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Abstract: Background: Establishing an appropriate prognostic model for PCa is essential for its effective treatment.

Glycolysis is a vital energy-harvesting mechanism for tumors. Developing a prognostic model for PCa based on

glycolysis-related genes is novel and has great potential. Methods: First, gene expression and clinical data of PCa

patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and

glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB). Gene enrichment analysis

was performed to verify that glycolysis functions were enriched in the genes we obtained, which were used in non-

negative matrix factorization (NMF) to identify clusters. The correlation between clusters and clinical features was

discussed, and the differentially expressed genes (DEGs) between the two clusters were investigated. Based on the

DEGs, we investigated the biological differences between clusters, including immune cell infiltration, mutation, tumor

immune dysfunction and exclusion, immune function, and checkpoint genes. To establish the prognostic model, the

genes were filtered based on univariable Cox regression, LASSO, and multivariable Cox regression. Kaplan–Meier

analysis and receiver operating characteristic analysis validated the prognostic value of the model. A nomogram of the

risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the

survival probability for PCa patients in the clinical setting. Result: The genes obtained from MSigDB were enriched in

glycolysis functions. Two clusters were identified by NMF analysis based on 272 glycolysis-related genes, and a

prognostic model based on DEGs between the two clusters was finally established. The prognostic model consisted of

LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT,

and PCDHGB2. All sample, training, and test cohorts from The Cancer Genome Atlas (TCGA) and the external

validation cohort from GEO showed significant differences between the high-risk and low-risk groups. The area under

the ROC curve showed great performance of this prognostic model. Conclusion: A prognostic model based on

glycolysis-related genes was established, with great performance and potential significance to the clinical application.

Introduction

Prostate cancer (PCa) is the second most common cancer
and the main disease affecting men’s health worldwide
(Nguyen-Nielsen and Borre, 2016). The treatment methods

for PCa include active surveillance, radiation therapy, local
ablative therapies, radical prostatectomy (RP), androgen
deprivation therapy (ADT), and others (Sebesta and
Anderson, 2017). For metastatic PCa, ADT has been the
major treatment schedule (Ritch and Cookson, 2018).
However, the majority of patients undergoing ADT develop
metastatic castration-resistant PCa (mCRPC) (Karantanos et
al., 2013). It is important to establish an accurate prognostic
model for PCa to avoid unnecessary side effects that burden
patients’ quality of life.

*Address correspondence to: Zhaohui He, hechh9@mail.sysu.edu.cn;
Yongchang Lai, laiych8@mail.sysu.edu.cn
#Contributed equally to this work
Received: 13 May 2022; Accepted: 22 August 2022

BIOCELL echT PressScience
2023 47(2): 339-350

Doi: 10.32604/biocell.2023.023750 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:hechh9@mail.sysu.edu.cn
mailto:laiych8@mail.sysu.edu.cn
https://www.techscience.com/journal/BIOCELL
https://www.techscience.com/
http://dx.doi.org/10.32604/biocell.2023.023750
https://www.techscience.com/doi/10.32604/biocell.2023.023750


Non-negative matrix factorization (NMF) is an
unsupervised learning technique with the advantages of
reducing noise and interpretability (Devarajan, 2008;
Gaujoux and Seoighe, 2010). It is currently widely used in
computational biology. Unlike other clustering methods,
NMF places emphasis on parts-based clustering, which is
different from many unsupervised clustering methods
(Devarajan, 2008). Recently, some studies have used NMF
to establish risk models with good performance (Wang
et al., 2020; Song et al., 2021).

The tumor microenvironment includes tumor cells and
surrounding nontumor components, including cancer-
associated fibroblasts, endothelial cells, immune cells, the
extracellular matrix, and a hypoxic glycolysis condition (Lai
et al., 2021). Glycolysis is the process in which two
molecules of pyruvate are produced by the cleavage of one
molecule of glucose. Tumor cells tend to obtain large
quantities of energy by glycolysis instead of oxidative
phosphorylation, and the energy demands of tumor cells
make glycolysis more efficient (Gill et al., 2016) which is
called the Warburg effect, but PCa cells do not follow the
Warburg effect entirely (Eidelman et al., 2017). In general,
only advanced PCa begins to exhibit high glucose uptake
rather than the early PCa cells (Eidelman et al., 2017). This
phenomenon may be because PCa cells require higher levels
of citric acid cycling activity to consume zinc to avoid cell
death (Feng et al., 2002; Eidelman et al., 2017). This
metabolic feature of PCa may be a prognostic factor. A
recent study showed that the abnormal overexpression of
glycolytic pathway-related proteins in PCa is associated with
a poor prognosis of PCa (Pertega-Gomes et al., 2015).

However, classification and construction of a high-risk
and low-risk groups for the glycolysis-related genes based
on the NMF method has been rarely adopted. According to
the above reasons, we classified two clusters of PCa patients
by NMF based on glycolysis-related genes. Through further
analysis of the two clusters, we found interesting differences
in survival probability and biological process between the
two clusters. Then we established a prognostic model and a
nomogram based on the DEGs between the clusters.

Methods

Acquisition and identification of genes associated with glycolysis
We downloaded RNA sequences (fragments per kilobase
million, FPKM), clinical information, follow-up data,
Gleason score, mutation data, etc., of PCa patients from the
TCGA database. The samples lacking of critical clinical
information were excluded. Glycolysis-related genes were
obtained from MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp). To verify that the functions of the genes
obtained from MSigDB were enriched in glycolysis, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) enrichment analyses
were performed by the R package “clusterProfiler”.

Acquisition of glycolysis-related gene expression profiles
The mRNA data and clinical information of the PCa patients
were downloaded from TCGA (https://cancergenome.nih.
gov). In addition, external validation cohorts of PCa patients

were acquired from the GSE116918 series in Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The
samples with incomplete follow-up information were
discarded. The expression matrices of glycolysis-related genes
were extracted from the expression profiles of TCGA and
GSE116918 by the R package “limma.” Batch effects need to
be considered in the use of high-throughput data for
biological analysis. Different potential variables are derived
from biological and abiotic factors among different batches,
which may seriously affect the results (Leek et al., 2010).
Therefore, the R package “sva” (Leek et al., 2012) was used to
remove the batch effects. After data processing, 272 glycolysis
genes and their expression profiles were finally obtained.

Identification of PCa clusters by NMF
To differentiate subclasses based on glycolysis-related genes,
NMF was performed for the glycolysis-related gene
expression profiles by the R package “NMF.” A suitable
number of clusters was necessary for steady and available
clusters (Brunet et al., 2004). Therefore, we calculated the
cophenetic correlation in the different numbers of clusters
and selected the value of its initial decline as the number of
clusters according to Brunet’s method (Brunet et al., 2004).
Finally, we selected two clusters, named cluster 1 and
cluster 2. Patients with similar glycolysis states were assigned
to one cluster. In other words, patients in cluster 1 had a
significantly different glycolysis state from those in cluster 2.

Kaplan–Meier analysis was performed, and a curve was
created; in our analysis, the event of interest was set to
death. After Kaplan–Meier curves were created, log-rank
tests were performed. The P-value in log-rank tests was
calculated to identify any statistically significant difference
in the probability of survival between the two clusters.

Analysis of the relationship between clusters and clinical
features
After classification and Kaplan–Meier analysis, we focused on
exploring the correlation between clusters and clinical
features. The clinical features included in the analysis were
T and N stages (from the TNM stage), Gleason score, race,
and age. The Gleason stage is a widely used grading method
for PCa (Srigley et al., 2019). It is commonly used to
prognosticate patients and provide advice on appropriate
treatment for PCa patients with different conditions (Srigley
et al., 2019). In addition, TNM is a comprehensively
accepted tumor staging method (Cserni et al., 2018). The R
package “pheatmap” was used to create a heatmap that
visualized the differences between the clusters and clinical
features. Meanwhile, the DEGs between the two clusters
were also rendered on the heatmap.

Analysis of the differences in the biological mechanism
To examine the cause of significant differences in survival
probability between the two clusters, we investigated the
difference in immune cell infiltration between the clusters.
To quantify the infiltration of immune cells, the
Microenvironment Cell Populations-counter method (Becht
et al., 2016) was used based on the differential genes
between the clusters. Then, the difference in immune cell
infiltration scores between the two clusters was analyzed,
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and the results were visualized by the R package “ggpubr.” In
addition, the Sankey diagram was used to visualize the
congruent relationship between clusters and immune
subtypes by the R package “ggalluvial.”

To analyze the mutation of the two clusters, we
downloaded the mutation data of the PCa in varscan format
in TCGA. The R package “maftools” is a powerful tool to
analyze somatic mutations developed by Mayakonda
(Mayakonda et al., 2018). To analyze the differences in
immune function between clusters, we performed a single-
sample gene set enrichment analysis (ssGSEA). To obtain
the gene set score matrix, the R packages “GSVA” and
“reshape2” were used and to label immune function
information, “GSEABass” was used. Then, “limma” was
used to identify differential immune function genes between
the two clusters. Finally, “ggpubr” was used for
visualization. Then, we assessed the difference in immune
escape between the clusters. Tumor immune dysfunction
and exclusion (TIDE) analysis is a scoring method for
immune escape and a predictive method for immune
checkpoint blockade (ICB) developed by Jiang et al. (2018).
The scoring documents were downloaded from http://tide.
dfci.harvard.edu/. Data processing was completed by
“limma,” and for visualization, “ggpubr” was used. Finally,
to analyze the difference in immune checkpoints between
the clusters, “limma” and “reshape2” were used to process
the data and filter DEGs. Then, the expression of the DEGs
between the two clusters was compared, and the P-values of
all DEGs were calculated to verify if the differences in
expression were significant. “ggplot2” and “ggpubr” were
used for visualization.

Establishment of the prognostic model
Differential genes between two clusters were filtered by
“limma” with |log2FC| > 0.585, fold change = 1.5, and false
discovery rate (FDR) < 0.05. To filter prognostic genes from
differential genes, we first performed univariable Cox
regression. The criterion was set to a P-value of 0.05. Then,
the genes filtered by univariable Cox regression were
processed by least absolute shrinkage and selection operator
(LASSO) analysis to further reduce the number of genes. To
avoid overfitting, the optimal penalty parameter was
determined by cross-validation to filter genes further.
Finally, multivariable Cox regression was performed to
select the most meaningful genes from the genes filtered by
univariable Cox regression and LASSO analysis to establish
a prognostic model. The above analyses were based on the R
packages “survival,” “caret,” “glmnet,” “survminer,” and
“timeROC.” The specific formula for the risk score
calculation is as follows:

Risk scores ¼
Xn

i¼1

coef signature ið Þ � Expr signature ið Þð Þ

The independent parameters in PCa patients were
analyzed, including risk scores and clinical characteristics by
univariable and multivariable Cox regression. The
parameters in Cox regression with P < 0.05 were included in
the construction of the nomogram. The nomogram was
constructed via stepwise Cox regression to predict the
probability of survival of PCa patients in TCGA for 1, 3,

and 5 years. The above analyses were based on R packages
“survival,” “regplot,” and “rms.”

Verification and comparison
Kaplan–Meier analysis and receiver operating characteristic
curve (ROC) analysis were used to assess each cohort and
verify the feasibility and prognostic value of the prognostic
model. To perform the Kaplan–Meier analysis, the TCGA
cohort was randomly divided into training cohorts and test
cohorts. GSE116918 was the external validation cohort. To
distinguish the high-risk group from the low-risk group, the
criteria were set to the median risk score. Then, log-rank
tests were performed to verify the significant difference
between the high-risk and low-risk cohorts. After Kaplan–
Meier analysis and creation of curves, ROC analysis was
performed for each cohort. One of the vital indicators for
ROC analysis was the area under the ROC curve (AUC). We
calculated the AUC at 1, 3, and 5 years and also investigated
the performance of the prognostic model in patients with
pathological scores <8 and ≥8. The above analyses were based
on the R packages “survival” and “time ROC.”

Statistical analysis
The continuous variables were compared by Student’s t-test in
the normal distribution, while the Wilcoxon test was
performed for other cases. The Kaplan-Meier curves were
used, and the log-rank test was performed to analyze the
survival rates. Univariable and multivariable Cox regression
models were used for the independent analysis of
parameters related to overall survival. All statistical tests
were bilateral. P < 0.05 was considered statistically
significant. The correlation between the two variables was
measured by calculating the Pearson coefficient.

Result

Identification of PCa clusters
The gene sets downloaded from MSigDB were summarized
and deduplicated to filter the glycolysis-related genes. GO
and KEGG enrichment analyses were performed for the
genes. In GO analysis, one of the ontologies, namely,
biological process (BP), showed the function of the genes
enriched in glycolysis-related processes, such as pyruvate
metabolism and carbohydrate catabolism. Moreover, KEGG
analysis showed that the genes were enriched in glycolysis/
gluconeogenesis (Fig. 1). The above results proved that the
genes from MsigDB had a strong correlation with glycolysis.

After the correlation test, we obtained the control
samples and cancer samples in TCGA and GEO to extract
the expression matrices of glycolysis-related genes. A total of
485 cancer samples were obtained from TCGA, and the
GSE116918 dataset was downloaded from GEO. The
expression matrices of glycolysis genes were extracted from
the expression profiles from TCGA and GSE116918. We
finally obtained 272 glycolysis-related genes and their
expression profiles. These genes were used in the NMF
analysis (Fig. 2A). The cophenetic correlation in the
different numbers of clusters resulted in two suitable
clusters. Based on NMF analysis, finally, two clusters,
namely cluster 1 and cluster 2, were obtained.
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Kaplan-Meier analysis was performed and visualized
(Fig. 2B). There were 207 patients classified into cluster 1
and 278 patients classified into cluster 2. The Kaplan–Meier
curves indicated that the patients in cluster 2 had a greater
probability of survival. To scrupulously judge the matter,
log-rank tests were performed, and a P-value less than 0.001
was calculated. This means that the survival time of patients
from different clusters was considered to be statistically
significant, and classification was succussed and significant.

The relationship between clusters and clinical features
A heatmap was created to exhibit the correlation between
clusters and clinical features, including T and N stage (from
TNM stage), Gleason score, race, and age (Fig. 3). Among

them, T, N, and Gleason scores reached statistical
significance with a P-value of less than 0.001. The patients
with higher TNM stage, namely, T3 and N1, and higher
Gleason scores were mainly congregated at cluster 1, while
the patients with lower TNM stage, namely, T2 and N0, and
lower Gleason scores were mainly congregated at cluster 2;
thus, these findings indicate a greater probability of survival
for the patients in cluster 2.

Analysis of the differences in biomechanisms between clusters
To explore the difference in immune cell infiltration between
the two clusters, we compared the degrees of infiltration of
different immune cells, including B lineage, CD8 T cells,
cytotoxic lymphocytes, endothelial cells, fibroblasts,

FIGURE 1. (A) The gene ontology enrichment analysis for glycolysis-related genes. (B) The Kyoto Encyclopedia of genes and genomes
pathways enrichment analysis for glycolysis-related genes. The volume of the bubbles is the number of genes. The color of the bubble
represents the size of the P-value, and all the functions shown had P < 0.001. The abscissa is the gene ratio.

FIGURE 2. (A) The consensus matrix map. The horizontal axis and the vertical axis represent the samples. Clusters that never cluster together
to always cluster together are shown in blue to red. (B) Kaplan–Meier curves for the survival probability between two clusters with different
states of glycolysis. The P-value was calculated to be less than 0.001 based on the log-rank test, which means the difference was considered
statistically significant.
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monocytic lineage, myeloid dendritic cells, neutrophils, natural
killer (NK) cells, and T cells (Figs. 4A–4J). All the
abovementioned immune cells, except for neutrophils, had
significant differences between the two clusters, among which
only the P-value of neutrophils was equal to 0.053, and the
remaining had a P-value less than 0.001. In summary, there
were interesting differences in specific immune cell
infiltration between the two clusters. The relationship
between the glycolysis-related NMF clusters and subtypes was
also analyzed (Fig. 4K); both clusters had genes involved in
four immune subtypes (namely, immune C1, C2, C3, and C4).

In the mutation analysis, 118 of 200 samples were found
to have a mutation in cluster 1 (59%), and 128 of 264 samples
were found in cluster 2 (48.48%). The samples in cluster 1 had
the most mutations in the TP53 gene (13%), and in cluster 2,
the most mutations in the SPOP gene (13%). The main
alteration was a missense mutation in both clusters (Figs.
5A and 5B). Then, we analyzed the difference in TIDE
scores between clusters (Fig. 5C). There was a significant
difference in TIDE scores between the two clusters (P <
0.001). Cluster 2 had a higher TIDE score than cluster 1. In
immune function analysis, the difference was significant in
the scores of antigen-presenting cells (APC) co inhibition,
APC co-stimulation, complete cytogenetic response,
checkpoint, cytolytic activity, human leukocyte antigen,
inflammation-promoting, major histocompatibility complex
class 1, parainflammation, T-cell co-inhibition, T-cell

co-stimulation, type I interferon (IFN) response, and type II
IFN response between two clusters, with P < 0.001
(Fig. 5D). All the differences in immune functions we
investigated showed amazing consistency and that the
immune function scores of cluster 1 were higher than those
of cluster 2. In the checkpoint differential analysis, all of the
immune checkpoints we investigated showed significant
differences between the high-risk group and the low-risk
group, such as CD80, CD86, and CD27 (Fig. 5E).

Prognostic model establishment
Univariable Cox regression, LASSO analysis, and multivariable
Cox regression were used to filter the prognostic genes (Figs. 6A
and 6B). Fifteen glycolysis-related prognostic genes, namely,
LAMPS, SPRN, ATOH1, TANC1, ETV1, TDRD1, KLK14,
MESP2, POSTN, CRIP2, NAT1, AKR7A3, PODXL, CARTPT,
and PCDHGB2, were finally selected. When the coefficient
was positive, the gene was associated with high risk in PCa
patients, while negative coefficients indicated low risk in PCa
patients. The correlation among glycolysis-related prognostic
genes was analyzed and is shown in Fig. 6C.

Based on 15 glycolysis-related prognostic genes, we
established a glycolysis-related prognostic model for PCa. The
risk score of the prognostic models was calculated, and the
calculation method of the risk score was as follows: risk score =
(0.480�LAMPS exp.) + (1.591�SPRN exp.) + (0.505�ATOH1
exp.) + (1.197�TANC1 exp.) + (0.250�ETV1 exp.) +

FIGURE 3. A heatmap for the correlation between the clusters and clinical features. Each column in the heatmap represents a sample and
records the information in different colors. The relationship between clinical features and clusters is shown above the row “cluster,” and gene
expression levels are shown below the row “cluster.” The meaning of symbols: *** P < 0.001.
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(-0.390�TDRD1 exp.) + (0.298�KLK14 exp.) + (0.673�MESP2
exp.) + (0.841�POSTN exp.) + (1.047�CRIP2 exp.) +
(-0.419�NAT1 exp.) + (1.635�AKR7A3 exp.) + (0.953�PODXL
exp.) + (0.544�CARTPT exp.) + (0.801�PCDHGB2 exp.).

Good performance of the prognostic model in a series of
validation tests
The TCGA samples were categorized into training and test
groups. To verify the performance of predicting survival,
Kaplan–Meier analysis and ROC analysis were performed.

There were four different groups, including the TCGA
all group (total samples from TCGA), the TCGA training
group, the TCGA test group, and an external data validation
group of samples from GEO (GEO group) (Figs. 7A–7D).

The result was that the P-values were less than 0.001 in
the TCGA all group, the TCGA training group, and the
GEO group, and the P-value was 0.022 in the TCGA test
group. In the TCGA all-group, the AUCs at 1, 3, and 5
years were 0.892, 0.875, and 0.816, respectively. In the ROC
analysis of the TCGA training group, the AUCs at 1, 3, and

FIGURE 4. (A–J) Violin plot of differential immune cell infiltration between two clusters with different states of glycolysis. The number
between the two violin plots represents the P-value (B lineage: P = 0.0000018, CD8 T cells: P = 0.0000015, cytotoxic lymphocytes: P <
0.0000001, endothelial cells: P < 0.0000001, fibroblasts: P = 0.00033, monocytic lineage: P < 0.0000001, myeloid dendritic cells: P <
0.0000001, neutrophils = 0.053, natural killer cells: P < 0.0000001, T cells: P < 0.0000001) (K) Sankey plot showing the relationship
between glycolysis-related NMF clusters and immune subtypes.
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5 years were 0.940, 0.935, and 0.929, respectively. In the ROC
analysis of the TCGA test group, the AUCs at 1, 3, and 5 years
were 0.724, 0.671, and 0.669, respectively. In the ROC analysis
of the GEO group, the AUCs at 1, 3, and 5 years were 0.927,
0.656, and 0.605, respectively (Figs. 7E–7H). These findings
suggest that our model had great performance for prognosis.

We also performed a survival probability analysis for the
patients with histological scores < 8 and ≥ 8 (Figs. 7I–7J).
The results showed a significant difference between high-
risk and low-risk patients with histological scores < 8 (P <
0.001) and ≥ 8 (P = 0.003). Thus, the prognostic model we
established could precisely divide patients into high-risk

FIGURE 5. (A and B) The difference in mutation between clusters with different states of glycolysis. (C) The violin figure: comparison of
tumor immune dysfunction and exclusion (TIDE) scores between the two clusters. (D) Box plots: the difference in immune functions
between the two clusters. (E) Box plots: the expression of checkpoint-related genes between the two clusters (*P < 0.05; **P < 0.01;
***P < 0.001).
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and low-risk groups regardless of whether the patients had
a histological score <8 or ≥8. Therefore, the prognostic
model could effectively distinguish the risk of PCa in
patients.

Construction of nomogram
We constructed a nomogram in the TCGA training group to
quantitatively estimate the survival probability for PCa
patients in the clinical setting. Univariable and multivariable

FIGURE 6. (A) Cross-validation was performed. The dotted line on the left represents the optimum penalty parameter. (B) Diagram for the
locus of the coefficients of each independent variable. (C) A plot showing the correlation among 15 genes that were used to establish
prognostic models. The sign “�” means the correlation is statistically significant.

FIGURE 7. Patients above the median risk score were assigned to the high-risk group; otherwise, patients were assigned to the low-risk group.
(A–D) Kaplan–Meier curves for the survival probability between two risk groups. TCGA all group: P < 0.001. TCGA training group: P < 0.001.
TCGA test: P = 0.022. GEO group: P < 0.001. (E–H) The ROC curves for different cohorts. Different colors are used to show the receiver
operating characteristic (ROC) curves with different prediction times. (I–J) The Kaplan–Meier curves between high-risk and low-risk
groups in histological score of < 8 (P < 0.001) or ≥ 8 (P < 0.001).
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Cox regression for risk scores and clinical characteristics were
performed to screen independent prognostic factors. In the
univariable Cox regression, Gleason score (P < 0.001,
Hazard ratio = 2.039 and 95% CI: 1.435–2.896), T stage in
TNM (P < 0.001, Hazard ratio = 3.064 and 95% CI: 1.595–
5.882), N stage in TNM (P = 0.049, Hazard ratio = 2.101
and 95% CI: 1.003–4.400), and risk score (P < 0.001, Hazard
ratio = 1.004 and 95% CI: 1.003–1.005) were considered to
be correlated with the prognosis of PCa patients (Fig. 8A).
In multivariable Cox regression, Gleason score (P = 0.025,
Hazard ratio = 1.612 and 95% CI: 1.063–2.445), T stage in
TNM (P = 0.032, Hazard ratio = 2.350 and 95% CI: 1.076–
5.135), and risk score (P < 0.001, Hazard ratio = 1.005 and
95% CI: 1.003–1.007) were considered the parameters for
the construction of nomogram (Fig. 8B). Age, race, and N
stage were excluded because they were not considered to be
significantly related to prognosis in the Cox regression (P >
0.05 and/or confidence interval (CI) spanning 1). Then, the
nomogram was constructed consisting of the above
significant parameters to predict the probability of 1, 3, and
5 survivals of the PCa patients by stepwise Cox regression,
which consisted of Gleason score, T stage, and risk scores
(Fig. 8C).

Discussion

Despite the low mortality of patients with PCa, one-third of
men, after treatment, experience relapse, and advanced PCa
may finally progress to castration-resistant disease (Bansal
et al., 2021). Despite treatment, many patients with

moderate and above-risk localized or castration-resistant
PCa die of the disease (Teo et al., 2019). It is difficult to
manage PCa because it is heterogeneous and complex
(Sebesta and Anderson, 2017). Positive treatment for PCa
often brings side effects, such as erectile dysfunction and
urinary toxicity (Sebesta and Anderson, 2017). ADT has
been the major treatment schedule for metastatic PCa (Ritch
and Cookson, 2018); however, the side effects of ADT have
been debated. ADT may lead to cognitive decline and
reduced quality of life (Nelson et al., 2008; Reiss et al.,
2022). Therefore, an accurate and reliable prognostic model
is urgently needed to predict subsequent survival for PCa
patients and avoid the risk of side effects after treatment.

There has been some literature supporting the influence
of glycolysis-related genes on the prognosis of patients with
PCa (Pertega-Gomes et al., 2015; Shangguan et al., 2021). A
study showed that the expression of glycolysis-related
proteins, including glucose transporter 1 (GLUT1), lactate
dehydrogenase 5 (LDH5), and some other classic glycolysis-
associated proteins, were associated with the progression of
PCa (Pertega-Gomes et al., 2015). The abnormal expression
of a molecule regulated by glycolysis-related gene
hexokinase 2 (HK2, a gene that encodes one of the known
hexokinase isoforms) has also been shown to be associated
with increased glycolysis in PCa cells and lead to poor
outcomes and bad chemotherapy response in PCa patients
(Shangguan et al., 2021). With the purpose of developing
prognostic models, we realized that glycolysis is a vital
energy-harvesting mechanism for tumors. We obtained 272
proven glycolysis-related genes for NMF analysis, and two

FIGURE 8. Construction of nomogram. (A) Forest plot for univariable Cox regression (B) Forest plot for multivariable Cox regression (C) A
prognostic nomogram consisting of Gleason scores, T stage, and risk scores for predicting the 1-, 3-, and 5-year overall survival of PCa patients.
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clusters with different glycolysis states were divided with clear
and sharp boundaries in the NMF analysis. The DEGs
between the two clusters were subjected to univariable Cox
regression, lasso analysis, and multivariable Cox regression.
We finally obtained 15 genes, including LAMPS, SPRN,
ATOH1, TANC1, ETV1, TDRD1, KLK14, MESP2, POSTN,
CRIP2, NAT1, AKR7A3, PODXL, CARTPT, and PCDHGB2
to establish the risk model.

In our model, LAMPS, SPRN, ATOH1, TANC1, ETV1,
KLK14, MESP2, POSTN, CRIP2, AKR7A3, PODXL,
CARTPT, and PCDHGB2 are considered to promote PCa,
while TDRD1 and NAT1 are considered to inhibit tumor
progression. The ETS factors and PCa have been extensively
studied. Some ETS factors, including the transcription factor
ETS-related gene and ETS variant 1, are abnormally
expressed in PCa (Qian et al., 2022). The overexpression of
ETV1 increases the ability of PCa cells to migrate, invade,
and increase androgen metabolism (Oh et al., 2019). This is
consistent with our findings that ETV1 is a risk factor in the
prognostic model. In published studies, Kallikrein-related
peptidase 14 (KLK14) was found to be associated with PCa
aggressiveness (Kryza et al., 2020), and podocalyxin
(PODXL) was also found to be associated with PCa
aggressiveness (Casey et al., 2006). Our study also confirmed
that KLK14 and PODXL promote cancer. Cysteine-rich
intestinal protein 2 (CRIP2) is a protein with rich cysteine
and has been reported to act as a suppressor in other
cancers (Cheung et al., 2011; Lo et al., 2012). However, high
expression of CRIP2 was strongly associated with a high-
risk factor in our study, with a coefficient of even more than
1. There are few reports about the relationship between
CRIP2 and PCa; the identification of high expression of
CRIP2 as a risk factor remains to be determined.

During the process of establishing the prognostic model, we
found a significant difference in the probability between the
clusters. Therefore, we investigated biological differences. The
TP53 protein is commonly regarded as a tumor suppressor
protein (Aubrey et al., 2016), but TP53 mutation is considered
a complex biomarker (Olivier et al., 2010). In our study,
cluster 1 had 19% TP53 alterations, while cluster 2 had only
2% alterations. In the survival analysis for the two clusters, the
mortality of cluster 1 was higher than that of cluster 2. This
might be explained by the high mutations in TP53 in cluster 1.

Immune cell infiltration plays a complex biological role
in the development and progression of PCa (Andersen et al.,
2021), and more studies have shown that immune cell
infiltration is associated with PCa prognosis (Kiniwa et al.,
2007). Some of the studies have shown that some kinds of T
cells might promote PCa (Ellem et al., 2009; Valdman et al.,
2010; Flammiger et al., 2012; Yuan et al., 2013; Strasner and
Karin, 2015). PCa cells benefit from regulatory T (Treg)
cells because both CD4 + CD25 + FoxP3+ and CD8+ FoxP3
+ T reg cells can be found in PCa and play a powerful
immunosuppressive role through contact-dependent and
cytokine-dependent suppression (Kiniwa et al., 2007; Stultz
and Fong, 2021) which affect the prognosis (Davidsson
et al., 2012; Andersen et al., 2021). Some of the studies have
also shown that B cells promote PCa cancer (Ammirante
et al., 2010; Shalapour et al., 2015; Strasner and Karin,
2015), which may be associated with IkappaB kinase α,

interleukin10, and other cytokines (Ammirante et al., 2013;
Shalapour et al., 2015). The presence of B cells is associated
with a high-grade and high risk of recurrence of PCa (Woo
et al., 2014), which may have prognostic significance.
Neutrophils, a type of innate immune cell, are associated
with the outcome of the patients (Shiao et al., 2016), and
neutrophils are also reported to promote PCa (Nuhn et al.,
2014; Sonpavde et al., 2014; Templeton et al., 2014; Strasner
and Karin, 2015). In the immune cell infiltration analysis,
we found that the infiltration of immune cells, such as B
lineage, and T cells, was higher in cluster 1 than that in
cluster 2. In addition, the immune function analysis revealed
a higher score for cluster 1 than that for cluster 2. Through
Kaplan–Meier curves, we found that cluster 2 had a higher
survival probability. The result was more inclined to suggest
that high immune infiltration is a risk factor for PCa
patients. Meanwhile, the infiltration levels of T cells and B
cells were higher in cluster 1, confirming the conclusion in
correlational studies that these cells promote PCa.

Our study was the first research for classifying PCa by
NMF based on glycolysis-related genes and then established
a prognostic model with good performance. The results of a
series of validations, including internal TCGA and external
GEO validation, confirmed that the 15 genes based on
glycolysis and NMF analysis have a good prognosis
potential (the 1-year AUC of the TCGA all group was
0.892). It can provide a solution to the prognosis for PCa
patients and help patients choose appropriate treatment
options. Besides, the glycolysis-related genes were proved to
be associated with the prognosis of the PCa patients in this
study and also provide new understandings of the
pathogenesis of PCa. However, our study had a few
shortcomings and limitations. All of the datasets used for
training and testing were from TCGA and GEO; the
prognostic performance of the model should be further verified.
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