
Current and future therapies for abnormal early embryogenesis with
assisted reproductive technology
XIAOXIA WANG1,#; ZHONGYUAN YAO1,2,#; DI LIU1; CHUNHONG YU3,*; HUI LI1,3,*

1
Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China

2
Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China

3
Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central
South University, Changsha, 410000, China

Key words: Oocyte maturation arrest, Preimplantation embryonic lethality, Gene mutation, Infertility, Embryo development

Abstract: Each stage of embryonic development, including normal gamete maturation, fertilization, zygotic genome

activation, and cleavage, is crucial for human reproduction. Early embryo arrest is a common phenomenon. It is

estimated that about 40%–70% of human embryos are arrested at early developmental stages. However, the exact

mechanism remains largely uncertain. Embryos can be investigated in vitro by way of the development of in vitro

fertilization/intracytoplasmic sperm injection. In addition to iatrogenic factors related to abnormal oocyte/embryo

development, multiple gene mutations have been found to be involved in such phenotypes. Based on the knowledge

of known etiological factors, several therapies are proposed to improve clinical outcomes. Here, we shed light on

current and potential therapies for treating these conditions through reviewing articles and combining with our

clinical and research experience.

According to reported data, infertility affects 15% of couples
of reproductive age, and recurrent pregnancy loss affects
approximately 5% of women of childbearing age globally
(Sun et al., 2019; Zhou et al., 2021). Infertility and recurrent
pregnancy loss are common disorders. However, their exact
mechanisms remain unknown. The stages of embryonic
development, including normal gamete maturation,
fertilization, zygotic genome activation (ZGA), and cleavage,
are of vital importance for uterine embryonic implantation
and the development of a baby. It has been difficult to
directly study human oocytes/embryos previously due to
ethical challenges and the scarcity of research materials.
However, with the help of in vitro fertilization/
intracytoplasmic sperm injection (IVF/ICSI), investigators
are now able to observe developmentally abnormal human
oocytes/embryos in vitro.

Oocyte/embryo developmental abnormality include
internal (e.g., aneuploidy) and morphological factors that
can be optimally addressed in the following stepwise
fashion. Firstly, when it occurs in an IVF/ICSI cycle, a clinical

doctor or embryologist must assess the patients’ condition.
Normal oocyte/embryonic development is impacted by body
mass index (BMI), age, endometriosis, ovarian reserve, male
sperm quality, and the couple’s chromosomal makeup
(Demko et al., 2016; Esteves et al., 2019; Lin et al., 2019; Le et
al., 2021). Secondly, iatrogenic factors must be excluded.
Noting the personalized treatment that doctors choose a
controlled ovarian stimulation protocol according to clients is
therefore important. It has been reported that a mild
stimulation protocol such as progestin-primed ovarian
stimulation (PPOS) improves the chances of attaining euploid
embryos (La Marca et al., 2020). Furthermore, starting and
maintenance dosage of gonadotropin (Gn) should be
monitored and adjusted for each individual case. Sometimes,
even the timing of human chorionic gonadotropin triggering
influences oocyte maturation and embryo development.
Thirdly, it is important to note that some adjuvant drugs,
such as growth hormones, dehydroepiandrosterone, calcium,
and vitamin D, have been implicated in improving oocyte
and embryo quality (Nardo and Chouliaras, 2020). Finally, it
is useful to consider that, in addition to these drugs, several
modifications in in vitro maturation (IVM) media, such as
melatonin supplementation, can improve levels of oocyte/
embryo maturation, although the effects are subtle (Nardo
and Chouliaras, 2020; Li et al., 2021b).
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Notably, not all oocytes/embryos lead to live birth events.
In fact, 40%–70% of human embryos are estimated to arrest at
early developmental stages (Gardner and Lane, 1997). To
complicate things even further, some infertile patients
experience multiple IVF/ICSI cycles due to either the
complete oocyte maturation arrest, preimplantation
embryonic lethality, or recurrent implantation failures not
attributable to any of the aforementioned factors. This leads
to serious physiological and economic stress for patients.

A number of genes influencing early embryonic
development have been identified in animal models, whereas
the etiology in humans has remained largely elusive until
recently. Due to advances in whole exome sequencing
(WES), some abnormal oocyte/embryo development is
considered as one of Mendelian disorders. Twenty-three
genes have been confirmed to be related to abnormal
human oocyte/embryo development. One gene links to
oocyte death (PANX1 (Sang et al., 2019)). Another is tied to
oocyte maturation arrest (TUBB8 (Feng et al., 2016), PALT2
(Chen et al., 2017b; Maddirevula et al., 2017a), TRIP3
(Zhang et al., 2020), CDC20 (Zhao et al., 2020) and MEI1
(Ben Khelifa et al., 2018)). Four links to genuine empty
follicle syndrome (ZP1 (Zhou et al., 2019), ZP2 (Yang et al.,
2021), ZP3 (Chen et al., 2017c) and LHCGR (Yariz et al.,
2011)). Three are associated with an oocyte’s lack of a zona
pellucida (ZP1, ZP2 and ZP3 (Huang et al., 2014)). One
gene has been implicated for thin zona pellucida (ZP2 (Dai
et al., 2019)). Eight link to fertilization failure (ZP2 (Dai
et al., 2019), PLCZ1 (Heytens et al., 2009), WEE2 (Sang et
al., 2018), PALT2 (Wu et al., 2019), TUBB8 (Chen et al.,
2017a), TLE6 (Alazami et al., 2015), CDC20 (Zhao et al.,
2020) and NLRP5 (Li et al., 2021a)). Two have been
implicated in zygotic cleavage failure (PADI6 (Maddirevula
et al., 2017b) and BTG4 (Zheng et al., 2020)). Nine link to
early embryo arrest (TLE6 (Alazami et al., 2015), NLRP2
(Mu et al., 2019), NLRP5 (Mu et al., 2019), PATL2 (Chen
et al., 2017b), TUBB8 (Chen et al., 2017a), CDC20 (Zhao et
al., 2020), KHDC3L (Wang et al., 2018), REC114 (Wang et
al., 2020), MEI1 (Dong et al., 2021) and MOS (Zhang et al.,
2021b)). One has been associated with pronuclear fusion
failure (CHK1 (Zhang et al., 2021a)). Five have been tied to
recurrent hydatidiform moles (KDHC3L (Wang et al., 2018),
PADI6 (Maddirevula et al., 2017b), NLRP5 (Rezaei et al.,
2021), NLRP7 (Rezaei et al., 2021) and MEI1 (Nguyen et al.,
2018)), and so on. As a result of these new insights, an
expanding spectrum of mutation sites and phenotypes has
been identified. It seems that different phenotypes of
infertility can be linked to one gene, and one causative gene
may induce several phenotypes. This indicates that the
pathways of oocyte/embryo development are very
interconnected and complex. Reproductive doctors and
genetic counselors must be aware of the links among
infertility, miscarriages, and aberrant chromosomal makeup.
For patients with multiple unexplained IVF/ICSI failures,
WES and Sanger sequencing combined with family history
must be ascertained to confirm whether they carry any of
the reported pathogenic genes. In cases where pathogenic
variants are identified, doctors can offer genetic and
reproductive counselling options to affected couples. Sperm-
induced oocyte activation failure has been successfully

treated by way of artificial oocyte activation (AOA) with no
increase in birth defect rate (Long et al., 2020). However, for
other conditions, oocyte/sperm donation should be
suggested because patients carrying these mutations rarely
give birth, yet it might still be a feasible option to enable
carriers to have their own children (Sang et al., 2021).
Moreover, it should be mentioned that abnormal oocyte/
embryo development cannot be completely explained by the
aforementioned genes. Thus, WES for these patients can
help identify novel pathological genes, which would thus
pave the way for future diagnosis and treatment.

Gene therapy may soon become a promising treatment
option. In 2020, Zhao et al. (2020) injected CDC20
complementary RNAs (cRNAs) into oocytes in maturation
arrest (Zhao et al., 2020). All injected oocytes were
successfully fertilized, and developed into embryos, in which
case the preimplantation genetic screening showed that one
of the blastocytes was normal (Zhao et al., 2020). In addition,
injections of human PLCZ1 cRNAs or recombinant protein
were able to trigger Ca2+ oscillation, which aided oocytes’
development to the blastocyte stage (Rogers et al., 2004; Yoon
et al., 2012). Exogenous cRNAs and protein complements can
help early embryonic transition to the next development
phase. However, it remains a big question whether such
cRNAs or protein injections will ultimately adversely impact
progeny, despite their rapid rate of metabolization.

For embryos experiencing causally unknown recurrent
implantation failure, preimplantation genetic testing-
aneuploidy (PGT-A) will soon be applicable for screening
euploid embryos to increase their chances of implantation.
PGT is an invasive technology that requires the suction of 5–8
trophectoderm (TE) cells for effective detection. Furthermore,
it does not lend to a direct means of assessing the inner cell
mass (ICM). Recently, noninvasive PGT-A (niPGT-A), a new
technology, has been proposed for analyzing cell-free DNA in
the spent culture media of human blastocytes to directly assess
for ICM (Huang et al., 2019). However, it includes expelled
abnormal chromosomes from TE/ICM, which reduces the
reliability of the technology. Fluorescence lifetime imaging
microscopy (FLIM) is another technology used to measure
metabolic characteristics of embryos to identify the ploidy of
an embryo (Sanchez et al., 2019). Nonetheless, presently the
researches is still solely focused on mouse oocytes/embryos
and is yet to be applied to human embryos.

In conclusion, oocyte/embryonic development is influenced
by both the personal chromosomal status of patients and
iatrogenic factors. To date, a series of genetic contributors has
been identified by the way of combing clinical phenotypes
and WES. These genes can be potential biomarkers for
diagnosing patients with embryo developmental abnormalities,
and may thus be a viable direction for future therapy.
Although NiPGT-A and FLIM are noninvasive technologies
for identifying euploidies, they have their disadvantages. We
anticipate that new noninvasive technologies will be developed
to replace PGT-A for direct assessment of ICM. By these
means, future reproductive physicians will not be confined to
simply optimizing clinical treatments so as to avoid iatrogenic
factors. Rather they will also be equipped to diagnose such
patients and thereby point them towards a new range of
helpful avenues for assisting them.
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