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Abstract: Fibrosis is the end-stage change of damaged tissues in various human diseases, which can lead to permanent

scarring or organ malfunction. Hypoxia leads to oxidative stress, mitochondrial dysfunction, and inflammation in

dysfunctional organs and tissues. Oxidative stress resulting from the overproduction of reactive oxygen species plays a

central role in the fibrosis of injured organs. This review addresses the updated knowledge of the relationship between

hypoxia and tissue fibrosis mediated by the reactive oxygen species pathway. Moreover, novel anti-fibrotic strategies

are discussed, which may suppress reactive oxygen species and organ fibrosis.

Introduction

Fibrosis is an unregulated tissue repair process in various
human diseases (Xie and Zeng, 2020). It is characterized by
the differentiation of fibroblast/myofibroblasts from
epithelial cells and excessive extracellular matrix (ECM)
accumulation, accompanied by inflammatory injury and
tissue structure destruction. That is, the abnormal repair of
damaged tissues leads to structural destruction. After tissue
injury, perfusion is disrupted, and acute tissue hypoxia
results. The high demand for oxygen in wounded tissues or
inflammatory cells and mesenchymal cells that infiltrate the
tissues sustain the hypoxic state of damaged tissues
(Remensnyder and Majno, 1968). Prolonged or chronic
hypoxia may help the pathological repair, such as
angiogenesis and fibrosis (Xie and Zeng, 2020; Yao et al.,
2021). Fibrosis can occur in various diseases involving nearly
every tissue and organ (lung, liver, kidney, heart, skin,
connective tissue, etc.). A large amount of evidence over the
past several decades has identified many of the essential
pathogenic mechanisms that promote fibrosis in hypoxia, yet
the precise molecular mechanism involved and the crosstalk
between the implicated pathways are not fully understood
(Cheresh et al., 2013; Remensnyder and Majno, 1968).

Oxidative stress (OS) is one of the major components
contributing to organ fibrosis, the common pathway leading
to organ dysfunction and death. OS results from increased
endogenous and exogenous reactive oxygen species (ROS)

levels. ROS is an important pathogenic factor underlying
fibrosis in a variety of organs. ROS increase in patients with
idiopathic pulmonary fibrosis (IPF) or silicosis-induced lung
fibrosis and silica or asbestos-induced fibrosis animal
models (Cheresh et al., 2013). Additionally, diverse renal
abnormalities trigger OS and accelerate the disorders of the
kidney, such as acute kidney injury (AKI), chronic kidney
disease, and nephrotic syndrome (Su et al., 2019). ROS can
promote cell apoptosis and necrosis, elicit an inflammatory
response, and trigger the overproduction of pro-
inflammatory cytokines that may be important for forming
and depositing ECM.

Recent studies have shown elevated levels of ROS
biomarkers in plasma, urine, and exhaled breath in hypoxia
patients (Prabhakar et al., 2007). Continuous positive airway
pressure therapy could reverse hypoxia and thus decrease
circulating ROS levels in elderly and obese patients (Chen et
al., 2020). Lack of oxygen enhances reductive carboxylation
through a hypoxia-inducible factor-1α (HIF-1α)-dependent
mechanism, increasing ROS production (Jiang et al., 2016).
Hypoxia also alters the complex structure and activity of the
electron transport chain (ETC) and results in excessive ROS
formation. Besides hypoxia, re-oxygenation seems to trigger
ROS production (Diaz et al., 2012; Guarás et al., 2016). A
study on a model of glaucoma showed that intraocular
pressure elevation could reduce oxygen supply to the retina,
subjecting the retina and optic nerve to hypoxic conditions
(Chidlow et al., 2017; Kamel et al., 2020). Increased ROS
concomitant with HIF-1α upregulation was observed in
hypoxic cells, which led to reduced mitophagy (Jassim et al.,
2021). Here, we reviewed the role of hypoxia-induced ROS
in organ and tissue fibrosis and highlighted the complex
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interplays between hypoxia signaling and ROS production.
This review will provide better insight into the pathological
progress of fibrosis and help in developing new anti-fibrotic
therapy strategies.

The key role of ROS in organ and tissue fibrosis
ROS is a double-edged sword. A Low level of ROS is necessary
as potent signaling molecules are involved in the regulatory
processes of various physiological events. At the same time,
excessive ROS causes cell damage and organ and tissue
injury. ROS has been identified to play an essential role in
various organ and tissue fibrosis. ROS production was found
in chronic renal abnormalities, which may result in
tubulointerstitial fibrosis by myofibroblast activation as well
as in glomerulosclerosis by mesangial sclerosis, podocyte
abnormality, and parietal epithelial cell injury (Choi et al.,
2014; Fassett et al., 2015). ROS is a key process in driving
liver damage; the initiation of liver fibrosis by disrupting
cellular lipids, proteins, and DNA, and leads to hepatocyte
necrosis and apoptosis. Moreover, ROS could induce
epigenetic changes in the hepatic stellate cells (HSCs),
including chromatin remodeling by histone modification,
DNA methylation, and gene degradation by microRNAs
(Moran-Salvador and Mann, 2017; Roehlen et al., 2020).
ROS was found to be associated with type-II epithelial-to-
mesenchymal transition (EMT) in case of oral sub-mucous
fibrosis (OSF), attributing to the development of sub-
epithelial fibrosis and type-III EMT in case of oral
squamous cell carcinoma (OSCC) favoring malignancy
associated metastasis (Kawami et al., 2022). Alteration of
Shh and Gli-1 expression patterns revealed the mechanistic
association of hypoxia with the phenotypic plasticity and
disease manifestation in the case of OSF and OSCC.
Shh/Gli-1 signaling can also be correlated with survival in
mediating the cytoprotective phenomenon under OS
(Chatterjee et al., 2021). ROS is particularly linked to
pulmonary fibrosis due to its exposure to higher oxygen
tensions than other tissues. Besides the common molecular
mechanism like mitochondrial DNA damage, pro-
inflammation, and fibroblast proliferation, ROS is
implicated in specific fibrotic processes such as macrophage
polarization, alveolar epithelial cell apoptosis, myofibroblast
differentiation and senescence, and alterations in the
extracellular ECM underlying pulmonary fibrosis (Liu and
Chen, 2017; Otoupalova et al., 2020).

Another chronic lung fibrosis disease different from IPF
is cystic fibrosis (CF). CF is a genetic fibrosis disease that
commonly occurs due to mutations of the gene encoding
the protein cystic fibrosis transmembrane conductance
regulator (CFTR). In the CF airway, many activated
neutrophils release ROS and proteases, thereby inducing
additional ROS production in the lungs (Künzi et al., 2021).
Both in vitro and in vivo experiments demonstrated that
CFTR is involved in stabilizing HIF1-α via controlling
intracellular ROS generation during hypoxia (Duranton et
al., 2012). Phagocytic cells play a significant role in the host
immune defenses by inducing the oxidative burst response
and the secretion of ROS. The up-regulation of
Scedosporium boydii catalase A1 gene (CATA1) and the
constitutive expression of Cu, Zn-SOD gene (SODC) in

response to oxidative stress in phagocytic cells may be
helpful for the survival of the fungus during the
inflammation in fibrosis process (Mina et al., 2015).

Hypoxia induces ROS
Both acute and chronic intermittent hypoxia exhibit an
oxidative burst during re-oxygenation, which can cause
cellular injury (Granger and Kvietys, 2015). The oxidative
burst results from the production and accumulation of ROS,
such as superoxide anion and hydrogen peroxide. The
overproduction of ROS provokes oxidative DNA damage,
lipid peroxidation, and protein denaturation. The cerebral
hypoxia-ischemia can induce increased levels of ROS and
inflammatory response and result in neurodegeneration
(Merelli et al., 2021). The concentration of malondialdehyde
(MDA), a type of ROS-induced product, increased
significantly after hypoxia stress (Jie et al., 2021). A large
body of evidence indicates that hyperglycemia-induced
chronic hypoxia is one of the common pathogenic
mechanisms driving the progression of diabetic nephropathy
(DN) (Fu et al., 2016; Rosenberger et al., 2008). Further
study confirmed that hyperglycemia induces cellular hypoxia
and mitochondrial ROS generation, which may promote
podocyte injury in DN (Sada et al., 2016). Tangeretin can
inhibit podocyte injury and fibrosis by blocking EMT
caused by ROS and hypoxia (Kang et al., 2020). Hypoxia
leads to ATP depletion and ROS-induced damage to cellular
components, which consequently cause age-related macular
degeneration (Blasiak et al., 2014). In rheumatoid arthritis,
hypoxia induces excessive production of ROS leading to
oxidative damage (Quiñonez-Flores et al., 2016). A
comparative metabolomics study of hypoxic rodent tissues
revealed that hypoxic conditions lead to an accumulation of
mitochondrial succinate due to the reversal of the succinate
dehydrogenase enzyme acting on fumarate in the citric acid
cycle. When reperfusion occurs, this accumulated succinate
is rapidly re-oxidized, generating large amounts of
superoxide radical and other free radical species (Chouchani
et al., 2014). Intermittent hypoxia worsened the fibrosis in
bleomycin (BLM)-treated mice. Hypoxia increases the levels
of ROS and inflammation with the progress of pulmonary
fibrosis, and there is a positive linear correlation between
the HIF-1α expression and hydroxyproline content (a
biomarker of fibrosis) (Xiong et al., 2021).

The central role of ROS in crosstalk between the pathways
The cellular reactions to hypoxia evoke a change in the
expression of many genes. HIF-1 is the primary regulator of
oxygen homeostasis and consists of HIF-1α and HIF-1β
subunits. HIF-1α is uniquely associated with the
transcription of the hypoxia-inducible genes. HIF-1α can
regulate the expression of roughly 400 target genes to ensure
cell survival under hypoxic stress conditions (Schodel et al.,
2011). HIF-1α targets genes such as BNIP3L, FLT1, SIAH1,
BHLHB2, and vascular endothelial growth factor (VEGF)
were found to be significantly overexpressed in BLM-
induced pulmonary inflammation and fibrosis. Both mRNA
and protein levels of HIF-1α were found to be remarkably
up-regulated as early as seven days post-BLM treatment,
before any destruction of lung architecture and consequent
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gas exchange problems, indicating an early role of HIF-1α in
the fibrosis process (Tzouvelekis et al., 2007). The
enlargement and leakage of skin capillaries in active stages
develop into an extensive vascular area associated with
severe tissue hypoxia in systemic sclerosis. Hypoxia was
found to up-regulate the expression of VEGF in all stages of
the disease, accompanied by strongly reactive HIF-1α
(Ioannou et al., 2013). Excessive production of ROS could
impair VEGF-stimulated angiogenesis and wound healing
(Liu et al., 2022). Other vascular bioactive factors, such as
sphingosine 1-phosphate, might enhance the expression of
HIF-1α (Hutami et al., 2022; Zeng et al., 2022), contributing
to the regulation of wound healing and organ fibrosis.
In vitro, hypoxia induces the expression of VEGF and type I
collagen in activated HSCs in experimental hepatic fibrosis
(Corpechot et al., 2002). HIF-1α enhanced EMT in vitro and
induced epithelial cell migration through upregulation of lysyl
oxidase (LOX) genes. In contrast, genetic ablation of epithelial
HIF-1α inhibited the development of tubulointerstitial fibrosis
in unilateral ureteral obstruction (UUO) kidneys, associated
with decreased fibrogenesis (Higgins et al., 2007). Additionally,
hypoxia serves as a stimulus for endothelial to mesenchymal
transition (EndMT) via up-regulated HIF-1α target
transcription factors Snail, Slug, and Twist (Xu et al., 2015).
Hypoxia activates nuclear factor-activated T cell signaling via
increased HIF-2α but not HIF-1α, then increases the
proliferation of normal human pulmonary fibroblasts and IPF
fibroblasts (Senavirathna et al., 2018).

Mitochondria are the significant consumers of oxygen in
the cell and are severely affected by hypoxia consequently.
Mitochondria have emerged as a powerful source of ROS
under hypoxia conditions, and mitochondrial DNA
(mtDNA) is more susceptible to oxidative damage than its
nuclear counterpart (McElroy and Chandel, 2017).
Ischemia-reperfusion initiates oxidative damage through the
generation of mitochondrial ROS, and the repeated cycles of
hypoxia-reoxygenation can lead to increased levels of ROS
(Bugger and Pfeil, 2020). HIF-1α is recruited to the
mitochondria in response to ROS, and clearance of the ROS
thus protects against hydrogen peroxide (H2O2)-induced
apoptosis (Li et al., 2019). Increased intracellular ROS levels
enhance HIF-1α gene expression in OSCC cells under
normoxia, which is initiated through transcriptional and
translational regulation of HIF-1α via the extracellular
regulated protein kinase (ERK) and phosphatidylinositol 3
kinase/serine-threonine kinase (PI3K/AKT) signaling
pathway (Sasabe et al., 2010). Under hypoxia conditions,
ROS can also increase the transcription of HIF-1α by
induction of ERK and PI3K/AKT phosphorylation (Du et
al., 2011; Koshikawa et al., 2009). ROS, especially H2O2,
inhibits the activity of prolyl hydroxylases (PHD), thereby
interfering with HIF-1α degradation and favoring the
accumulation of HIF-α (Dehne and Brune, 2014). Several
cell types respond to acute hypoxia with a transient increase
in ROS production for about 10 min, accompanied by the
stabilization of HIF-1α (Hernansanz-Agustin et al., 2014).
Inhibition of the mitochondrial anti-oxidative system may
increase the expression of HIF-1α. Suppression of THE gene
associated with retinoid-IFN-induced mortality-19 (an
essential subunit of mitochondrial complex I) by shRNA

enhanced autophagy by activating ERK and HIF-1α in a
ROS-mediated manner (Yue et al., 2016). Inhibition of
mitochondrial complex II, either pharmacologically or via
RNA interference of succinate dehydrogenase complex iron-
sulfur subunit B, could increase ROS production and,
subsequently, the ability to stabilize HIF-1α (Guzy et al.,
2008). Deregulation of electron transfer chain complex III
results in the release of ROS and thus stabilizes HIF-1α
(Comito et al., 2011). In turn, HIF-1α suppresses
metabolism through the tricarboxylic acid cycle by directly
inducing pyruvate dehydrogenase kinase 1 and leads to
hypoxic ROS generation (Kim et al., 2006). A recent study
indicated that mitochondria can modulate HIF-1α stability
via their effects as oxygen consumers and not as peroxide
second messenger generators (Kumar et al., 2021).

Nuclear factor-κB (NF-κB) regulates the expression of
genes involved in inflammation, cell proliferation, fibrosis, and
apoptosis. ROS is considered a essential second messenger for
NF-κB activation. Treating cells with ROS such as H2O2,
superoxide anion (O2−), and hydroxyl radical (OH−) results in
NF-κB activation. Conversely, antioxidants such as
pyrrolidine-9-dithiocarbamate and N-acetyl-cysteine block
NF-κB activation by a wide range of stimuli such as
interleukin-1(IL-1) and tumor necrosing factor-α (TNF-α),
suggesting that ROS act as signaling molecules in NF-κB
activation during tissue damage (Bonizzi et al., 2000; Gloire et
al., 2006; Panopoulos et al., 2005). Pieces of evidence from
cellular experiments revealed the role of ROS in the
development and progression of transforming growth factor
(TGF)-β1-induced renal diseases. ROS-induced oxidation in
latency-associated peptide-β1 triggers a conformational change
that releases TGF–β1 (Jobling et al., 2006). Glucose oxidase
can continuously generate H2O2 from glucose and thereby
induce TGF-β1 synthesis and ECM gene expression in
cultured human mesangial cells (Iglesias-de la Cruz et al.,
2001). The overexpression of TGF-β1 is stimulated by
exogenous as well as endogenous ROS, and decreased
intracellular ROS by catalase addition can reduce the protein
and mRNA expression of TGF-β1 (González-Ramos et al.,
2012). Hypoxia enhances type-II arginase (Arg-II) expression
through HIF1α or HIF2α and induces mitochondrial ROS
generation, which mediates hypoxia-induced TGF-β1
production in the renal epithelial cells, suggesting that hypoxia
participates in hypoxia-associated fibrosis by activating HIFs-
Arg-II-ROS-TGFβ1-cascade (Liang et al., 2021).

ROS plays a central role in the pathways mediating organ
fibrosis (Fig. 1).

Therapy strategies and perspective
It has been well known that glucocorticoids, colchicine, and
cyclophosphamides are regularly used to treat organ fibrosis.
Some new therapy have emerged recently. For example,
baicalin attenuates ROS-associated damage in BLM-induced
pulmonary fibrosis by reducing the MDA content,
simultaneously increasing the levels of glutathione peroxidase
(GSH-px), superoxide dismutase (SOD), and GSH (Zhao et
al., 2020), and also in carbon tetrachloride-induced liver
fibrosis (Li and Zheng, 2022).

As mitochondrial ROS accounts for most of the cellular
ROS in crystalline silica-exposed macrophages, treatment
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with dioscin could decrease ROS content by promoting alveolar
macrophage autophagy activation in vitro and in vivo (Du et al.,
2019). Hippophae rhamnoide L and nanocurcumin decreased
ROS production in rats exposed to hypobaric hypoxia (Nehra
et al., 2017). ROS plays a pivotal role in promoting the
activation of some kinases, such as p38 mitogen-activated
protein kinase (MAPK), protein kinase C, and ERK 1/2 in
hypoxia conditions (Bugger and Pfeil, 2020).

Salubrinal, an inhibitor of p-eIF2α dephosphorylation, could
inhibit ROS and contribute to attenuating pulmonary arterial
hypertension (PAH) and right ventricular hypertrophy in rats
exposed to hypobaric hypoxia (He et al., 2016). Likewise,
Ganoderma lucidum could decrease cellular ROS levels in
ultraviolet B-exposed fibroblasts (Zeng et al., 2017) and
significantly hinder UUO-induced renal fibrosis via suppressing
the TGF-β/Smad and MAPK signaling pathways (Geng et al.,
2020). Chrysin could decrease local tissue hypoxia in a model of
BLM-induced pulmonary fibrosis. Chrysin also demonstrated a
potent antioxidant effect by decreasing lipid peroxidation,
increasing antioxidant defense mechanisms by increasing SOD
activity and endothelial nitric oxide synthase (eNOS) expression,
and reducing GSH and inducible NOS (iNOS) expression
(Kseibati et al., 2020). Kaempferol showed therapeutic effects in
BLM-induced dermal fibrosis by inhibiting the expression of
OS-associated factors and decreasing the accumulation of ROS-
induced fibroblasts and apoptotic cells (Sekiguchi et al., 2019).
Quercetin exerts anti-fibrogenic and anti-inflammatory effects
on BLM-induced pulmonary damage in mice through
modulation of the redox balance by inducing redox-sensitive
transcription factor nuclear factor erythroid 2-related factor 2
(Nrf2) (Boots et al., 2020).

Cell therapy using mesenchymal stem cells (MSCs)
represents a promising therapeutic approach to fibrosis
diseases. Allogeneic human cells in patients with idiopathic
pulmonary fibrosis via intravenous delivery (AETHER) was
the first human trial designed to evaluate the safety of bone
marrow–derived human MSCs in patients with mild to
moderate IPF. Data from this trial supported the safety of a
single infusion of human MSCs in patients (Glassberg et al.,

2017). Further study confirmed that therapy with high doses
of MSCs was a safe and promising method to reduce IPF
progression (Averyanov et al., 2020; Fishman et al., 2019).
In various murine alveolar injury models, MSCs exerted an
overall protective effect, limiting lung inflammation and
fibrosis. MSC inhibited HIF-1α protein expression and ROS
accumulation (Bernard et al., 2018). Also, purified exosomes
derived from MSCs effectively prevented and reverted core
features of BLM-induced pulmonary fibrosis (Mansouri et
al., 2019).

Several studies have suggested that MSCs have strong
immunomodulatory properties. Activated innate immune
cells (neutrophils, monocytes, macrophages, dendritic cells,
etc.) contribute to fibrosis by secreting ROS and pro-
inflammatory mediators such as TNF-α and IL-6 (Sun et al.,
2020a). During immune responses, most immune cells
undergo metabolic reprogramming, which produces high
levels of cytosolic ROS and mitochondrial ROS (Sun et al.,
2020b). Evaluating drug interactions with innate immune
cells helps to broaden the understanding of anti-fibrotic
strategy. A recent study demonstrated the anti-fibrotic
potential of pirfenidone by decreasing neutrophil
phagocytosis and ROS production (Evani et al., 2020).

In conclusion, the evidence supporting OS in human
fibrotic disorders, particularly IPF, is substantial and
incontrovertible. The precise role of ROS must be recognized
when designing antioxidant therapies. Mitochondrial
dysfunction, redox imbalance, and cellular senescence are
closely associated with ROS production, which are new
targets in organ fibrosis treatment (Otoupalova et al., 2020).
Nevertheless, antioxidant therapy is a promising strategy for
organ and tissue fibrosis. We hope that with a greater
understanding of the pharmacokinetic and pharmacodynamic
properties of the bioactive agents and their interactions in
vivo, antioxidant-based therapeutics may be used in the clinic
for the treatment of specific fibrotic diseases.
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FIGURE 1. ROS plays a central role in the pathways
mediating the organ fibrosis.
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