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Abstract: The inflexible concept of membrane curvature as an independent property of lipid structures is today obsolete.

Lipid bilayers behave as many-body entities with emergent properties that depend on their interactions with the

environment. In particular, proteins exert crucial actions on lipid molecules that ultimately condition the collective

properties of the membranes. In this review, the potential of enhanced molecular dynamics to address cell-biology

problems is discussed. The cases of membrane deformation, membrane fusion, and the fusion pore are analyzed from

the perspective of the dimensionality reduction by collective variables. Coupled lipid-protein interactions as

fundamental determinants of large membrane remodeling events are also commented. Finally, novel strategies

merging cell biology and physics are considered as future lines of research.

Introduction

The biological membrane is an effective mechanism to
selectively isolate the cell from its environment (Sackmann,
1995; Chernomordik and Kozlov, 2008; Alberts et al., 2015).
Along evolution, a modular design progressively facilitated
specialized transport mechanisms through the membranes
(Honigmann and Pralle, 2016). With self-organization being
a prevailing characteristic across cellular structures (Karsenti,
2008), protein homeostasis is guaranteed by complex cellular
processes that determine the function, conformational states,
abundance, and location of the approximately 25,000 proteins
found in a human cell (Klaips et al., 2018). Remarkably, still
far away from thermodynamic equilibrium (Mayorga et al.,
2012), cellular homeostasis ultimately depends on an intricate
network of mechanisms as yet waiting to be fully unveiled.
As stated by Macklem in a 2008 viewpoint, survival requires
adaptations, and during adaptation, homeostasis must
preserve order (Macklem, 2008).

In the 70 s, the fluid mosaic model, originally proposed
by Singer and Nicolson, was used to explain the gross
organization and structure of proteins and lipids in
biological membranes (Singer and Nicolson, 1972). In this

simple model, the lipid bilayer is assumed as a two-
dimensional permeability barrier that presents different
faces to the cytoplasm and the extracellular environment.
Within the model, amphipathic proteins appear dissolved in
a fluid lipid bilayer solvent (Brown, 2017). This first
approximation provided a useful framework for membrane
analysis at the nanometer scale (Nicolson and Ferreira de
Mattos, 2021) and served, for example, as a reference to
Rothman and Lenard in 1977 to first discuss lipid
asymmetries in biomembranes (Rothman and Lenard, 1977).

This review focuses on the current state of knowledge of
enhanced molecular dynamics simulations applied to lipid-
protein interactions in specific cellular problems, namely:
membrane deformations, membrane fusion, and the fusion
pore. Relevant recent computational approaches and advances
are described herein. When appropriate, the experimental
data that support these approaches are commented upon. The
lipid bilayer is presented here as an extraordinarily
heterogeneous many-body structure, emphasizing the
dynamic interactions with proteins that may contain
intrinsically disordered regions. Along the text, the reader is
pointed to the most relevant literature on each specific topic.

Enhanced Sampling and Collective Variables

Computational methods are indisputably one of the common
choices for studying biological problems at the molecular
level. Among them, molecular dynamics is an excellent
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technique to describe protein and membrane dynamics within
a wide range of scenarios. Moreover, in silico methods have
been shown to produce useful biological information that,
when combined with experimental data, benefit biomedical
research. Remarkably, in terms of their historical trend,
biomolecular simulations have already exceeded Moore’s law
(Schlick and Portillo-Ledesma, 2021). In computer science,
Moore’s law shows that the performance of integrated circuits
has increased exponentially over the last half-century by
doubling approximately every two years (Vendruscolo and
Dobson, 2011), suggesting an interesting future of
experimental and computational cooperation to address
greater scientific challenges.

However, for most biological events, a detailed
description at atomistic resolution is still unreachable by
classic molecular dynamics. Although, since the first
simulation of a protein in 1977 by McCammon et al. (1977)
intelligent solutions have been found to speed up atomistic
simulations (Ryckaert et al., 1977; Andersen, 1983; Hess et
al., 1997; Miyamoto and Kollman, 1992; Feenstra et al.,
1999; Olesen et al., 2018), the problem is inherent to the
algorithm itself. Atomistic molecular dynamics require an
integration step in the order of the femtoseconds (10−15 s) to
correctly describe the fastest degrees of freedom, namely, the
vibration of bonds and angles involving hydrogen atoms.
With most biological processes (e.g., large conformational
changes) happening in the order of the micro or even
milliseconds (10−6 s–10−3 s), the overwhelming difference of
12 orders of magnitude makes the problem clear.

Therefore, from a numerical simulation point of view, most
biological events of interest fall into the category of rare events,
this is, events not easily observable within practical simulation
times using classical molecular dynamics. From a
thermodynamic point of view, large conformational changes in
proteins or major lipid remodeling in biomembranes are
events that require transitions along high-energy barriers that
separate metastable states. From a statistical-mechanics point
of view, relatively high-energy conformations have small
probabilities of being visited during a molecular dynamics
simulation (Laio and Parrinello, 2002; Fiorin et al., 2013;
Masone and Grosdidier, 2014). Consequently, new approaches
were needed to conveniently drive molecular dynamics to
explore large-scale collective motions (Chen and Ferguson,
2018; Bernardi et al., 2015; Karplus and Petsko, 1990).

Enhanced sampling techniques have been shown to be a
useful tool to overcome this problem. However, the reliability
of these simulations depends critically on the choice of
effective collective variables. The necessity to reduce the
number of degrees of freedom in a numerical simulation

into a few reaction coordinates led to the development of
convenient collective variables that bias sampling and
overcome high energy barriers (Laio and Parrinello, 2002;
Fiorin et al., 2013; Hub and Awasthi, 2017; Masone et al.,
2018). Collective variable-driven molecular dynamics then
allow projecting the multidimensional space into one or two
dimensions to intuitively plot a quantitative energy
landscape (Fig. 1). Although higher dimensionality makes
visual representations rather problematic (Lee and
Verleysen, 2007); adequately enhanced samplings
conveniently reduce the simulation time required to
characterize a system. In spite of the curse of dimensionality
(Fu and Pfaendtner, 2018; Bellman and Dreyfus, 2015),
different approaches have been developed to take into
account more variables that describe high-dimensional free
energy surfaces (Hénin, 2021; Ming et al., 2015; Li et al., 2012).

More than 40 years ago, Brito and Sousa (1981)
eloquently discussed a classical analogy of the collective
variable concept. They analyzed the extent to which it is
possible to describe the behavior of a complex system
(exhibiting a large number of degrees of freedom) by means
of a reduced number of parameters that suppress
unnecessary or redundant degrees of freedom. The concept
of a collective variable assumes that the intrinsic and
collective motions of a many-body system are sufficiently
decoupled. Remarkably, such approximation allows for a
significant reduction in the number of degrees of freedom to
those necessary for the study of a particular behavior of a
many-particle system.

However, the collective variable strategy has limitations.
First, the computational cost to calculate a collective variable
at each molecular dynamics step must be kept small,
otherwise, the approach would generate the same problem
seeking to be solved. Second, the definition of a collective
variable is not an intuitive task. The problem of correctly
projecting a free energy hypersurface (or manifold) into a
few dimensions, with variables that correctly capture a
biological event, is difficult (Hashemian et al., 2013). Badly
defined collective variables can introduce wrong biases
regarding how an event requiring large conformational
changes should occur (Abrams and Vanden-Eijnden, 2010).
Poor convergence or hysteresis are also problems associated
with inadequate collective variables (Awasthi and Hub,
2016). With the aim to find better collective variables,
several dimensionality reduction techniques that project
data from biomolecular trajectories have been proposed
(Tribello and Gasparotto, 2019; Wehmeyer and Noé, 2018;
Hashemian et al., 2016). Particularly interesting are some
innovative tools using machine learning (Doerr et al., 2021;

FIGURE 1. Alternative projections of a complex
multidimensional free energy hypersurface. (a)
Projection of the free energy over two collective
variables (CV1 and CV2). (b) Projection over a
single collective variable (CV1). The arrow indicates
the same local minimum for both representations.
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Sidky et al., 2020) and neural network approaches (Hooft
et al., 2021; Trapl et al., 2019).

Finally, during the study of the large majority of
biological phenomena, long-lasting metastable states make
classical sampling difficult, computationally too expensive, or
even prohibitive (Zhang et al., 2019). Mainly by the umbrella
sampling (Torrie and Valleau, 1977; Roux, 1995) and
metadynamics (Laio and Gervasio, 2008) techniques, the
development and improvement of collective variables have
undoubtedly helped to overcome this problem (Pratyush and
Berne, 2016). Still, new and better collective variables are
objects of intense investigations (Zhang et al., 2019).

Membrane Deformations

Curvature-related processes play a key role during protein-
membrane interactions. Lipids are now recognized to
significantly determine the structure and function of
membrane-associated proteins (Brown, 2017). Concurrently,
the shape of the biomembrane is conditioned by the
proteins that interact with its lipids (McMahon et al., 2010;
François et al., 2014; Duncan et al., 2017; Masone and
Bustos, 2019). Interesting studies have been conducted to
reveal coupled properties between the membrane and
proteins. Using Helfrich–Canham elastic theory (Helfrich,
1973), Sansom and collaborators (Fowler et al., 2016)
showed that membrane stiffness highly depends on the
concentration of membrane proteins such as aquaporin or
an inwardly-rectifying potassium channel. Schulten and
collaborators (Arkhipov et al., 2008; Yin et al., 2009) used
computational means to extensively study how the adsorption
of Bin/Amphiphysin/Rvs (BAR) domains containing an N-
terminal amphipathic helix, induces bending. Consequently,
the search for more accurate descriptions of the reciprocal
interactions between membranes and proteins has been an
initial step to unveiling the behaviors of real cell membranes.

From a lipocentric perspective, spontaneous curvature
depends on the collective properties of the lipid bilayer. These
properties are ultimately dictated by the membrane’s lipid
packing (Israelachvili et al., 1977) and lipid shapes (Cooke and
Deserno, 2006). In realistic models of biological membranes,
lipid composition is highly heterogeneous, and lipid species
are distributed asymmetrically between the hemilayers
(Ingólfsson et al., 2014). Such organization has a high
propensity to exhibit spontaneous local bending (Koldsø et al.,
2014). Membrane curvature generally forms part of even
larger lipid reorganization events for a wide range of cellular
phenomena and processes, e.g., membrane fusion (di Bartolo
and Masone, 2022) and fission (Lipowsky, 2022), endo and
exocytosis (Tomes, 2015), cytokinesis (Schiel and Prekeris,
2013), and autophagy (Gómez-Sánchez et al., 2021). As
pointed out by Torres-Sánchez et al. (2019), local density
asymmetries result in small but noticeable changes in
shape that can be observed in the curvature energy.
Thermodynamically, bending appears to be a mechanism to
maximize molecular contacts while minimizing the free energy
of the system (Stroh and Risselada, 2021).

A common strategy in computer simulations is to
replicate a biological event so that it can be later studied
under different conditions of interest. Consequently, the

development of new methods that enhance molecular
dynamics simulations to induce curvature has significantly
increased in recent years (Yang et al., 2019). Masone et al.
(2018) proposed Ψ, a collective variable that induces
membrane bending inspired by a previous concept by den
Otter and collaborators (Tolpekina et al., 2004; Wohlert et
al., 2006), originally used to form hydrophilic pores in lipid
bilayers. Ψ takes advantage of the curvature as a collective
response of the bilayers to increased local density (de Jesus
et al., 2013), that produce out-of-plane forces. Remarkably,
Ψ does not anticipate the curved shape of the bilayer, which
spontaneously emerges as saddle-like (Alimohamadi and
Rangamani, 2018). This essential characteristic has made Ψ
a convenient tool to study protein mechanisms that induce
or sense curvature, such as α-synuclein (Caparotta et al.,
2020a) or the N-BAR domain (Masone et al., 2018).

Alternatively, Bubnis et al. (2016) used permutation
symmetry to calculate lipid remodeling free energies via
umbrella sampling. Also, Fiorin et al. (2020) proposed a
method to quantify the mismatch between the shape of the
bilayer and a reference, using this mismatch to induce
different membrane shapes. Stroh and Risselada (2021)
proposed a method to calculate bending free energies as a
direct function of membrane curvature. Durrant and Amaro
(2014) developed LipidWrapper, a multi-scale utility to
create curved membrane models with geometries derived
from experimental and theoretical sources. Finally,
Yesylevskyy and Khandelia (2021) developed EnCurv
(Enforced Curvature), a practical tool ported into PLUMED
(Tribello et al., 2014) that induces bending in lipid bilayers
in a controlled manner.

Simultaneously, convenient post-processing tools were
also developed to analyze complex membrane surfaces
from molecular dynamics trajectories. Lukat et al. (2013)
used Voronoi diagrams to develop APL@Voro, a tool to
analyze GROMACS (van der Spoel et al., 2005) trajectories
of lipid bilayer simulations. Also, Buchoux developed the
software Fast Analysis Toolbox for Simulations of Lipid
Membranes (FATSLiM) (Buchoux, 2017) to extract
physical properties from molecular dynamics simulations
of membranes. Allen et al. (2009) developed GridMAT-
MD to aid in the analysis of lipid bilayers from molecular
dynamics trajectories. Sejdiu and Tieleman (2021)
developed ProLint, a web-based framework to analyze and
visualize lipid-protein interactions. Membrainy, developed
by Carr and MacPhee (2015) is a user-friendly membrane
analysis tool to calculate a variety of properties of different
bilayers. Lastly, using Delaunay triangulations, Bhatia et al.
(2019) developed MemSurfer to assess the undulations in
the membrane.

Membrane Fusion

Membrane fusion is a fundamental process in many cellular
events (both in the intra and the extracellular spaces), such
as exocytosis, endocytosis, membrane genesis, viral
infection, and fertilization (Arnold, 1995). To merge,
initially independent membranes (Fig. 2a) follow different
stages historically classified in an event-oriented manner.
First, bilayers bend during recognition upon binding

COLLECTIVE VARIABLES FOR PROTEIN-LIPID SYSTEMS 3



(Fig. 2b), and then, the fusion stalk forms (Fig. 2c). From the
stalk, two possible paths exist: (i) a traversing water channel
forms through it (Fig. 2d), connecting initially isolated spaces
and initiating the formation of a nascent fusion pore, or a
hemifusion diaphragm (Fig. 2e) emerges before the water
channel forms (Fig. 2f). Finally, the fusion pore expands in its
well-known toroidal shape (di Bartolo et al., 2022) (Fig. 2g).

As stated, the first stage in the membrane fusion process is
the bending of the membrane (see Fig. 2b). However, to initiate
effective membrane fusion, a substantial structural lipid
reorganization is needed to either form the fusion stalk or the
hemifusion diaphragm. In any case, lipid molecules forming
the fusion stalk or surrounding the hemifusion diaphragm
suffer from heavy tilting and splaying. Several studies have
suggested that while membranes fuse, lipid acyl tails splay
and protrude to the surface of the bilayers to initiate lipid
mixing (Scheidt et al., 2020; Caparotta et al., 2020b;
Pannuzzo et al., 2014; Smirnova et al., 2010; Smeijers et al.,
2006).

Again, important efforts have been made to develop
special-purpose computational methods to induce and study
membrane fusion configurations. Kawamoto et al. (2014,
2015) used a continuum model to study the fusion stalk
using coarse-grained molecular dynamics and to calculate its
associated free energies of formation. Hub and collaborators
(Hub and Awasthi, 2017; Poojari et al., 2021) proposed a
novel collective variable to induce membrane fusion through
the stalk mechanism. More than a decade ago, Chernomordik
and Kozlov (2008) proposed that particular lipid geometries
in proximal monolayers could facilitate or inhibit the
formation of the hemifusion stalk. Nishizawa and Nishizawa
(2013) studied pore propensity in hemifusion diaphragms
using atomistic and coarse-grained molecular dynamics. Also,
Risselada et al. (2012) used coarse-grained molecular
dynamics to describe how the widening of the fusion stalk
evolves into a single, bilayer H-shaped diaphragm. Gardner
and Abrams (2017) studied the rate of expansion of large
hemifusion diaphragms using solvent-free coarse-grained
molecular dynamics.

The development of these tools allowed for further
studies oriented to lipid-protein interactions. Caparotta et al.
(2020b) studied membrane fusion and pore nucleation to
describe synaptotagmin-1 C2B domain interactions with
phosphatidylinositol 4, 5-bisphosphate lipids (PI (4,5) P2,

or simply PIP2). di Bartolo and Masone (2022) described
the effects on membrane fusion by a pair of
synaptotagmin-1 C2B domains using a methodology by
Hub and Awasthi for membrane fusion, 28 ported into
PLUMED (Tribello et al., 2014) and freely available on
GitHub: https://github.com/lautarodibartolo/MemFusion.
Miyazaki et al. (2019) examined the free energy barrier for
the creation of a pore in lipid membranes with and
without multiple melittin peptides. Also, Hsiao et al.
(2018) conducted a free energy study on cecropin B and its
constituent domains to describe cooperative modes of
action of antimicrobial peptides.

The Fusion Pores

The fusion stalk and the hemifusion diaphragm are intermediate
metastable configurations that await the formation of a fusion
pore. As widely accepted, the energetics along the membrane
fusion paths towards the fusion pore (Fig. 2) highly depends
on the lipid composition of the interacting bilayers (di Bartolo
et al., 2022; Kawamoto and Shinoda, 2014; Fuertes et al., 2011;
Aeffner et al., 2012; Cunill-Semanat and Salgado, 2019) as well
as their hydration level for different inter-membrane distances
(di Bartolo and Masone, 2022; Caparotta et al., 2020b; Poojari
et al., 2021; Smirnova et al., 2015; Smirnova et al., 2019; Wu
et al., 2021).

The exocytosis mechanism allows eukaryotic cells to
release biological cargo and effectively transport molecules
across the plasma membrane (Tomes, 2015; Rizo, 2022).
The complexity of the fusion pore as a mechanism to
connect intra-cellular organelles and release the contents of
vesicles during exocytosis, has made it an interesting object
of study both experimentally (Wu et al., 2021; Chang,
Chiang and Jackson, 2017; Gucek et al., 2016; Bai et al.,
2004) and computationally (Risselada and Grubmüller,
2021; Risselada and Mayer, 2020; Risselada et al., 2014).
Fig. 3a shows a 3D time-averaged density of a fusion pore
from an enhanced molecular dynamics trajectory. The
fusion pore for this figure was induced with the collective
variable ξe (di Bartolo et al., 2022; Hub, 2021) (freely
available on GitHub: https://github.com/lautarodibartolo/
FusionPore), and the trajectory density was generated using
GROmaps (Briones et al., 2019). Fig. 3b is a representation
of the possible free energy landscape along the different

FIGURE 2. Possible pathways along membrane fusion and fusion pore formation. (a) Flat and parallel membranes. (b) Initial deformation and
bending. (c) Fusion stalk. (d) Fusion pore nucleation from the stalk. (e) Hemifusion diaphragm. (f) Fusion pore nucleation from the
diaphragm. (g) Fusion pore expansion (toroid-shaped).
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stages during the life of the fusion pore. Starting from
membrane bending and ending with the expansion of the
fusion pore, this schematic curve follows the path of pore
nucleation through the fusion stalk. The shape of the
estimated free energy profile is based on results by
Caparotta et al. (2020b), di Bartolo and Masone (2022), di
Bartolo et al. (2022) and is in good agreement with previous
studies on the energetics of the fusion pore (Lipowsky, 2022;
Kawamoto et al., 2015; Smirnova et al., 2015; Gorai et al.,
2021; Dhara et al., 2020; François-Martin et al., 2017;
Markvoort and Marrink, 2011).

The fusion pore is an excellent case of study to unveil
complicated lipid-protein interactions. Recently, Caparotta
et al. (2020b) showed that a single C2B domain of
synaptotagmin-1 has negligible effects on the free energy
during membrane fusion and fusion pore nucleation. Also,
di Bartolo and Masone (2022) revealed a cooperative
mechanism between a pair of C2B domains that
significantly decrease the energy costs for the formation of
the fusion stalk and the first traversing water channel. In
another study, di Bartolo et al. (2022) demonstrated that
C2B domains reduce the energy cost for fusion pore
expansion and the probability of kiss-and-run events.

The Lipid-Protein Interplay

Lipid bilayers are composed of self-organizing molecules that
form very stable structures. Hence, membrane fusion is
thought to be mediated by protein fusogens that perturb
their organization and dynamics (Pattnaik, Meher and
Chakraborty, 2018; Joardar, Pattnaik and Chakraborty,
2022). Key proteins for evoked neurotransmitter release
such as the synaptotagmin-1 C2B domains (Gruget et al.,
2020) collaborate to overcome the energetic barriers for the
fusion stalk (Di Bartolo and Masone, 2022) and fusion pore
expansion (Di Bartolo et al., 2022; Nyenhuis et al., 2021;
Das et al., 2020), possibly inducing PIP2 clusters (Caparotta
et al., 2020b). Another significant example is myoblast
fusion, where Myomaker and Myomerger promote the
hemifusion diaphragm (Golani et al., 2021; Whitlock and
Chernomordik, 2021). Also, local membrane deformations
have been indicated to potentially affect the overall
organization of signaling proteins and their biochemical
functions (Orbach and Su, 2020).

The fusion pore is particularly interesting from a driving
protein point of view. Undoubtedly, SNAREs are among the

most studied proteins in inducing membrane fusion
reactions inside eukaryotic cells, both experimentally
(Tomes et al., 2002; Fang and Lindau, 2014; Bao et al., 2018;
Amos et al., 2022) and computationally (Smirnova et al.,
2019; Risselada and Mayer, 2020; Risselada et al., 2011;
Risselada and Grubmüller, 2012; Sharma and Lindau, 2018;
D’Agostino et al., 2018). The key role of SNAREs during
fusion pore formation makes them an ideal object of study
to develop and test new methods that describe lipid-protein
interactions during membrane remodeling that can be later
integrated with experiments. Other proteins involved in the
membrane fusion process, such as the synaptotagmin family
(Fernandez et al., 2001; Seven et al., 2013; Rizo, 2018), have
also received significant attention within the biomedical
sciences, both computationally (di Bartolo and Masone,
2022; di Bartolo et al., 2022; Caparotta et al., 2020b) and
experimentally (Wu et al., 2021; Bendahmane et al., 2018;
Ying et al., 2013; Lynch et al., 2008).

Shape transformations along the membrane due to
specialized curvature-sensing and curvature-inducing proteins
are also interesting lines of research (Brown, 2017;
Alimohamadi and Rangamani, 2018). For example, the relation
of α-synuclein to vesicle trafficking, membrane fusion, and
fission has been extensively studied (Auluck et al., 2010;
Nemani et al., 2010; Thayanidhi et al., 2010; Cooper et al., 2006;
Kamp and Beyer, 2006), due to its implications in Parkison’s
disease (Jao et al., 2008; Bodner et al., 2009) and other
pathologies, broadly known as synucleinopathies. In particular,
Middleton and Rhoades (Middleton and Rhoades, 2010)
showed how α-synuclein preferably binds to highly curved lipid
vesicles. Also, Braun et al. (2012) described how a truncated
version (1–100) of α-synuclein is able to induce negative and
positive curvature. Recent results in α-synuclein implications
along the membrane fusion process have renewed the attention
toward this protein (Huang et al., 2019; Khounlo et al., 2021;
Liu et al., 2021). Experimentally, using a single vesicle-to-
supported bilayer fusion assay, Khounlo et al. (2021) examined
the role of α-synuclein in membrane fusion. Following an in
vitro approach with v-SNARE–reconstituted nanodiscs and t-
SNARE–reconstituted black lipid membrane (Das et al., 2020;
Bao et al., 2018), Nellikka et al. (2021) studied α-synuclein
modes of action in different time-scales. Both experimental
procedures could be applied to synaptotagmin.

The detailed characterization of the full network of
interactions between human proteins is a major scientific
ambition (Cusick et al., 2009). Protein folding and protein-
protein binding are interdependent processes (Sugase et al.,
2007), ultimately determining protein functions. Moreover,
membrane deformations due to lipid influences have been
established for protein folding in membranes (Moon and
Fleming, 2011; Honerkamp-Smith et al., 2009; Curnow et al.,
2004). Consequently, strategies to approach the problem of
lipid-protein interactions from a coupled point of view would
improve the overall understanding of complex biological
events, ultimately allowing better and more accurate predictions.

Intrinsic Disorder in Lipid-Protein Interactions

Many proteins have no stable 3D structures under physiological
conditions, and their functions are determined dynamically by

FIGURE 3. The fusion pore. (a) Time-averaged density of a fusion
pore induced between two bilayers using enhanced molecular
dynamics. For clarity, water molecules are not shown. (b)
Schematics of the free energy landscape along membrane bending
(green), the fusion stalk (light blue), fusion pore nucleation (pink),
fusion pore expansion (orange), and possible further expansion (lilac).
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coexisting binding partners. These proteins have been historically
classified as intrinsically unstructured (Wright and Dyson, 1999)
or intrinsically disordered (Dunker et al., 2001). Such is the case
of α-synuclein, which folds into two anti-parallel α-helices (Jao
et al., 2008; Drescher et al., 2008; Chandra et al., 2003) upon
binding to the membrane (see UniProt ID: P37840). Recently,
Bondos et al. (2021) have compiled thirteen relevant papers that
highlight the importance of intrinsic disorder in current
biochemistry and cell biology.

The problem of intrinsically disordered regions in proteins
that interact with lipid bilayers adds substantial complexity to
the molecular description of the lipid-protein interplay. More
two decades ago, Shoemaker et al. (2000) observed that a
relatively unstructured protein could have a larger capture
radius for a specific binding site with respect to the folded
conformation. The fly-casting mechanism was then proposed
(Shoemaker et al., 2000; Levy et al., 2007; Huang and Liu,
2009), where a disordered region of a protein binds weakly to
its partner before folding. This hypothesis helped to highlight
the importance of unstructured regions during protein binding
and folding.

Accordingly, using enhanced molecular dynamics
simulations, Caparotta et al. (2020a) showed that the
intrinsically disordered region of α-synuclein is essential for the
protein mechanism that induces bending in lipid bilayers. In
agreement, Zeno et al. (2018) used Monte-Carlo simulations, in
vitro, and live-cell measurements to show that proteins
containing both structured and unstructured regions are
significantly more sensitive to membrane curvature, with respect
to fully-structured ones. Also, Busch et al. (2015) proposed that
the large hydrodynamic radii of disordered domains generate a
steric pressure that drives membrane bending.

Recently, new efforts have been made to improve
computational modeling of intrinsically disordered proteins
(Thomasen et al., 2022; Klein et al., 2021; Tran and Kitao,
2020). Several reviews have also been dedicated to the role
of intrinsic disorder during lipid-protein interactions
highlighting the effects on membrane curvature (Has,
Sivadas and Das, 2022; Cornish et al., 2020; Fakhree, Blum
and Claessens, 2019; Snead and Stachowiak, 2018). Intrinsic
disorder presents itself as an additional complexity to the
already difficult problem of lipid-protein interactions during
biological events that require large configurational and
conformational changes.

Lipid-protein interaction is a problem that could be
addressed with an interdisciplinary approach, merging cell
biology, chemistry, and physics. Such cross-disciplinary
connections between different research fields, at experimental
and computational levels, may help to find better descriptions
with direct biomedical applications, e.g., to monitor disease
development and to identify new targets for drug development.

Connecting Cell Biology and Physics

The idea of decomposing a biological problem into its
fundamental building blocks in order to predict complex
collective behaviors of the ensemble is an intelligent
approach that for many years aimed to merge physics and
cell biology (Alon, 2006; Hartwell et al., 1999; Gell-Mann,
1995). Among biological entities, each individual is

characterized in part by its relations with other individuals
(Nachtomy et al., 2002). Within the cell, the plasma
membrane is a spatial boundary that actively isolates
internal and external environments. A selective interchange
of molecules takes place across the bilayers, and the
properties of the bilayers are conditioned by their
surrounding external and internal organizations.

In physics, the problem of reversibility is an elegant example
that highlights collective behaviors. According to Fick’s first law,
(Fick, 1995) a flux of particles evolves from regions of high
concentrations to regions of low concentrations, with a
magnitude proportional to the concentration gradient. From a
microscopic point of view, each particle of the flux follows
Newton’s laws, and its individual motion is fully reversible.
However, when particles are taken together, they move
collectively in a certain direction, following Fick’s first law (Dill
et al., 2010). Reid and Latty (2016) recall that in a
microbiological context, individual-level behaviors can lead to
complex group-level patterns, which is well accepted. Richard
Feynman observed that the behavior of a fluid depends very
little on the nature of the individual particles in that fluid, for
example, being the flow of sand very similar to the flow of
water or a pile of ball bearings (Feynman et al., 2018).
Communication seems to be the key between microbiological
entities to transfer information and sense the environment to
respond in ways that would be impossible for individuals to
achieve on their own (Davies, 2004).

Almost twenty years ago, Davis (2004) commented on
the problem of the minimum complexity needed by a
system to exhibit emergent properties. As presented by
Erwin Shcrödinger in 1944, life follows a spontaneous
emergence of self-organized order (Schrödinger, 1944).
Polanyi, already in 1968, commented on the irreducible
structure of life, noting that although life obeys the laws of
physics and chemistry, the design of living organisms is not
ultimately determined by such laws (Polanyi, 1968).
Although beyond the scope of this review, the philosophical
discussion to distinguish between weak and strong emergent
properties is of relevance and has been considered by others
(O’Connor, 1994; Chalmers, 2006; Turkheimer et al., 2019).

From a thermodynamic point of view, order is more
improbable than disorder, and also transitions from
disordered configurations to ordered ones require energy
(Macklem, 2008). Ikegami et al. (2017) clearly distinguished
that these emergent phenomena are an extension of self-
organization, being self-organization a one-way formation of
macroscopic order from microdynamics. On the contrary,
emergent phenomena require the two-way circulation of
recurrent information between macro- and micro-scales.
Such emergent phenomena in life might as well characterize
many diseases (Macklem, 2008). Computational modeling
is, therefore, an excellent tool for predicting the global
emergent properties of a tissue starting from local cellular
rules (Pebay-Peyroula et al., 2016).

Mathematical models have helped to understand the
underlying mechanisms and emergent properties of the cell
(Mayorga et al., 2018). Important advances have been made
in fibration symmetries and the functionality of biological
networks (Leifer et al., 2020; Monteiro et al., 2022). In
particular, a convenient graph representation of the
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information flow has been proposed by Morone et al. (2020).
In their work, the authors introduce the use of symmetries
in biological networks by analyzing the well-known
transcriptional regulatory network of Escherichia coli. These
studies contribute to the identification of the building
blocks in biological networks and are a step forward in
understanding life as an emergent property of physics.

Conclusions

Today it is well accepted that membrane deformations and
associated protein functions are coupled mechanisms (Haylock
et al., 2020; Song et al., 2019), with complex emergent
properties derived in part from the highly heterogeneous
nature of the bilayers (Nicolson, 2014; Mohammad et al.,
2019), or as suggested by Lamparter and Galic (2020), a
versatile, adaptive composite material. Membrane proteins may
dynamically modify their curvature preference upon external
stimuli (Stroh and Risselada, 2021), also making the coupled
mechanism dynamic. Additionally, lipid dynamics have been
shown to play an active part in the protein-mediated fusion
machinery, for example, by SNAREs or synaptotagmins (Amos
et al., 2022).

Already in 1945, Novikoff highlighted the necessity of
understanding lower level phenomena to understand higher
level ones, even if the knowledge at lower levels does not
completely describe, nor fully predicts, what will occur at
higher ones (Novikoff Alex, 1945). Such observation is aligned
with modern views of life as an emergent property. Therefore,
a proper understanding of the lipid-protein interactions during
key biological events, such as membrane curvature, membrane
fusion, and fusion pore formation, would provide crucial
information to face more complex biomedical problems.

The predictive capabilities of computational simulations
have reached an interesting stage in the biomedical sciences.
Improved simulation packages (Brooks et al., 2021; Suh et al.,
2022), better force-fields (Klein et al., 2021; Souza et al., 2021;
Cruz-León et al., 2021; Yungerman et al., 2022),
unprecedented supercomputer power (Yamazaki et al., 2021;
Kutzner et al., 2022) and creative sampling techniques
(Gilabert et al., 2019; Bonati et al., 2021) have boosted the
study of exceptionally complex biological problems
(Mosalaganti et al., 2022; Lotz and Dickson, 2018). More
studies combining theoretical approaches, computer
simulations, and experiments are currently envisioning new
possibilities (Sica and Smulski, 2021; Bernetti and Bussi, 2021;
Miguel et al., 2021; Quevedo et al., 2019; Saen-oon et al.,
2015). Although computational models containing conceptual
simplifications may, of course, exhibit inherent limitations
(Alessandri et al., 2019; Jarin et al., 2021; Masone et al.,
2012), the recent overall progress in the biomolecular
simulations field at varied lengths and timescales has been
outstanding (Schlick and Portillo-Ledesma, 2021; Pezeshkian
et al., 2020).
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