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Abstract: Chondroitin sulfate synthase 2 (CHPF) is characterized as an oncogenic and poor prognosis-related gene in
breast cancer. However, this gene has alternative splicing products encoding proteins of different lengths. Breast
cancer is a group of heterogeneous tumors with distinct clinical and genomic characteristics. In this study, we
explored the expression profile and prognostic value of the two transcripts of CHPF using data from The Cancer
Genome Atlas (TCGA)-BRCA. The functional regulation of the two transcripts was also studied in MCF-7 and BT-
474 cells. Among the two transcripts of CHPF, ENST00000535926 expression was significantly upregulated in the
tumor samples and was the dominant isoform. ENST00000535926, but not ENST00000243776 upregulation, was
associated with significantly worse progression-free survival (PFS) and disease-specific survival (DSS) in luminal A/B
cases. However, no significant association was observed in PFS or DSS in other Prediction Analysis of Microarray 50
(PAM50) subgroups. CHPF isoform 2 protein (encoded by ENST00000535926) significantly elevated the expression of
P3HI and RCN3 at the mRNA and protein levels in MCF-7 and BT-474 cells. The effect of ENST00000535926 was
significantly stronger than ENST00000243776 in promoting tumor cell colony formation. The expression of P3HI and
RCN3 was negatively correlated with CD8+ T cell infiltration but was positively correlated with cancer-associated
fibroblast infiltration in luminal A/B tumors. In summary, this study revealed that ENST00000535926 is an

unfavorable prognosis-related and tumor-promoting transcript of the CHPF gene in luminal A/B breast cancer.

Introduction

Glycosaminoglycans (GAGs) are long and unbranched
polysaccharides, acting as extracellular matrix components
(Afratis et al, 2012). GAGs are frequently dysregulated in
the tumor microenvironment (TME) of breast cancer
(Hampton et al., 2022; Kowitsch et al, 2017; Wei et al.,
2020). Chondroitin sulfate is a major component of the
GAG family and can covalently link to the core protein,
forming chondroitin sulfate proteoglycans (CSPGs). CSPGs
participate in diverse physiological events, such as
cytokinesis, morphogenesis, and neuronal plasticity (Wei
et al., 2020). Excessive chondroitin sulfate generation can
exacerbate the aggressive behaviors of breast cancer cells by
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promoting growth, invasion, and metastasis (Cooney et al,
2011; Iida et al., 2015; Monzavi-Karbassi et al., 2007).

In humans, biosynthesis of chondroitin sulfate chains is
initiated via the linkage of N-acetylgalactosamine (GalNAc)
to a tetrasaccharide structure, glucuronic acid (GlcA)-
GalNAc-GalNAc-xylose, on a core protein (Mikami and
Kitagawa, 2013). Then, the chondroitin sulfate chain is
elongated by chondroitin sulfate synthases (CHSY1, CHPF/
CHSY2, CHPE2, and CHSY3), that have both B-1,3-GlcA
and B-1,4-GalNAc transferase activity (Mikami and
Kitagawa, 2013). CHPF upregulation is common in multiple
types of cancer (Hou et al., 2019; Liao et al., 2021; Lin et al,
2021). CHPF promotes triple-negative breast cancer cell
growth, metastasis, and accumulation of myeloid-derived
suppressor cells (MDSCs) (Liao et al., 2021). Its prognostic
significance in breast cancer was also confirmed by a recent
bioinformatic analysis (Li et al., 2022).

However, breast cancer is a group of heterogeneous
tumors with distinct clinical and genomic characteristics
(Liu et al., 2022; Nielsen et al., 2014; Wang et al., 2022). A
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50-gene quantitative polymerase chain reaction (qQPCR assay;
Prediction Analysis of Microarray 50, PAMS50) of gene
profiles can generally classify breast cancer into luminal A,
luminal B, human epidermal growth factor receptor 2
(HER2)-enriched, basal-like (largely triple-negative), and
normal-like breast cancer subtypes (Nielsen et al., 2014). In
addition, CHPF is a gene with alternative splicing, with two
isoforms (isoform 1: ENST00000243776 and isoform 2:
ENST00000535926) expressing two proteins with different
lengths (775 amino acids (aa) and 613 aa, respectively,
Suppl. Fig. S1). The short isoform 2 (also called Klokinl)
can facilitate the transport of parkin to the mitochondria,
enhance cell viability, and protect neuronal cells against
oxidative stress (Kuroda et al., 2012).

Considering the important tumor-promoting effects of
CHPF in breast cancer, it is necessary to explore whether it has
transcript-specific regulations. In this study, we explored the
expression and prognostic significance of the two transcripts
using data from The Cancer Genome Atlas (TCGA)-breast
cancer (BRCA). In addition, the functional regulation of the two
transcripts was also studied in MCF-7 and BT-474 cells.

Materials and Methods

Ethical statement

The bioinformatic part of this study is based on Genotype-
Tissue Expression (GTEx), and TCGA, in which the data
are anonymous and informed consent was appropriately
handled. Ethical approval was not required, as no primary
patient data were collected by any author in the current study.

Data retrieval and bioinformatic analysis
RNA-seq data of normal breast tissues in the GTEx project
and tumor and tumor-adjacent normal in TCGA-BRCA
were obtained as we previously described (Luo et al., 2020;
Tian et al., 2020), using the UCSC Xena browser (https://
xenabrowser.net/) (Goldman et al, 2020). RNA-seq data
were obtained for 179 normal breast tissues in GTEx and
1210 cases in TCGA-BRCA (113 tumor-adjacent normal
tissues and 1097 primary tumors). Among the 1097 primary
tumor cases, 839 had PAMS50 information, including 420
luminal A, 192 luminal B, 66 HER2+, 139 basal-like, and 22
normal-like. The transcript expression and isoform
percentages were compared between GTEx and TCGA-
BRCA. The survival data, including progression-free survival
(PFS) and disease-specific survival (DSS), were extracted.
Kaplan-Meier (K-M) survival curves were generated by
median transcript or gene expression in PAMS50 subgroups.
The top CHPF-correlated genes in TCGA-BRCA were
identified using cBioPortal for Cancer Genomics (https://
www.cbioportal.org/). Then, the correlation between these
genes and the two CHPF transcripts was assessed separately
by calculating Pearson’s correlation coefficients.

Cell culture and treatment

Since we observed that the dysregulation of certain CHPF
transcripts might be associated with poor prognosis of
luminal A and liminal B subtypes, we used luminal A
representative tumor cell line MCF-7 and luminal B
representative tumor cell line BT-474 for in vitro study.
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These two cell lines were cultured as described previously
(Tian et al, 2020). Lentiviral ENST00000243776 or
ENST00000535926 overexpression plasmids were generated
based on the pLenti-CMV-puro backbone. Empty lentiviral
plasmids (vector) served as a negative control. Lentivirus
production and infection following the methods introduced
previously (Luo et al., 2020; Tian et al., 2020).

Quantitative real-time polymerase chain reaction (qRT-PCR)
assay

qRT-PCR assays were performed as we described previously
(Tian et al, 2020). In brief, total RNA was extracted from
MCE-7 and BT-474 cells with or without ENST00000535926
or ENST00000243776 overexpression using Trizol Reagent
(Thermo  Fisher Scientific, Waltham, MA, USA).
Complementary DNA was reversely transcribed and used as
the template for following PCR assays. Targeting mRNAs
were amplified using SYBR Premix Ex Taq (TaKaRa, Dalian,
China) with the ABI PRISM 7900HT Sequence Detection
System (Applied Biosystems). We checked the data in Internal
Control ~ Genes  (http://icg.big.ac.cn/index.php/Main_Page)
(Sang et al, 2018). ACTB is among the appropriate reference
genes for research and clinical analysis of breast tumor
samples. The following primers were used: human CHPF, 5'-
AACGCACGTACCAGGAGATCC-3' (forward) and 5'-
GGATGGTGCTGGAATACCCACG-3"  (reverse); human
P3H1, 5-GTCACTGGATGTGAGCAGACTG-3' (forward) and
5-ACTCGTGGTCAGAGATTACGCC-3" (reverse); human
RCN3, 5-TCGAGAGGAGCTGACAGCCTTC-3' (forward)
and 5-TCCTCCACCTGGACATAGCCAT-3' (reverse); human
EFEMP2, 5'-ACTCCTATGGGACCTTCCTGTG-3" (forward)
and 5-CTCGTTGATGCAGCGGTACTGA-3' (reverse); human
ACTB, 5-CACCATTGGCAATGAGCGGTTC-3' (forward) and
5-AGGTCTTTGCGGATGTCCACGT-3' (reverse). The melting
curve with a single peak was considered a pure and single
amplicon and was used for the following data analysis.
Representative melting curves were provided in Suppl
Fig. S2. Relative mRNA levels were normalized to ACTB and
calculated using the 27" method, based on three times of
repeats in triplicate.

Western blot analysis

Western blotting was performed following the methods
introduced previously (Tian et al, 2020). In brief, total proteins
were extracted from MCF-7 and BT-474 cells, separated using
10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
and electro-transferred onto  polyvinylidene  difluoride
membranes (Millipore, Billerica, MA, USA). Then, the
membranes were blocked and incubated with primary
antibodies against CHPF (1: 500, YT0924, Immunoway,
Suzhou, China), P3H1 (1: 1000, 26691-1-AP, Proteintech,
Wuhan, China), RCN3 (1: 1000, 27497-1-AP, Proteintech),
EFEMP2 (1: 1000, 12004-1-AP, Proteintech), and p-actin (1:
2000, 20536-1-AP, Proteintech) overnight at 4°C. Then, the
membranes were incubated with horse radish peroxidase-
conjugated secondary antibodies for 1 h at room temperature.
The protein band signals were developed using BeyoECL Star
reagent (Beyotime, Shanghai, China) and an ImageQuant LAS-
4000 imaging system (GE Healthcare, Piscataway, NJ, USA).
The experiment was repeated three times.
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Colony formation assays

Cells with or without ENST00000535926 and ENST00000243776
overexpression were seeded into 6-well plates (500 cells/well) and
were cultured for about two weeks. Then, the cellular colonies
were fixed with methanol and stained with 0.5% crystal violet.
The plates were scanned, and the colonies were visually
counted. The experiment was repeated three times in triplicate.

Estimation of tumor infiltration

The correlation between P3HI/LEPREI or RCN3 expressions
and the infiltration of immune cells (CD8+ T cells, Tregs,
MDSC, and cancer-associated fibroblasts) in luminal A and
luminal B cases in TCGA were estimated using TIMER 2.0
(http://timer.cistrome.org/) (Li et al., 2020). This platform
provides computational algorithms to infer immune
infiltrates’ abundances from bulk tumor transcriptome
profiles in TCGA. Estimation was performed in luminal A
and luminal B cases separately.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.1.2
(GraphPad Inc., La Jolla, CA, USA). One-way ANOVA and
post-hoc Dunnett’s multiple comparisons test were
performed for multiple group comparisons. Welch’s unequal
variances t-test was conducted for a two-group comparison.
The log-rank test was performed for survival analysis. A
value with p < 0.05 was considered statistically significant.

Results

ENST00000535926 is the dominant CHPF transcript in breast
cancer tissues

I expression profile of CHPF transcripts (ENST00000243776
and ENST00000535926) in normal and cancerous breast
tissues was examined by comparing RNA-seq data in GTEx-
breast (all normal tissues, n = 179) and TCGA-BRCA
(PAM50 subgroups), in terms of transcript expression and
isoform percentage. The wave diagram and plot chart
showed that ENST00000535926 and ENST00000243776 have
similar TPM values and percentages in normal breast tissues
(Figs. 1A and 1B).

Compared to the GTEx-normal group, ENST00000535926
expression was significantly upregulated in tumor-adjacent
normal tissues and all PAM50 tumor subgroups (Fig. 1C). In
addition, its isoform percentage increased from approximately
40% in GTEx-normal breast tissues to over 70% in the cancer
groups in TCGA (Fig. 1D). However, ENST00000243776
expression was significantly lower in tumor-adjacent normal
tissues in TCGA-BRCA than in GTEx (Fig. 1E). Its expression
was similar among GTEx-normal, luminal A, luminal B, HER2+,
and basal tumor subgroups (Fig. 1E). In terms of isoform
percentage, it dropped from around 50% in GTEx-normal
breast to about 20% in the cancer groups in TCGA (Fig. 1F).

ENST00000535926 upregulation is associated with unfavorable
survival in patients with luminal A and B tumors

Since the PAM50 subgroups have significant heterogeneity in
the genomic background and clinical outcomes, we assessed
the association between the expression of the two transcripts
and survival in each PAMS50 subgroup. Patients were

categorized into two groups by median transcript expression.
K-M survival analysis showed that high ENST00000535926
expression was associated with significantly shorter PFS and
DSS in patients with luminal A and B tumors (Figs. 2A, 2B,
2E, 2F). However, no significant association was observed in
HER2+ or basal subgroup (Figs. 2C, 2D, 2G, 2H). High
ENST00000243776 expression was associated with significantly
worse DSS in luminal B cases (Fig. 2N). However, no
significant association was observed in PFS or DSS in other
subgroups (Figs. 2I-2M, 20, 2P).

Chondroitin sulfate synthase isoform 2 protein stimulates the
expression of P3HI and RCN3 and promotes tumor cell
colony formation

Since the two transcripts of CHPF have distinct prognostic
significance, we tried to assess their functional differences in
breast cancer. Using cBioPortal for Cancer Genomics, we
characterized the top 19 genes correlated with total CHPF
gene expression in luminal A and B cases in TCGA-BRCA.
Then, the correlations between the expression of these genes
and the two CHPF transcripts were assessed separately
(Fig. 3A). By setting 0.3 as the cutoff for the difference in
correlation coefficients, we found three genes (P3HI1, RCN3,
and EFEMP2) highly or moderately correlated with
ENST00000535926 expression, but were only weakly correlated
with or irrelevant to ENST00000243776 expression (Figs. 3A,
3C-3H). However, no significant correlation (|Pearson’s r]
> 0.2) was observed between the two isoforms and ESRI
expression in luminal A/B cases (Fig. 3B).

Then, we  overexpressed ENST00000535926  or
ENST00000243776 in MCF-7 and BT-474 cells and detected
the expression of these genes (Figs. 31-3M). ENST00000243776
overexpression slightly increased the transcription of P3HI
(Fig. 3K). In comparison, ENST00000535926 overexpression
increased the transcription of P3HI and RCN3 (Fig. 3K). The
results of western blotting revealed that ENST00000535926, but
not ENST00000243776 overexpression, elevated the expression
of P3H1 and RCN3 proteins levels (Fig. 3M). Colony
formation assays confirmed that ENST00000535926
overexpression drastically enhanced colony formation of MCEF-
7 and BT-474 cells. These effects were much more potent than
ENST00000243776 overexpression (Figs. 3N-3P).

P3HI1 and RCN3 expression are negatively correlated with
CD8+ T cell infiltration but positively correlated with cancer-
associated fibroblast in luminal A/B tumors
Since the positive regulation of the CHPF isoform 2 on P3H1
and RCN3 expression was confirmed, we further analyzed the
prognostic significance of these two genes. K-M survival
analysis showed that although high P3HI or RCN3
expression might be linked to poor PFS and DSS, the
statistical analysis only confirmed a significant difference in
DSS by median P3H1 separation (Figs. 4A-4H).
Considering that CHPF might regulate TME via its
downstream effectors, we further assessed the correlation
between P3HI or RCN3 expression and tumor-infiltrating
immune cells (CD8+ T cells, Tregs, myeloid-derived
suppressor cells (MDSC), and cancer-associated fibroblasts)
in luminal A and luminal B tumors, respectively. P3HI
showed a strong negative correlation with CD8+ T cell
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FIGURE 1. ENST00000535926 is the major CHPF transcript in breast cancer tissues. (A, B) Wave charts were generated to compare the
expression (log,(TPM+0.001)) (A) and isoform percentage (B) of ENST00000535926 and ENST00000243776 in GTEx-normal breast tissues
and primary breast tumors in TCGA. (C-F) Plot charts were generated to compare the expression (log2(TPM+0.001)) (C and E) and isoform
percentage (D and F) of ENST00000535926 (C, D) and ENST00000243776 (E, F) in GTEx-normal breast tissues and the PAM50 subgroups in
TCGA-BRCA. GTEx-B: GTEx-normal breast; adj. N: adjacent normal. One-way ANOVA and post-hoc Dunnett’s multiple comparisons test

were performed. *p < 0.05; **p < 0.001.

infiltration in luminal A tumors (Pearson’s r = -0.607)
(Fig. 5A) and a moderate negative correlation (Pearson’s r =
-0.549) in luminal B tumors (Fig. 5B). RCN3 showed a
strong negative correlation with CD8+ T cell infiltration in
both luminal A and B tumors (Pearson’s r = —-0.653 and
—0.67, respectively) (Figs. 5C and 5D).

Discussion

RNA splicing is a process of RNA transformation in which the
pre-mRNAs become mature mRNAs by excising introns and
ligating exons (Yang et al., 2019). One direct consequence of
RNA splicing is functional protein diversity (Birzele et al,
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FIGURE 2. ENST00000535926 upregulation is associated with unfavorable survival in patients with luminal A and B tumors (A-P). (K-M)
Survival curves were generated to compare the difference in PFS (A-D, I-L) and DSS (E-H, M-P) in the PAM50 subtypes of breast cancer in
TCGA. Patients were separated by median ENST00000535926 expression (exp.) (A-H) or ENST00000243776 expression (I-P). Log-rank test
was conducted to assess the statistical difference between survival curves.

2008). Growing evidence demonstrates that alternative
splicing is a molecular marker of human cancer and might
provide new therapeutic targets (Zhang et al, 2021).
Previous studies have characterized some important
aberrant alternative splicing events in breast cancer (Hatami
et al., 2013; Wang et al, 2016; Yang et al, 2019). Breast
cancer type 1 (BRCA1) is a tumor suppressor gene in breast
cancer. However, BRCA1-Al1q (partial skipping of exon 11)
can promote partial PARP inhibitor (PARPi) and cisplatin
resistance (Wang et al., 2016). Compared to the full-length
HER2, A16HER2 lacks exon 20 and encodes a small
extracellular region. It can augment the critical oncogenic
signals to promote HER2-driven tumorigenesis, cancer
stemness, and drug resistance (Wang et al., 2016). Multiple
protein isoforms of Kruppel-like factor 6 (KLF6) derived
from alternative splicing have been observed in breast
cancer, including KLF6-SV1, KLF6-SV2, and KLF6-SV3.
The full-length KLF6 and KLF6-SV3 can be transferred to
the nucleus using the nuclear localization signal (NLS).
However, KLF6-SV1 and KLF6-SV2 localize to the
cytoplasm due to the lack of NLS. KLF6-SV1 has been
validated as a key driver of breast cancer metastasis by
promoting epithelial-to-mesenchymal-like transition
(Hatami et al., 2013).

Alternative splicing of CHPF and the functional
differences of the isoforms have been reported in normal
human neurons (Kuroda ef al., 2012). The link between total
CHPF expression and unfavorable survival of breast cancer
patients was also observed (Li et al., 2022; Liao et al., 2021).
However, it is not confirmed whether the link is transcript
specific. In this study, using RNA-seq data from both TCGA-
BRCA and GTEx, we compared the expression of the two
CHPF transcripts and observed compositional alteration.
ENST00000535926 expression was significantly upregulated in
the tumor samples and became the dominant transcript.
ENST00000535926, but not ENST00000243776 upregulation,
was associated with significantly worse PES and DSS in both
luminal A and luminal B cases. However, no significant
association was observed in PFS or DSS in other PAMS50
subgroups. In addition, we validated that ENST00000535926
overexpression had a significantly stronger effect on
promoting tumor cell colony formation of MCF-7 and BT-
474 cells. These findings suggest that the prognostic
significance of CHPF and its tumor-promoting effects might
be transcript-specific in certain PAM50 subgroups.

Our correlation analysis revealed a significant difference in
genes correlated with ENST00000535926 or ENST00000243776
expression. Molecular studies further confirmed that CHPF
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FIGURE 3. ENST00000535926 stimulates the expression of P3H1 and RCN3 and promotes tumor cell colony formation. (A, B) Summary
tables showing the expressional correlation between the top CHPF correlated genes and the two CHPF transcripts (ENST00000535926 and
ENST00000243776) (A) and between the expression of ESR1 and the two CHPF transcripts (B) in luminal A/B cases in TCGA-BRCA. (C-
H) Plot charts were generated to show the expressional correlation between the gene and transcript pairs as indicated in luminal A and B cases
in TCGA-BRCA. (I, ]) Quantitative real-time polymerase chain reaction (QRT-PCR) assays were conducted to check the expression of CHPF
mRNA 48 h after lentivirus-mediated ENST00000243776 (243776-OE) (I) or ENST00000535926 (535926-OE) (J) overexpression in MCF-7
and BT-474 cells. (K-M) qRT-PCR assays (K, L) and western blotting (M) were conducted to check the expression of P3H1, RCN3, and
EFEMP2 at the mRNA (K, L) and protein (M) in MCF-7 and BT-474 cells 48 h after lentivirus-mediated ENST00000243776 (243776-OE)
or ENST00000535926 (535926-OE) overexpression. (N-P) Representative images (N) and quantitation of (O, P) of colony formation of
MCEF-7 and BT-474 cells with lentivirus-mediated ENST00000243776 (243776-OE) or ENST00000535926 (535926-OE) overexpression. ##,
comparison between 535926-OF and 243776-OE. *p < 0.05; ** and ## p < 0.01; ***p < 0.001.

isoform 2 (encoded by ENST00000535926) can significantly
elevate the expression of P3HI and RCN3 at mRNA and
protein levels in MCF-7 and BT-474 cells. P3H1 encodes Prolyl
3-Hydroxylase 1, a member of the collagen prolyl hydroxylase
family. Its upregulation is associated with a poor prognosis of

osteosarcoma (Huang et al, 2020). Its knockdown can reduce
tumor cell proliferation, migration, and invasion (Huang et al.,
2020). RCN3 encodes reticulocalbin 3, which acts as a
molecular chaperone during protein biosynthesis and transport
in the endoplasmic reticulum (Martinez-Martinez et al., 2017).
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FIGURE 4. The survival significance of P3HI and RCN3 expression in patients with luminal A and B tumors (A-H). (K-M) Survival curves
were generated to compare the difference in PFS (A, C, E, and G) and DSS (B, D, F, and H) in the luminal A (A, B, E, and F) and luminal B (C,
D, G, and H) subtypes of breast cancer in TCGA. Patients were separated by median P3H1 expression (A-D) or RCN3 expression (E-H). Log-
rank test was conducted to assess the statistical difference between survival curves.
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FIGURE 5. P3HI and RCN3 are negatively correlated with CD8+ T cell infiltration but were positively correlated with cancer-associated
fibroblast in luminal A/B tumors (A-D). Plots charts were generated to show the correlation between P3HI/LEPREI (A, B) or RCN3 (C,
D) expression and the infiltration of immune cells (CD8+ T cells, Tregs, MDSC, and cancer-associated fibroblasts) in luminal A (A and C)
and luminal B (B and D) cases in TCGA. Data was obtained from TIMER2.0 (http://timer.cistrome.org/).
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By performing immune-cell infiltration analysis, we
confirmed that P3HI and RCN3 expression are negatively
correlated with CD8+ T cell infiltration but positively
correlated with cancer-associated fibroblast infiltration in
luminal A/B tumors. A recent single-cell RNA-seq data
revealed that RCN3 is a fibroblast-specific biomarker of
unfavorable prognosis in colorectal cancer (Zhou et al,
2020). Its upregulation can elevate the expression of
immune-related factors, including TGF-f1, IL-10, and IL-6
in colorectal cancer cells (Ding et al., 2022). These cytokines
and chemokines can help generate an immunosuppressive
tumor microenvironment (Felcher et al., 2022; Huang et al.,
2017). Typically, TGF-B1 can promote the transition of
resident fibroblasts to cancer-associated fibroblasts and
enhance cancer metastasis (Yoon et al, 2021). IL-10
expressed by tumor-infiltrating Tregs can drive the
exhaustion of intratumoral CD8+ T cells (Damo and Joshi,
2019). Therefore, we infer that the CHPF-RCN3 axis might
contribute to T cell exclusion or fibroblast recruitment to
the breast cancer TME.

Patients with luminal A subtype have a very good prognosis,
and systemic adjuvant therapy is most likely hormone therapy
alone (Pellegrino et al, 2021). For luminal B cases, tumor-
infiltrating  lymphocytes are associated with prognosis,
suggesting that immunotherapy might bring survival benefits
(Hammerl et al, 2020). Therefore, targeting CHPF isoform 2
might be explored as a potential strategy to generate a TME
favorable for immunotherapy for luminal B cases.

This study also has some limitations. First, although
transcript-specific overexpression was used, we could not
check how transcript-specific knockdown of CHPF influences
the expression of the related genes. ENST00000535926 is a
part of ENST00000243776, which means any shRNA
targeting ENST00000535926 will lead to the knockdown of
both transcripts. Second, only two ER+ cell lines were used
for in vitro studies, which might influence the robustness of
the findings. In the future, we will explore the specific
regulatory mechanisms of ENST00000535926 on the tumor
immune microenvironment and the malignant behaviors of
other ER+ tumor cell lines.

Conclusion

This study revealed that ENST00000535926 is an unfavorable
prognosis-related and tumor-promoting transcript of the
CHPF gene in luminal A and B breast cancer. It stimulates
the expression of P3HI and RCN3. The expression of these
genes is negatively correlated with CD8+ T cell infiltration
but is positively correlated with cancer-associated fibroblast
infiltration in both luminal A and B tumors.
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Supplementary File

NM_024536.6 - NP_078812.3 chondroitin sulfate synthase 2 isoform 1
ENSP00000243776.6, ENST00000243776.11

>Q8I2Z52
MRASLLLSVLRPAGPVAVGISLGFTLSLLSVTWVEEPCGPGPPQPGDSELPPRGNTNAAR
RPNSVQPGAEREKPGAGEGAGENWEPRVLPYHPAQPGQAAKKAVRTRYISTELGIRQRLL
VAVLTSQTTLPTLGVAVNRTLGHRLERVVFLTGARGRRAPPGMAVVTLGEERPIGHLHLA
LRHLLEQHGDDFDWFFLVPDTTYTEAHGLARLTGHLSLASAAHLYLGRPQDFIGGEPTPG
RYCHGGFGVLLSRMLLQQLRPHLEGCRNDIVSARPDEWLGRCILDATGVGCTGDHEGVHY
SHLELSPGEPVQEGDPHFRSALTAHPVRDPVHMYQLHKAFARAELERTYQEIQELQWEIQ
NTSHLAVDGDQAAAWPVGIPAPSRPASRFEVLRWDYFTEQHAFSCADGSPRCPLRGADRA
DVADVLGTALEELNRRYHPALRLQKQQLVNGYRRFDPARGMEYTLDLQLEALTPQGGRRP
LTRRVQLLRPLSRVEILPVPYVTEASRLTVLLPLAAAERDLAPGFLEAFATAALEPGDAA
AALTLLLLYEPRQAQRVAHADVFAPVKAHVAELERRFPGARVPWLSVQTAAPSPLRLMDL
LSKKHPLDTLFLLAGPDTVLTPDFLNRCRMHAISGWQAFFPMHFQAFHPAVAPPQGPGPP
ELGRDTGRFDRQAASEACFYNSDYVAARGRLAAASEQEEELLESLDVYELFLHFSSLHVL
RAVEPALLQRYRAQTCSARLSEDLYHRCLQSVLEGLGSRTQLAMLLFEQEQGNST

NM_001195731.2 - NP_001182660.2 chondroitin sulfate synthase 2 isoform 2
ENSP00000445571.1, ENST00000535926.3

>Q8Iz252-4

—————————————————————————————————————————— MAVVTLGEERPIGHLHLA
LRHLLEQHGDDFDWFFLVPDTTYTEAHGLARLTGHLSLASAAHLYLGRPQDFIGGEPTPG
RYCHGGFGVLLSRMLLQQLRPHLEGCRNDIVSARPDEWLGRCILDATGVGCTGDHEGVHY
SHLELSPGEPVQEGDPHFRSALTAHPVRDPVHMYQLHKAFARAELERTYQEIQELQWEIQ
NTSHLAVDGDQAAAWPVGIPAPSRPASRFEVLRWDYFTEQHAFSCADGSPRCPLRGADRA
DVADVLGTALEELNRRYHPALRLQKQQLVNGYRRFDPARGMEYTLDLQLEALTPQGGRRP
LTRRVQLLRPLSRVEILPVPYVTEASRLTVLLPLAAAERDLAPGFLEAFATAALEPGDAA
AALTLLLLYEPRQAQRVAHADVFAPVKAHVAELERRFPGARVPWLSVQTAAPSPLRLMDL
LSKKHPLDTLFLLAGPDTVLTPDFLNRCRMHAISGWQAFFPMHFQAFHPAVAPPQGPGPP
ELGRDTGRFDRQAASEACFYNSDYVAARGRLAAASEQEEELLESLDVYELFLHFSSLHVL
RAVEPALLQRYRAQTCSARLSEDLYHRCLQSVLEGLGSRTQLAMLLFEQEQGNST

Green color indicates ENST00000243776.11 specific amino acids
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FIGURE S1. The protein sequences of
Chondroitin sulfate synthase 2 (CHPF)
isoforms.

-1 FIGURE S2. The representative melting curves for
quantitative real-time polymerase chain reaction

Temperature, Celsius analysis of CHPF expression.
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