSCs(M) when
isolated from an equivalent amount of adipose tissue and bone
marrow stroma, respectively (Strioga et al., 2012). Nonetheless,
more intensive studies about the cell source are needed for
arriving at a conclusion. The functions of the MSCs from
different sources are listed in Table 2.

In conclusion, many methods for preparing scaffolds with
various materials have been developed. In particular, scaffolds
with favorable properties for improving MSC functions are
actively being fabricated. Furthermore, enhancing the

TABLE 2

Immunomodulation of MSCs by different origin

Origin Type of scaffold Immunomodulation References

Human
bone
marrow

Alginate/hyaluronic acid hydrogel MSCs were hypoimmunogenic and could exert immunosuppressive
effect on HLA-mismatched PBMCs.

Du et al.,
2016

Woven poly(ε-caprolactone) (PCL) Enhanced glycosaminoglycans (GAGs) and collagen production by IL-
1Rα-expressing scaffold in inflammatory conditions, and the level of
PGE2 was elevated

Glass et al.,
2014

Alginate micro-encapsulation MSCs in 3D culture decrease the expression of TNFα level and PGE2
level increase in rat organotypic hippocampal slice coculture

Stucky et
al., 2015

Fibrin hydrogel MSCs in fibrin hydrogel increase PGE2 secretion, and enhance
macrophage polarization

Murphy et
al., 2017

Collagen Promotes the activation of M2 macrophage, and reduced IL-10 Rashedi et
al., 2017

Silk fibroin nanofiber MSCs on silk fibroin elevate the expression of IDO-1, COX2 and PGE2 Kim et al.,
2019a

Grid-like square cavities from
thermoplastic polyurethane

MSCs on grid-like structure induce secretion of PGE2 and IL-1Rα Roger et
al., 2016

Porous synthetic scaffold MSCs in scaffold decrease the secretion of IL-6, MCP-1, and RANKL
than 2D culture, and increase PGE2 and TSG-6 level

Vallés
et al., 2015

Human
adipose
tissue

Alginate hydrogel ASCs in alginate hydrogel enhance their potential to inhibit
proliferation of PBMCs

Follin
et al., 2015

Elecrospun PLLA fibrous scaffolds
with random or aligned fiber
alignment

MSCs on aligned fibers had enhanced expression and secretion level of
TSG-6 and COX2

Wan et al.,
2018

Human
umbilical
cord

Decellularized pig
ECM scaffold

Molecular IDO, PGE2, TGF-β1, IL-10, and HGF increased in the
scaffold concentration group

Liu et al.,
2012

Exosome and collagen scaffold M2 macrophage polarization, reduced inflammation(IL-1β, TNFα,
IL-6), increased anti-inflammation(IL-10, TGF-β)

Xin et al.,
2020

Human
dental pulp

bFGF-heparin hydrogel Attenuated the proinflammatory (IL-6, TNFα) Albashari
et al., 2020
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similarity of these substrates (in terms of their structures and
properties) for MSC cultivation can improve both the
paracrine effect and the differentiation of stem cells, thus
enhancing the feasibility and efficacy of MSC therapies for
clinical applications (Fig. 1). Now, it is important to consider
how the improved function of MSCs can be maintained
sustainably within scaffolds or how long the injected MSCs
can survive after in vivo transplantation. Thus, thermo-
responsive or injectable hydrogels and adhesion-related
ligand-containing hydrogels are being actively developed
(Hong et al., 2019). In this regard, more biocompatible
scaffolds need to be further developed to take advantage of
the paracrine products of MSCs. Such studies could help to
promote cell therapy and achieve efficient translational research.
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