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Abstract: Much of our understanding of the events which underlie cell migration has been derived from studies of cells in

tissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that can

reorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relatively

few studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellular

organization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial wound

repair along the tissue’s natural basement membrane, Descemet’s membrane. Because the tissue exists as a cell monolayer it

affords one an opportunity to readily explore the effect of cell/matrix influences on cell motility. As such, cell movement

along this substrate differs somewhat from that found in vitro and migrating endothelial cells also demonstrate an ability

to move along the ECM without the benefit of having an organized actin cytoskeleton.

A Perspective on Cell Migration Studies

In all animal systems, migration is a fundamental biological
property of cells that occurs in both normal and diseased
states. Thus, it is an area of cell biology that has received
extensive attention. Since the advent of modern cell culture
technology in the 1950’s, this phenomenon has been intensely
explored by numerous investigators employing various
approaches from the morphological, biochemical and
molecular levels in a concerted effort to ascertain those
mechanisms responsible for this phenomenon. Results
obtained from this plethora of studies have revealed some very
basic and fundamental insights into mechanisms that allow for
cell movement in processes such as wound repair, tissue
development, and cancer metastasis. In addition, in order to
more closely mimic the in vivo environment, work on this
subject has further expanded into understanding the so-called
3-D migratory processes as they relate to some cells that move
within an extracellular connective tissue scaffolding (Stixt,
2012; Yamada and Sixt, 2012; Friedl et al., 2012; Friedl et al.,
1998). Interestingly, under this condition, migration appears to
involve ameboid-like movements within the matrix resulting in
an intimate matrix/cell association that appears to eliminate
the need for focal adhesions (Paluch et al., 2016).

Many observations on cell movement have come from
experiments employing cultured cells. While findings using
this approach have provided us with insights into the
mechanisms and physiological processes that cells employ to
migrate (Reig et al., 2014; Ridley et al., 2003; Wong and
Gotlieb, 1984), these observations come mostly from
systems in which cells exist on artificial surfaces (Pelhan and
Wang, 1998), or surfaces that have been coated with an
extracellular matrix (ECM) material such as fibronectin or
laminin (Hartman et al., 2017; Perris and Perissinotto, 2000;
Bailey et al., 1993; McCarthy et al., 1985; McCarthy and
Furcht, 1984). Within the literature there are studies, though
few compared to cultured cell usage, that investigate how a
highly organized and complex natural ECM influences cell
motility. These studies all describe a highly dynamic
structure that provides mechanical and chemical cues to
guide migrating cells (Sherwood, 2021), some of which
provided by cellular-mediated proteolysis of the substrate to
generate bioactive ECM fragments with unique signaling
activities (Ricard-Blum and Vallet, 2019). Indeed, studies
from the author’s laboratory have demonstrated that when
injured organ cultured endothelium are exposed to protease
inhibitors, cell movement into the wound area is retarded
(Gordon and DeMoss, 1999). Thus, basement membranes
have been shown to be dynamic structures capable of
influencing those mechanisms that regulate cell movement.

As it turns out, although much of what has been learned
in vitro can be applied to in vivo or in situ studies, there are
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differences which underlie how cells move along an ECM,
either in 2D or 3D situations, relative to migrating in a
tissue culture milieu (Yamada et al., 2019), especially in the
latter case where migration appears to be mediated by the
formation of lobopodia (Petrie et al., 2017). In addition,
studies have shown that the dimensionality of the
underlying matrix, either in a 1D, 2D or 3D organization
will influence mechanisms that regulate cell migration
(Doyle et al., 2013). Thus, as these recent investigations
demonstrate, the organization of the matrix will influence
and dictate mechanisms that cells undertake to migrate.

The Influence of the ECM and Descemet’s Membrane on
the Corneal Endothelium

Because epithelial cells reside on basement membranes, these
rather large, highly organized ECM complexes play
significant roles in their life and function, from gene
expression to virtually all physiological processes. As a result,
they display a highly polarized cellular organization with
distinct apical and basal ends (Chang et al., 2019; Cooperman
and Djiane, 2016). In response to a stimulus such as an
injury, these cells migrate while maintaining a close
adherence with their underlying ECM. In the case of a
wound, epithelial cells migrate along their basement
membrane (so-called 2-D migration) and thus, are greatly
influenced by their interactions with this natural underlying
ECM. In the case of the corneal endothelium, it exists as a
cell monolayer on Descemet’s membrane (Figs. 1A–1C), on
the posterior aspect of the cornea and contains no direct
nerve or blood supply, thus making the tissue amenable to
organ culture. As such, it represents a model system for
studying how the underlying ECM influences cell
organization and regulates cell migration during wound repair.

The endothelium, as all epithelial systems on ECM,
displays a very polarized organization with distinct apical and
basal surfaces. Apically, actin is organized into distinct
peripheral microfilament bands (Fig. 1D) that intersect with
the zonula adherens (Gordon and Wood, 2009) as part of the
junctional complex that contributes to the tissue’s barrier
function and integrity (Barry et al., 1995). In contrast, when
endothelial cells are grown in vitro to confluency, although
they assume a classical cobblestone appearance, they display a
much more extensive actin cytoskeletal framework around all
the cell membranes (apical, basal and lateral) (Gordon et al.,
1982), akin to a cage-like appearance, possibly as a response
to being grown on an artificial foreign surface.

Effect of Descemet’s Membrane on Endothelial Wound
Repair

An in situ circular freeze injury results in a denuded region of
ECM that cells adjacent to the wound migrate along in order
to repopulate and restore the monolayer. An early response to
the injury is the loss of the peripheral microfilament bands
with actin becoming reorganized into stress fibers (Fig. 1F),
(Gordon et al., 2005). In addition, alterations in cell
morphology concomitantly occur as the polygonal cells
become more akin in their appearance to migrating cultured
cells. Subsequently, these cells migrate into the wound

region (Figs. 1G–1I). As the monolayer reforms, migration
ceases, stress fibers disappear, and peripheral microfilament
bands become reestablished as the integrity of the tissue
monolayer is restored.

Existing on an ECM modifies some characteristics of
endothelial cell movement during wound repair relative to
what has been observed in cultured cells. For example, these
cells move into the wound area, maintaining a very close
association between their basal cell membrane and the ECM,
almost as if they are sliding along the matrix surface. These
migrating cells display a tapered leading edge that occasionally
displays a slender filopodia. Though this is somewhat akin to
what is observed in moving cultured cells, this morphological
modification accompanied by a highly organized actin
cytoskeleton are not absolute requirements for their movement
along an ECM. Several studies from my laboratory, using
agents that led to actin depolymerization, slowed, but did not
prevent cell migration and subsequent wound closure. In
addition, soybean agglutinin (SBA) exposure not only led to
the loss of actin organization, but resulted in the leading edge
becoming blunt and rounded with no evidence for the
presence of filopodial extensions, yet wound closure still
occurred (Gordon et al., 2020). This is suggestive that these
cells compensate for the loss of an organized actin
cytoskeleton. In addition, in contrast to reports of moving
cultured cells forming “cytoplasmic tails” and leaving small
amounts of the cell attached to the substrate, migrating corneal
endothelial cells do not appear to do this, as the entire cell is
translocated from point to point (Fig. 1H).

Recently, studies in my laboratory (Gordon et al., 2020)
also showed that migration into a wound was prevented by
interfering with the PI-3K signaling pathway, whereas,
interfering with the cdc-42 pathway did not inhibit cell
movement. In both conditions, the actin cytoskeleton was
disrupted using either cytochalasin B or SBA, thus indicating
that movement into the wound was dependent on PI-3K
signaling more so than an organized actin framework. This
result does not dismiss the contribution of microfilaments to
efficient cell motility, but serves to indicate that cells on a
natural basement membrane have the ability to “override”
microfilament loss. This strongly contrasts to studies in vitro
where inhibiting stress fibers leads to a cessation of cell
movement (Schenk et al., 2015; Molinuevo et al., 2007) and
only after they are allowed to reform is movement reinitiated.

Evidence that Other Cellular Mechanisms Probably
Compensate for the Loss of Stress Fibers

Additional studies in my laboratory suggest cell migration
along an ECM is not absolutely dependent on actin
organization. Evidence shows cells employ a variety of
interacting mechanisms to ensure cell movement occurs
when required. For example, despite residing on an ECM,
endothelial cells deposit fibronectin (Gordon, 1988; Sabet
and Gordon, 1989; Gordon, 1994), and proteases (Gordon
and DeMoss, 1999) to help facilitate their migration. In
addition, disrupting microtubules slows down cell
movement into a wound more than does cytochalasin B
exposure (Gordon and Staley, 1990), possibly because not
only do they appear to guide focal adhesion formation
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(Garcin and Strauben, 2019; Seetharaman and Etienne-
Manneville, 2019), but also act as conduits for deposition of
new matrix protein (Sabet and Gordon, 1989) (Figs. 2A and
2B). Furthermore, injured tissues treated with a short
exposure to actinomycin D, fail to undergo wound closure
by 72 h post-injury, despite the presence of stress fibers

(Gordon and Staley, 1990). In conclusion, although general
features of motility are seen in all migrating cell types, the
fact is that cells living on an ECM employ several
mechanisms, operating in a cooperative fashion, to allow
them to compensate for the loss of actin organization to
achieve cell migration.

FIGURE 1. Various images of the rat corneal endothelium. Scanning electron micrograph of the normal non-injured tissue. A. Polyhedral cells
form a monolayer that resides on the underlying Descemet’s membrane. B. Cross sectional transmission electron micrograph of an endothelial
cell (En) resting upon Descemet’s membrane (DM). Arrows represent the cell/DM interface. The cell nucleus (N) is rather prominent in this
perspective. C. Light micrograph of a tissue flat mount. Nuclei appear oval to kidney-shaped in their appearance. D. Fluorescence micrograph
of circumferential microfilament bands in a normal tissue stained with TRITC conjugated phalloidin. E. 6 h post-injury, peripheral
microfilament bands are not observed in cells adjacent to the injury zone (IZ), although actin fibers, but not stress fibers are detected. F.
24 h after a circular freeze injury, cells surrounding the injury zone (IZ), now display prominent stress fibers as they move into the
wound. G. Endothelial cells migrating into the injury zone (IZ) at 36 h after wounding. H. Scanning electron micrograph of endothelial
cells migrating into the wound region (IZ) along the basement membrane. Arrow points in the direction of cell movement. I. By 48 h
post-injury cells have repopulated the wound area. Mitotic figures are noted (arrows). Scale bars: A = 25 µ, B = 2 µ, C = 50 µ, D = 50 µ, E
= 50 µ, F = 40 µ, G = 100 µ, H = 100 µ, I = 10 µ.

FIGURE 2. Electron micrographs from the author’s laboratory showing immunoperoxidase stained corneal endothelium (En) at 48 h post-
injury. Tissues were not stained with lead prior to immunostaining. In (A), a control tissue stained to demonstrate fibronectin deposition
(arrowheads) along the basement membrane (dark line). In (B), tissues treated with colchicine fail to deposit fibronectin along the
basement membrane. Under this condition, migration into the wound area is suppressed. DM = Descemet’s membrane. Scale bars = 2 µ.
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